Prove or disprove each of the following statements. Write detailed proof structures and justify your work.

1. For all real numbers r, s, if r and s are both positive, then $\sqrt{r} + \sqrt{s} \neq \sqrt{r+s}$.

FIRST, write the statement symbolically:

$$\forall r \in \mathbb{R}, \forall s \in \mathbb{R}, r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \neq \sqrt{r+s}$$

SECOND, try a direct proof: Assume $r \in \mathbb{R}$ and $s \in \mathbb{R}$ Assume r > 0 and s > 0Then, $\sqrt{r} + \sqrt{s} = \dots$ NO OBVIOUS WAY TO CONTINUE. NEXT, try an indirect proof: Assume $r \in \mathbb{R}$ and $s \in \mathbb{R}$. Assume $\sqrt{r} + \sqrt{s} = \sqrt{r+s}$. Then, $(\sqrt{r} + \sqrt{s})^2 = (\sqrt{r+s})^2$. # square both sides Then, $(\sqrt{r})^2 + 2\sqrt{r}\sqrt{s} + (\sqrt{s})^2 = r + s$. # expand both sides Then, $2\sqrt{rs} = 0$. # subtract r + s from both sides Then, rs = 0. # divide by 2 and square both sides Then, $r = 0 \lor s = 0$. # Now, do a sub-proof by cases. Assume r = 0. Then, $r \ge 0$. Then, $r \neq 0 \lor s \neq 0$. Then, $\neg (r > 0 \land s > 0)$. Assume s = 0. Then, $s \ge 0$. Then, $r \ge 0 \lor s \ge 0$. Then, $\neg (r > 0 \land s > 0)$. In either case, $\neg (r > 0 \land s > 0)$. Then, $\sqrt{r} + \sqrt{s} = \sqrt{r+s} \Rightarrow \neg (r > 0 \land s > 0)$ Then, $r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \neq \sqrt{r+s}$. Then, $\forall r \in \mathbb{R}, \forall s \in \mathbb{R}, r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \neq \sqrt{r+s}.$

2. For all real numbers x and y, $x^4 + x^3y - xy^3 - y^4 = 0$ exactly when $x = \pm y$.

FIRST, write the statement symbolically (be careful to handle that "±" correctly):

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^4 + x^3y - xy^3 - y^4 = 0 \Leftrightarrow (x = y \lor x = -y)$$

SECOND, start the proof structure for the universal quantifiers: Assume $x \in \mathbb{R}$ and $y \in \mathbb{R}$. # To prove an equivalence, we prove the implication in each direction. First assume $x^4 + x^3y - xy^3 - y^4 = 0$. Then, $x^3(x+y) - y^3(x+y) = 0$. # factor out the expression Then, $(x^3 - y^3)(x + y) = 0$. # factor out the expression Then, $x^3 - y^3 = 0 \lor x + y = 0$. $\# ab = 0 \Leftrightarrow a = 0 \lor b = 0$ # Now, do a sub-proof by cases. Assume $x^3 - y^3 = 0$ Then, $x^3 = y^3 \# add y^3$ to both sides Then, x = y # take cube roots on both sides, cube root is one-to-one so we can do it Then, $x = y \lor x = -y \quad \#$ introduce \lor Assume x + y = 0Then, x = -y # subtract y from both sides Then, $x = y \lor x = -y \quad \#$ introduce \lor In either case, $x = y \lor x = -y$. Then, $x^4 + x^3y - xy^3 - y^4 = 0 \Rightarrow x = \pm y$. Next assume $x = \pm y$. Then, $x = y \lor x = -y$. # expand "±" # Now, do a sub-proof by cases. Assume x = y. Then, $x^3 = y^3$. # cube both sides Then, $x^3 - y^3 = 0$. # subtract y^3 from both sides Then, $(x^3 - y^3)(x + y) = 0$. # multiply both sides by (x + y)Then, $x^4 + x^3y - xy^3 - y^4 = 0$. # expand Assume x = -y. Then, x + y = 0. # add y to both sides Then, $(x^3 - y^3)(x + y) = 0$. # multiply both sides by $(x^3 - y^3)$ Then, $x^4 + x^3y - xy^3 - y^4 = 0$. # expand In both cases, $x^{4} + x^{3}y - xy^{3} - y^{4} = 0$. Then, $x = \pm y \Rightarrow x^4 + x^3y - xy^3 - y^4 = 0.$ Then, $x^4 + x^3y - xy^3 - y^4 = 0 \Leftrightarrow x = \pm y$. # introduce \Leftrightarrow Then, $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^4 + x^3y - xy^3 - y^4 = 0 \Leftrightarrow (x = y \lor x = -y).$ Notice how the detailed proof structure makes it easy to keep track of assumptions, and cases and sub-cases, and to know exactly when we are done.