
HYBRID SPEECH RECOGNITION WITH DEEP BIDIRECTIONAL LSTM

Alex Graves, Navdeep Jaitly and Abdel-rahman Mohamed

University of Toronto
Department of Computer Science

6 King’s College Rd. Toronto, M5S 3G4, Canada

ABSTRACT

Deep Bidirectional LSTM (DBLSTM) recurrent neural net-
works have recently been shown to give state-of-the-art per-
formance on the TIMIT speech database. However, the re-
sults in that work relied on recurrent-neural-network-specific
objective functions, which are difficult to integrate with exist-
ing large vocabulary speech recognition systems. This paper
investigates the use of DBLSTM as an acoustic model in a
standard neural network-HMM hybrid system. We find that a
DBLSTM-HMM hybrid gives equally good results on TIMIT
as the previous work. It also outperforms both GMM and
deep network benchmarks on a subset of the Wall Street Jour-
nal corpus. However the improvement in word error rate over
the deep network is modest, despite a great increase in frame-
level accuracy. We conclude that the hybrid approach with
DBLSTM appears to be well suited for tasks where acous-
tic modelling predominates. Further investigation needs to be
conducted to understand how to better leverage the improve-
ments in frame-level accuracy towards better word error rates.

Index Terms— DBLSTM, HMM-RNN hybrid

1. INTRODUCTION

Deep Bidirectional LSTM was recently introduced to speech
recognition, giving the lowest recorded error rates on the
TIMIT database [1]. In that work the networks were trained
with two end-to-end training methods designed for discrimi-
native sequence transcription with recurrent neural networks,
namely Connectionist Temporal Classification [2] and Se-
quence Transduction [3]. These methods have several advan-
tages: they do not require forced alignments to pre-segment
the acoustic data, they directly optimise the probability of the
target sequence conditioned on the input sequence, and (es-
pecially in the case of Sequence Transduction) they are able
to learn an implicit language model from the acoustic training
data. However neither method can readily be integrated into
existing large vocabulary speech recognition systems, which
were designed around the GMM-HMM paradigm. In particu-
lar, it is not straightforward to combine them with word-level
language models, which play a vital role in real-world tasks.

The standard solution to the problem of training neural
networks for speech recognition is to merge them with HMMs
in the so-called hybrid [4] or tandem [5] models. The hy-
brid approach, in particular, has gained prominence in recent
years with the performance improvements yielded by deep
networks [6, 7]. In this framework a forced alignment given
by a GMM-HMM system is used to create frame-level acous-
tic targets which the network attempts to classify. Using a
forced alignment has the advantage of providing a straight-
forward objective function (cross-entropy error) for network
training. Recognition is performed by combining the acoustic
probabilities yielded by the network with the state transition
probabilities from the HMM and the word transition probabil-
ities from the language model1, which can be done efficiently
for large vocabulary speech using weighted finite state trans-
ducers.

One of the original motivations for the hybrid approach
was to increase the amount of context used by the acoustic
model. In modern hybrid systems, acoustic context windows
of 11 to 21 frames are typically provided to the network. Re-
current Neural Networks (RNNs) can learn how much context
to use for each prediction, and are in principle are able to ac-
cess information from anywhere in the acoustic sequence. It
is therefore unsurprising that HMM-RNN hybrids have been
considered for almost twenty years [8, 9, 10]. So far how-
ever, they have not become a staple of large vocabulary speech
recognition.

The two main goals of this paper are to compare the per-
formance of DBLSTM-HMM hybrids with the end-to-end se-
quence training defined in [1], and to assess the potential of
DBLSTM-HMM hybrids for large vocabulary speech recog-
nition.

The network architecture is described in Section 2 and
the training method is described in 3. An experimental com-
parison with end-to-end training on the TIMIT database is
given in Section 4, and a comparison with deep networks and
GMMs on the Wall Street Journal corpus is provided by Sec-
tion 5. Section 6 contains discussion of the results and their
implications for DBLSTM training and concluding remarks

1In practice the HMM state transitions have become less signficant as lin-
guistic and acoustic models have improved, and many current systems ignore
them altogether.



are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht−1 + bh) (1)
yt =Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) andH is the hidden layer func-
tion.
H is usually an elementwise application of a sigmoid

function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (3)
ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4)
ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) (5)
ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where σ is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hnt = H
(
Whn−1hnhn−1t +Whnhnhnt−1 + bnh

)
(11)

where we define h0 = x. The network outputs yt are

yt =WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

−→
h n and

←−
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.



Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each yt defines a probability distribution over the
K possible states: that is, ykt (the kth element of yt) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

− log Pr(z|x) = −
T∑

t=1

log yztt (13)

Which leads to the following error derivatives at the output
layer

− ∂ log Pr(z|x)
∂ŷkt

= ykt − δk,zt (14)

where ŷt is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input



vector was therefore size 123. The data were normalised so
that every element of the input vectors had zero mean and
unit variance over the training set. All 61 phoneme labels
were used during training and decoding (so K = 61), then
mapped to 39 classes for scoring [19]. All experiments were
repeated four times with different random initialisations, and
results are quoted as the mean ± the std. dev.

Table 1 shows the phoneme error rate (PER) for DBLSTM
trained with the two methods described in [1]: Connection-
ist Temporal Classification (‘CTC’) and Sequence Transduc-
tion (‘Transducer’). Both networks consisted of five bidirec-
tional hidden levels, each containing two LSTM layers of 250
cells, along with a size 62 softmax output layer (one unit
for each phoneme, plus an extra blank unit). The sequence
transduction network had an additional phoneme prediction
network with a single hidden layer of 250 LSTM cells, and
an output network with a single hidden layer of 250 tanh
units. The CTC network had approximately 6.8M weights
and the Transducer network had approximately 7.4M. All net-
works were trained using stochastic gradient descent, with
learning rate 10−4, momentum 0.9 and random initial weights
drawn uniformly from [−0.1, 0.1]. The CTC networks were
first trained to convergence with no noise, then retrained with
weight noise (std. dev. 0.075). The Transducer networks were
initialised with the weights of the CTC networks after retrain-
ing with noise. The Transducer phoneme error rate of 18.07
± 0.24 is consistent with the single result of 17.7 recorded
in [1]. Indeed, the single best Transducer run in this paper
(the one achieving lowest PER on the development set) also
returned 17.7 on the test set.

For hybrid training on TIMIT a phonetic dictionary was
used, with three states per phoneme, giving 183 target states
in total. A biphone language model was estimated on the
training set, and a simple GMM-HMM system was used to
provide forced alignments. The posterior state probabilities
provided by the networks were not divided by the state oc-
cupancy priors, as this has been found to make no difference
on TIMIT [6]. Table 2 shows the phoneme error rates for
hybrid training with DBLSTM and Deep Bidirectional RNN
(DBRNN), along with the frame error rate (FER) and cross-
entropy error (CE) in units of nats per frame. The DBLSTM
networks had the same architecture as the CTC networks
described above, except that the output layer had 183 units
(one for each HMM state). As before, each randomly ini-
talised LSTM network was first trained to convergence, then
retrained with weight noise. The DBRNN network had 5
bidirectional levels with 500 tanh units in each, giving it ap-
proximately the same number of weights as the DBLSTM
networks. Retraining with weight noise was not found to
be effective for the DBRNN, and the results are only quoted
without noise. The best result of 17.99 ± 0.13 is not sig-
nificantly different from the best transducer result, which
is the best TIMIT result we know of in the literature. The
DBLSTM result without weight noise is better than the CTC

Table 1. TIMIT Results with End-To-End Training.

TRAINING METHOD DEV PER TEST PER
CTC 19.05 ± 0.11 21.57 ± 0.25
CTC (NOISE) 16.34 ± 0.07 18.63 ± 0.16
TRANSDUCER 15.97 ± 0.28 18.07 ± 0.24

Table 2. TIMIT Results with Hybrid Training.

NETWORK
DEV PER DEV FER DEV CE
TEST PER TEST FER TEST CE

DBRNN
19.91 ± 0.22 30.82 ± 0.31 1.07 ± 0.010
21.92 ± 0.35 31.91 ± 0.47 1.12 ± 0.014

DBLSTM
17.44 ± 0.156 28.43 ± 0.14 0.93 ± 0.011
19.34 ± 0.15 29.55 ± 0.31 0.98 ± 0.019

DBLSTM 16.11 ± 0.15 26.64 ± 0.08 0.88 ± 0.008
(NOISE) 17.99 ± 0.13 27.88 ± 0.16 0.93 ± 0.004

result without noise, and the DBRNN hybrid result is much
better than the DBRNN CTC result of 37.6 quoted in [1].

5. WALL STREET JOURNAL EXPERIMENTS

The second set of experiments were carried out on the Wall
Street Journal (WSJ) speech corpus. Their main purpose was
to gauge the suitability of hybrid DBLSTM-HMM for large
vocabulary speech recognition, and in particular to compare
the approach with existing deep network and GMM bench-
marks.

We trained an sGMM-HMM baseline system on WSJ cor-
pus (available as LDC corpus LDC93S6B and LDC94S13B)
using Kaldi recipe s5 [20]. The training set used for the ex-
periments was the 14hour subset train-si84, rather than the
full 81 hour set. We used the dataset test-dev93 as the de-
velopment set. The audio data was preprocessed into 40 di-
mensional log mel filter-banks, with deltas and accelerations,
as with TIMIT. The trigram language model used for the task
was provided with the WSJ CD. The forced alignments were
generated from Kaldi recipe tri4b, corresponding to LDA pre-
processing of data, with MMLT and SAT for adaptation. See
Kaldi recipe s5 for further details. There were a total 3385
triphone states in the alignments.

The DBLSTM network had five bidirectional hidden lev-
els, with 500 LSTM cells in each of the forward and backward
layers, and a size 3385 softmax output layer, giving a total of
29.9M weights. The training parameters for the DBLSTM
network were identical to those used for TIMIT. The deep
network (DNN) had a context window of 15 acoustic frames
(seven to either side of the centre frame being classified) It
had six hidden layers with 2000 sigmoidal units in each, and
a size 3385 softmax output layer. The DNN weights were



Table 3. WSJ Results. All results recorded on the dev93
evaluation set. ‘WER’ is word error rate, ‘FER’ is frame error
rate and ‘CE’ is cross entropy error in nats per frame.

SYSTEM WER FER CE
DBLSTM 11.7 30.0 1.15
DBLSTM (NOISE) 12.0 28.2 1.12
DNN 12.3 44.6 1.68
SGMM [20] 13.1 – –

initialized with samples from a mean of 0, standard devia-
tion 0.067 Gaussian. The DNN was trained with stochastic
gradient descent, starting with a learning rate of 0.1, and mo-
mentum of 0.9. The learning rate was reduced by a factor of 2
at the end of each epoch which failed to produce an improved
WER over the previous epoch, on the development set. Af-
ter six failed attempts, the learning rate was deemed to be low
enough that no further annealing was performed. The network
was trained for a total of 30 epochs. The posterior probabili-
ties returned by the DNN and DBLSTM were not divided by
state priors during decoding.

The DBLSTM networks outperformed both the GMM
baseline and the DNN. However the improvement in word
error over the DNN was much smaller than the gains in cross
entropy error and frame error rate. Furthermore, retraining
DBLSTM with noise decreased the cross entropy and FER,
but increased the WER. The DNN was not pretrained as
a Deep Belief Network [6], which may have considerably
improved its performance.

6. DISCUSSION

The two sets of experiments in this paper deliver a mixed mes-
sage about DBLSTM-HMM hybrids. On one hand the TIMIT
results show that they can deliver results on a par with end-to-
end discriminatively trained DBLSTM, and substantially bet-
ter than the best deep networks. On the other hand, the Wall
Street Journal results suggest that DBLSTM does not perform
much better than a randomly initialised deep network, when
used as an acoustic model in a hybrid system for large vocab-
ulary speech recognition.

The picture is further complicated by the fact that DBLSTM
is much better than deep networks at optimising the objective
function used for training (cross entropy error). This is not
entirely surprising, since DBLSTM is able to make more use
of surrounding context than deep networks, and also able
to ensure that it makes similar predictions for consecutive
frames (unlike deep networks, where each prediction is made
independently). It is therefore difficult to know how to im-
prove the performance of DBLSTM within a hybrid system.
Indeed adding a regularisation term reduced the Wall Street
Journal cross entropy error still further, but made the word
error rate worse.

The fundamental problem is that the frame-level distri-
butions the network is trained to optimise are significantly
different from the sequence level distribution that is implic-
itly defined by the decoding lattice. First of all, the network
is trained to model the location of the state-segment bound-
aries, which may be inaccurate (if the forced alignment used
to define them is suboptimal) and which is anyway irrelevant
to the word-level distributions defined by the lattice (because
the lattice sums over all feasible alignments). Secondly, the
cross entropy error does not take into account the language
model.

We suspect that the latter effect was the main reason
for the disparity betwen cross entropy and word error for
DBLSTM on Wall Street Journal. Given that DBLSTM can
access context from across the whole sequence, it may be
able to learn an implicit word-level language model from the
training data which then interferes with the explicit language
model used during decoding. For a task like TIMIT, with a
weak, biphone language model estimated from the training
utterances, the interference is likely to be negligible. For
Wall Street Journal, where the language model is trained on
a large text corpus and has a profound impact on overall
performance, it may be more significant.

7. CONCLUSIONS AND FUTURE WORK

We have applied a hybrid HMM-Deep Bidirectional LSTM
system to the TIMIT and Wall Street Journal speech databases.
We found that the system gave state-of-the-art results on
TIMIT, and outperformed GMM and deep network bench-
marks on WSJ.

In the future we would like to apply the system to large
vocabulary recognition on corpora with spontaneous speech,
such as Switchboard, where the language model is likely to
play a less significant role. We would also like to investigate
full sequence training as a means of reducing the disparity
between the objective function used for training and the per-
formance during decoding.
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