
CSC165, Summer 2014

Assignment 6

Weight: 8%

Solutions

1. State whether the following claim is true, and then prove or disprove it. Give a detailed structured
proof, justifying every step.

∀n ∈ N, [(∃k ∈ N, n = 4k) ∨ (∃k ∈ N, n = 4k + 1)]

Solution:

The statement is false. We prove its negation. The strategy is to realize that the statement is false
since, for example, 2mod4 = 2 and not 0 or 1, and to go back to the definition of N.

Proof :

Let n = 2 Then n ∈ N # 2 ∈ N
Then n 6∈ {0, 4, 8, 12, ...} # by inspection, 2 is not in that sorted list
Then n 6∈ {4 ∗ 0, 4 ∗ 1, 4 ∗ 2, ...} # algebra
Then ¬[∃k ∈ N, n = 4k]
Then also n 6∈ {1, 5, 9, 13, ...} # by inspection, 2 is not in that sorted list
Then n 6∈ {4 ∗ 0 + 1, 4 ∗ 1 + 1, 4 ∗ 2 + 1, ...} # algebra
Then ¬[∃k ∈ N, n = 4k + 1]
Then ¬[∃k ∈ N, n = 4k] ∧ ¬[∃k ∈ N, n = 4k + 1] # conjunction of two true statements
Then ¬[[∃k ∈ N, n = 4k] ∨ [∃k ∈ N, n = 4k + 1]] # De Morgan
Then ∃n ∈ N,¬[[∃k ∈ N, n′ = 4k] ∨ [∃k ∈ N, n = 4k + 1]] # introduce existential, n = 2 is such
an n
Then ¬[∀n ∈ N, [[∃k ∈ N, n′ = 4k] ∨ [∃k ∈ N, n = 4k + 1]]] # quantifier negation

�

1

2. Let F be the set of all function from N to R+. Let dfe be a function such that

∀n ∈ N, [(dfe)(n) = df(n)e].

State whether the following claim is true, and then prove or disprove it. Give a detailed structured
proof, justifying every step.

∀f ∈ F ,∀g ∈ F , [f ∈ O(g)⇒ dfe ∈ O(g)]

Solution:

The statement is false. We prove its negation. The strategy is to prove that for f(n) = 1/(n + 1)
and g(n) = 1/(n + 1), f ∈ O(g) but dfe = 1 6∈ O(g). (The reason we use 1/(n + 1) is that 1/n is not
defined for n = 0.

Proof:

Let f(n) = 1/(n + 1)
Let g(n) = 1/(n + 1)
Let B = 1, c = 1
Then B ∈ N, c ∈ R # 1 ∈ R+, 1 ∈ N
Then ∀n ∈ N, [n > B]⇒ [f(n) 6 cf(n)] # f(n) 6 f(n) = 1 ∗ f(n) always, so the consequent is
always true
Then ∃c ∈ R+,∃B ∈ N,∀n ∈ N, [n > B] ⇒ [f(n) 6 cf(n)] # introduce existential, n = 1 and
B = 1 are such c and B
Then f ∈ O(g) # definition of big-Oh, g = f
Also dfe = 1 # ∀n ∈ N, 0 < 1/(n + 1) < 1

Assume c ∈ R+, B ∈ N
Let n = max(B + 1, (dce+ 1)
Then (B + 1) ∈ N # integers are closed under addition
Also (dce+ 1) ∈ N # ∀x ∈ R+dxe ∈ N
Then n = max(B + 1, dce+ 1) ∈ N # both possibilities for the value of max are integers
Then n > B # n = max(x, y)⇒ n > x
Then (n > c) # (dce+ 1) > c + 1 > c
Then 1 > n/(n + 1) > c/(n + 1) = c ∗ (1/(n + 1) # c > n > 0
Then 1 > c ∗ (1/(n + 1)) # transitivity
Then ¬[[n > B]⇒ [1 6 c ∗ (1/(n+ 1))]] # the antecedent is true and the consequent is false
Then ∃n ∈ N,¬[[n > B]⇒ [1 6 c ∗ (1/(n + 1))]] # n = max(B + 1, dce+ 1) ∈ N works
Then ¬[∀n ∈ N, [n > B]⇒ [1 6 c ∗ (1/(n + 1))]] # quantifier negation

Then ∀c ∈ R+,∀B ∈ N,¬[∀n ∈ N, [n > B]⇒ [1 6 c ∗ (1/(n + 1))]] # introduce universal
Then ¬[∃c ∈ R+,∃B ∈ N, [∀n ∈ N, [n > B]⇒ [1 6 c ∗ (1/(n + 1))]]] # quantifier negation twice
Then ¬[1 ∈ O(1/(n + 1)] # definition of big-Oh
Then ¬[dfe ∈ O(g)] # substitution
Then [f ∈ O(g)] ∧ [¬[dfe ∈ O(g)]] # conjunction
Then ¬[[f ∈ O(g)]⇒ [dfe ∈ O(g)]]] # implication negation
Then ∃f ∈ F ,∃g ∈ F ,¬[[f ∈ O(g)]⇒ [dfe ∈ O(g)]]] # f(n) = 1/(n + 1) and g(n) = 1/(n + 1)
are such f and g
Then ¬[∀f ∈ F ,∀g ∈ F , [[f ∈ O(g)]⇒ [dfe ∈ O(g)]]]] # quantifier negation twice

�

2

3. The Fibonacci numbers fib(n) are defined as follows:
fib(0) = 1, fib(1) = 1, and fib(n) = fib(n− 1) + fib(n− 2) for n ∈ {2, 3, 4, 5, ...}.
Prove that

∀n ∈ N, fib(n) ≤ 2n.

It will be helpful to prove, using induction, that [∀n ∈ N, P (n)] where

P (n) : ∀k ∈ N, [k 6 n]⇒ fib(k) ≤ 2k.

Solution:

Define
P (n) : ∀k ∈ N, [k 6 n]⇒ fib(k) ≤ 2k.

We would like to prove that [∀n ∈ N, P (n)].

We first prove P (0) and P (1).
1 6 1 = 20 # algebra
Then fib(0) 6 20 # substitution
1 6 2 = 21 # algebra
Then fib(1) 6 21 # substitution
Then ∀k ∈ N, [k 6 1]⇒ fib(k) ≤ 2k # the consequent is true when the antecedent is true
Then P (1) # substitution
Also, P (0) # the consequent is true in P (0) whenever it’s true in P (1)

Base case:
P (1) # proved above

Induction step:
Assume n ∈ {1, 2, 3, 4, 5, ...}

Assume P(n)
Then ∀k ∈ N, [k 6 n]⇒ fib(k) ≤ 2k # substitution
Then fib(n− 1) ≤ 2n−1, fib(n) ≤ 2n # n 6 n, (n− 1) 6 n
Then fib(n− 1) + fib(n) 6 2n−1 + 2n 6 2n + 2n = 2n+1 # algebra
Then fib(n + 1) 6 2n+1 # definition of fib() for n > 1
Then ∀k ∈ N, [k 6 (n + 1)]⇒ fib(k) ≤ 2k # proved for k 6 n and for k = n + 1
Then P (n + 1) # substitution

P (n)⇒ P (n + 1) # introduce implication
∀n ∈ {1, 2, 3, 4, 5, ...}, P (n)⇒ P (n + 1) # introduce universal

We can now conclude:
P (1) # proved above
∀n ∈ {1, 2, 3, 4, 5, ...}, P (n)⇒ P (n + 1) # proved above
Then ∀n ∈ {1, 2, 3, 4, 5, ...}, P (n) # by the principle of simple induction
Also, P (0) # proved above
Then ∀n ∈ N, P (n) # true for all N = {0, 1, 2, 3, 4, ...}

But P (n) is not exactly what we need to prove. We now conclude:

[∀k ∈ N, [k 6 n]⇒ fib(k) ≤ 2k]⇒ [fib(n) ≤ 2n] # n ≤ n
Then P (n)⇒ [fib(n) ≤ 2n] # substitution
Then ∀n ∈ N, [P (n) ∧ [P (n) ⇒ [fib(n) ≤ 2n]] # conjunction with a true statement Then
∀n ∈ N, fib(n) ≤ 2n # implication elimination

�

(The last part is more formal that it has to be.)

3

4. (a) Write a function def lowest terms(n,m) that takes two integers as inputs, and returns True iff
n/m is a fraction that is reduced to lowest terms. For example, lowest terms(2,3) is True but
lowest terms(4,6) is False. In the comments to your code, explain how the code works, and
argue informally (i.e., no formal proof is required) that it produces the desired output. In the
comments, provide the output for 8 test cases.

(b) In the comments in a6.py, give a tight upper bound on the total number of comparison operators
((==, <, >, <=, >=) and arithmetic operators (+,−, mod, /, ∗,....) performed when
running def lowest terms(n,m). Your answer should be one expression for the tight upper
bound on sum of the number of comparison operators and the number of arithmetic operators.
Justify your answer. (A formal proof is not required). Note: your answer will be an expression
that may depend on both m and n.

Solution:

See a6.py.

5. Bonus question, worth half the weight of the other questions: Claims 5.3 and 5.4 in Section
5.4 in the notes present a method to list all the rational numbers. Note, however, that, if that method
is used, every rational number is actually listed an infinite number of times (for example, the number
1 is listed as 1/1, 2/2, 3/3, 4/4, 5/5...). It is possible to modify this method that produces a list of all
the rational numbers such that every rational number appears in the list exactly once. Write a Python
function def r(n) that takes an integer n as input and prints the n-th (starting from 0) rational
number in such a list. For example, if the list begins with {0, 1,−1, 1/2,−1/2, 2,−2, ...}, r(4) should
print “-1/2” (the output should not contain quotes). In the comments to your code, explain how
the code works, and argue informally (i.e., no formal proof is required) that it produces the desired
output. Also in the comments, include the output for r(0), r(1), r(2), ..., r(20). Hints: (1) I suggest
implementing code that prints a list using the method in Claim 5.3, then modifying that code to print
a list using the method in Claim 5.4, and then thinking how to implement def r(n) by modifying the
code from there. You only need to submit def r(n) and not anything else. Clearly documented
attempts at a solution that run and make progress towards the solution will get part marks. Submit
your code and comments in bonus6.py.

Solution:

See a6b.py.

4

