
CSC165, Summer 2014

Assignment 5

Solutions

The goal of this assignment is for you to keep practicing writing proofs. Our goal this semester is for
you to learn to write proofs by the end of the course, and the only way to learn to write proofs is through
practice. In your proofs, justify each step. If you are asked to prove or disprove a claim, first determine
whether the claim is true, and then prove that it is true or prove that it is false (i.e., that its negation is
true), depending on which is correct.

You may work in groups of no more than two students, and you should submit a TEX file named
a5.tex and a PDF file named a5.pdf that was produced by compiling your a4.tex and that
contains the answers to the questions below. You should also submit your Python code in a5.py These files
should be submitted using MarkUs.

For this assignment, you will not receive 20% of the marks for leaving questions blank or writing “I
cannot answer this.”

1. Prove that
∀a ∈ R,∀n ∈ N, [0 < a < 1]⇒ an 6 1

using mathematical induction. Justify every step, and use the detailed structured proof format (you
can follow the format used in the induction handout on the website.)

Solution:

First, we define the predicate: P (k) := [∀a ∈ R, [0 < a < 1]⇒ ak 6 1]

Base case:
Assume a ∈ R

Assume 0 < a < 1
Then a0 = 1 6 1 # algebra

Then [0 < a < 1]⇒ a0 6 1 # introduce implication
Then ∀a ∈ R, [0 < a < 1]⇒ a0 6 1 # introduce universal
Then P (0) # substitution
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Induction step:
Assume k ∈ N

Assume P (k) is true
Then ∀a ∈ R, [0 < a < 1]⇒ ak 6 1 # substitution
Assume a ∈ R

Assume 0 < a < 1
Then ak 6 1 # implication
Then a ∗ ak 6 a ∗ 1 # a > 0
Then ak+1 6 a < 1 # a < 1
Then ak+1 < 1 # transitivity

Then 0 < a < 1⇒ ak+1 < 1 # introduce implication
Then ∀a ∈ R, [0 < a < 1⇒ ak+1 6 1] # introduce universal
Then P (k + 1) # substitution

Then P (k)⇒ P (k + 1) # introduce implication
Then ∀k ∈ N, P (k)⇒ P (k + 1) # introduce universal

We now conclude:
P (0) # proven above
Also, ∀k ∈ N, P (k)⇒ P (k + 1) # proven above
Then ∀n ∈ N, P (n) # principle of simple induction
Then ∀n ∈ N,∀a ∈ R, [0 < a < 1]⇒ an 6 1 # substitution
Then ∀a ∈ R,∀n ∈ N, [0 < a < 1]⇒ an 6 1 # universal quantifiers commute

�

Note: this proof is somewhat fussier than what should get perfect marks, but note that it is necessary
to make sure that a and n are defined wherever they are used.

2. Prove that
∀n ∈ N, [n > 2⇒ n! < nn]

using mathematical induction. Justify every step, and use the detailed structured proof format (you
can follow the format used in the induction handout on the website).

Solution:

We prove a helpful lemma: ∀k ∈ N, kk < (k + 1)k :
Assume k ∈ N

Then 0 < k
k+1 6 1 # k > 0, k + 1 > 1, k < k + 1

Then k
k+1

k
6 1 # Question 1

Then, kk

(k+1)k
6 1 # algebra

Then, kk 6 (k + 1)k # Multiply both sides by (k + 1)k

Then ∀k ∈ N, kk 6 (k + 1)k # introduce universal

Now, define the predicate: P (k) := k! < kk

Base case:
3! = 1 ∗ 2 ∗ 3 = 6 # algebra
Also, 33 = 3 ∗ 3 ∗ 3 = 27 # algebra
Then 3! < 33 # 6 < 27
Then P (3) # substitution
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Induction step:

Assume k ∈ N
Assume P (k) is true

Then k! < kk # substitution Then (k + 1) ∗ k! < (k + 1) ∗ kk # Multiply both sides by
k + 1 > 0
Then (k+ 1)! < (k+ 1) ∗ kk < (k+ 1) ∗ (k+ 1)k = (k+ 1)(k+1) # algebra, the lemma above
Then (k + 1)! < (k + 1)(k+1) # transitivity
Then P (k + 1) # substitution

Then P (k)⇒ P (k + 1) # implication

Then ∀k ∈ N, P (k)⇒ P (k + 1) # introduce universal

(Note that the induction starts at 3, but the induction step can start at 0 as usual, since False implies
True and False implies False are both true.)

We can now conclude:
P (3) is true # proven above
∀k ∈ N, P (k)⇒ P (k + 1) # proven above
Then ∀n ∈ {3, 4, 5, 6, ....}, P (n) # principle of simple induction
Then ∀n ∈ N, n > 2⇒ P (n) # [(n ∈ N) ∧ (n > 2)]⇔ [n ∈ {3, 4, 5, 6, ....}]

�

3. (a) Write Python code to determine the how many integers between 0 and n (inclusive) are expressible
as the sum of squares of two (possibly equal) positive natural numbers in at least two different
ways. For example, 50 = 52 + 52 = 71 + 11 is expressible as the sum of squares of two positive
natural numbers in at least two different ways. On the other hand, the only way to express 2 as
a sum of squares of positive natural number is 2 = 12 + 12, and 3 is not expressible as a sum
of squares of two positive natural numbers at all. Submit the code as a5.py, and submit the
relevant parts of the output which shows your answer for n = 100 (this could be just one line),
explaining clearly what it means, as part of your answer to this question. Justify your answer
briefly (a complete formal proof is not required.)

Solution:

The output for n = 100 is:
There are 3 numbers expressible as a sum of two squares in two different ways between

1 and 100.

The script works by checking whether each number between 1 and n is expressible as a sum of
squares in at least two different ways. For each k, we consider all the possibilities i2 + (k− i)2 for
i < (k − i) for 0 < i 6 d

√
n/2e, which covers all the possibilities.

(b) What is a tight upper bound on the number of comparison operations (i.e., ==, <, <=, >, >= )
that are executed when running your algorithm for a given n? Ignore the comparison operations
that are performed when running functions from the math module.//

Solution:

The loop in is two sum sq runs for
√
n/2 iterations at 2 comparisons each when checking whether

a solution has been found, and there are at most 2 times that found is compared to 2, so the
upper bound there is 2

√
n/2 + 2. Checking whether {1, 2, 3, ..., n} are each expressible as a sum

of two squares in two different ways takes

(2
√

1/2 + 2) + (2
√

2/2 + 2) + (2
√

3/2 + 2) + ... + (2
√

n/2 + 2) = 2n + (2/
√

2)

n∑
i=1

√
i

This is a tight upper bound, and would be sufficient as an answer. (Using a formula from
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http://mathforum.org/library/drmath/view/65309.html, you can get that the asymptotic
upper bound is O(n3/2) in this case.)

The analysis would be more straightforward if I didn’t try to minimize the number of iterations
in line 14. If I had used n iterations instead of

√
n/2 iterations in is two sum sq, I would be

performing at most 2k + 2 comparisons for each k, and so in total the upper bound would be

n∑
i=1

[2i + 2] = n(n + 1) + 2n = n2 + 3n

4. Prove that
∃k ∈ N,∀n ∈ N, [n > k]⇒ [1000n2 + 10 6 n4].

Hints: you can divide both sides by n2 and preserve the inequality, since n2 is always positive. Re-
minder: na/nb = na−b. You can then figure out (in your rough work) what value of k you need. Note
that 10/n2 < 1 if n > 4. Justify every step, and use the detailed structured proof format.

Solution:
Let k = 32
Then k ∈ N # 32 ∈ N
Assume n ∈ N

Assume n > k
Then 10/n2 < 1 # n2 > 322 = 1024 > 10
Then 1000 + 10/n2 < 1001 < 1023 < 322 < n2 # 10/n2 < 1, n > 32
Then 1000 + 10/n2 < n2 # transitivity of <
Then 1000n2 + 10 < n4 # multiply both sides by n2

Then [n > k]⇒ 1000n2 + 10 < n4 # introduce implication
Then ∀n ∈ N, [n > k]⇒ 1000n2 + 10 < n4 # introduce universal

�
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5. Let R+ be the set of positive real numbers and N+ be the set of positive natural numbers. Prove that

∀a ∈ R+,∀b ∈ R+,∀p1 ∈ N+,∀p2 ∈ N+, [p1 6 p2]⇒ anp1 ∈ O(bnp2 .)

You may not use, without proof, any properties of big-Oh, other than its definition. Justify every step,
and use the detailed structured proof format.

Solution:
Assume p1 ∈ N+, p2 ∈ N+, a ∈ R+, b ∈ R+

Assume p1 6 p2
Let c = a

b # b 6= 0 since b ∈ R+

Then c ∈ R+ # both a and b are ∈ R+ and it is closed under division
Let B = 1
Then B ∈ N # 1 ∈ N
Assume n ∈ N

Assume n > B
Then np2−p1 > 1 # p2 − p1 > 0, n > 1 > 0
Then np2 > np1 # multiply both sides by np1 > 0 (since n > 0)
Then np1 6 np2 # algebra
Then anp1 6 anp2 # multiply both sides by a > 0
Then anp1 6 a

b bn
p2 # algebra

Then anp1 6 c(bnp2) # substitution
Then n > B ⇒ anp1 6 c(bnp2) # introduce implication

Then ∀n ∈ N, n > B ⇒ anp1 6 c(bnp2) # introduce universal
Then ∃B ∈ N,∃c ∈ R+,∀n ∈ N, n > B ⇒ anp1 6 c(bnp2) # introduce existential, B
and c provided above
Then anp1 ∈ O(bnp2) # definition of big-Oh

Then [p1 6 p2]⇒ [anp1 ∈ O(bnp2)] # introduce implication
Then ∀a ∈ R+,∀b ∈ R+,∀p1 ∈ N+,∀p2 ∈ N+, [p1 6 p2]⇒ anp1 ∈ O(bnp2) # introduce universal

�
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