
CogBotLab
Machine Learning & Cognitive Robotics

Unconstrained On-line Handwriting
Recognition with Recurrent

Neural Networks
Alex Graves1, Santiago Fernández2, Marcus Liwicki3

Horst Bunke3, Jürgen Schmidhuber1,2

1 TU Munich, Boltzmannstr. 3, 85748 Garching, Munich, Germany
2 IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland

3 IAM, University of Bern, Neubrckstrasse 10, CH-3012 Bern, Switzerland
{alex,santiago,juergen}@idsia.ch {liwicki,bunke}@iam.unibe.ch

On-line Handwriting Recognition

• On-line handwriting recognition extracts sequences of
words from sequences of pen positions

• It is generally easier than off-line recognition, where the
text image is used as input

• However, each letter is spread over many pen positions
and extensive use of context is required—a problem for
most sequence learning algorithms

• Especially difficult for unconstrained handwriting, where
any writing style can be used

• Usual solution is to pre-process the data into a set of lo-
calised features (containing information about shape, tra-
jectory etc.)

• Special features are required for delayed strokes, e.g. the
crossing of a ‘t’ or the dot of an ‘i’

• Would prefer to map directly from pen trajectories to tran-
scriptions, since this (1) involves less human effort (2) is
more general (e.g. could be used for languages with dif-
ferent alphabets) and (3) builds the feature extraction into
the classifier, allowing the whole system to be trained to-
gether

Recurrent Neural Networks (RNNs)

• RNNs provide a differentiable map from input to output
sequences

• The recurrent connections give access to previous con-
text and build in robustness to local distortions and trans-
lations of the input

• Bidirectional RNNs feed the input sequence forwards and
backwards to two separate hidden layers, giving access
to both past and future context (e.g. the letters before and
after the current one)

• One problem with traditional RNNs is the limited range of
context they can access, due to the so-called vanishing
gradient problem

• The Long Short-Term Memory (LSTM) architecture uses
a linear ‘state’ unit surrounded by multiplicative ‘gates’ to
bridge long time delays, thereby giving access to long
range context

NET OUTPUT

FORGET GATE

NET INPUT

INPUT GATE

OUTPUT GATE

CEC

1.0

g

h

• Combining the above gives bidirectional LSTM (BLSTM)
• In principle BLSTM has access to context from the entire

input sequence at every point in the output sequence

Connectionist Temporal Classification (CTC)

• The standard objective functions for RNNs require a sep-
arate training signal for each point in the input sequence

Targets

silowddclnixwahdxaeq

Network Outputs

windowaat

• This is a problem for tasks like handwriting recognition,
where the alignment between the inputs and the labels is
hard to determine automatically, and (at least for cursive
text) the boundaries between letters are ambiguous

• CTC is a recently proposed output layer that trains RNNs
to map directly from input sequences to label sequences,
without requiring pre-alignment

• The labelling can be read directly from the network out-
puts (follow the spikes)

• The network can be trained with a log-likelihood objec-
tive function to maximise the probabilities of the correct
labellings in the training set

Integration with an External Grammar

• CTC outputs the label sequence l∗ with highest probabil-
ity given the input sequence x

l∗ = arg max
l

p(l|x)

• But for certain tasks, we want to further weight the la-
bellings according to some probabilistic grammar G (e.g.
using bigram or trigram word probabilities)

l∗ = arg max
l

p(l|x, G).

• If we assume that x is independent of G, the above equa-
tion reduces to

l∗ = arg max
l

p(l|x)p(l|G).

• This can be efficiently calculated with a variant of the to-
ken passing algorithm for HMMs

Experimental Data

• The IAM on-line database contains lines of unconstrained
handwriting, with the pen positions captured from a
“smart whiteboard” using an infrared receiver

• The input data consists of sequence of pen coordinates,
along with the time the coordinate was recorded and an
extra input to indicate when the pen was lifted off the
board

• We used the inputs both raw and pre-processed with
state-of-the-art techniques, such as skew and slant cor-
rection, size normalisation, feature extraction etc.

• A 20,000 word dictionary was used to constrain the out-
put words, giving 94% coverage of the test set

Use of Context

• The main difference between the raw and pre-processed
data was the amount of context required to identify let-
ters (the pre-processing provides localised features that
are easier to classify)

• The sensitivity of a CTC network to context can be anal-
ysed by plotting the sequential Jacobian—the derivative
of the output at a particular point with respect to the in-
puts at all points in the sequence

• In this example, with raw inputs, the sequential Jacobian
is plotted for the output corresponding to letter ‘i’ at the
point when ‘i’ is emitted (shown by the dotted line)

• The range of sensitivity extends through most of the word
‘having’

• Note the spike in sensitivity at the very end: this corre-
sponds to the delayed dot of the ‘i’

Results

• Identical BLSTM CTC networks were applied to the raw
and pre-processed data

• The word error rate (WER) on the test set was calculated
both with and without a bigram language model (LM)

• An HMM system was used for comparison

System Input LM WER
HMM pre-processed X 35.5%
CTC raw 7 30.1 ± 0.5%
CTC pre-processed 7 26.0 ± 0.3%
CTC raw X 22.8 ± 0.2%
CTC pre-processed X 20.4 ± 0.3%

• The CTC network substantially outperformed the HMM,
with or without a language model, for both input types

• CTC performance was almost as good with raw inputs as
with pre-processed

• It would be impossible to train most sequence learning
algorithms (e.g. HMMs or traditional RNNs) with the raw
inputs only

