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Induction examples

1 Introduction: the Principle of Simple Induction

The principle of simple induction is as follows. Assume that P is a predicate. Then:

[P (0) ∧ (∀n ∈ N, P (n) ⇒ P (n + 1))] ⇒ [∀n ∈ N, P (n)]

In other words, if P (0) is true (n = 0 is called the base case) and P (n) implies P (n+ 1) (this implication
is called the induction step, then P (n) is true for any n. Why is this true? One way to think about it is that
we can “cook up” a proof that P(n) is true for any n by repeatedly applying the induction step, starting from
the claim that P (n) is true: P (0) is true, then P (1) is true (# implication), so P (2) is true (# implication),
so P (3) is true (#implication)... so P (n) is true (# implication). You can imagine writing a Python script
to prove that P (n) is true for any given n, so we know that P (n) is true since we can prove it.

2 Sum of an arithmetic series

We prove that 0 + 1 + 2 + ... + n = n(n+1)
2 for any natural n using induction. Note that 0 + 1 + 2 + ... + n

can be written as
n∑

i=0

i

First, we define the predicate:

P (k) :=

k∑
i=0

i =
k(k + 1)

2

Note that P (k) being true for all k ∈ N is exactly what we are trying to prove. We just restated the
assertion in the form of a predicate.

We first prove the base case:∑0
i=0 = 0 = 0(0+1)

2 # algebra
Then P (0) is true # substitute k=0 into the definition of P(k)
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We can now prove the induction step:
Assume k ∈ N

Assume P (k) is true

Then
∑k

i=0 i = k(k+1)
2 # substitution of the definition of P

Then
∑k+1

i=0 i = (
∑k

i=0 i + (k + 1)) = k(k+1)
2 + k + 1 # algebra

Then
∑k+1

i=0 i = k(k+1)
2 + 2(k+1)

2 = (k+2)(k+1)
2 = (k+1)((k+1)+1)

2 # algebra
Then P (k + 1) is true # substitution

Then P (k) ⇒ P (k + 1) # introduce implication
Then ∀k, P (k) ⇒ P (k + 1) # introduce universal

We can now conclude
P (0) # proven above
Also, ∀k ∈ N, P (k) ⇒ P (k + 1) # proven above
Then ∀n ∈ N, P (n) # principle of simple induction

Then ∀n ∈ N, 0 + 1 + 2 + 4 + ... + n = n(n+1)/2
2 # substitution

This proves the claim.

3 The number of rows in a truth table

We would like to prove that if a truth table has n variables, then the table will have 2n rows (i.e., possible
values for all the variables.) For example, if there is only one variable in the truth table, P , it can have two
values and so the table will just have two rows: P = true and P = false. (The number of columns might be
larger: maybe one column is P , another is ¬P , and another is P ∧P . The first and third columns are equal,
but part of the point of truth tables is that some columns may be equal, so that’s okay.

As was pointed out in class, if there are zero variables, arguably the truth table has 0 rows, but 20 = 1.
So it makes sense to think about numbers of variables that are at least 1. We can still, of course, start
counting from zero by setting up the predicate as:

Q(n) := the number of rows in a truth table with n + 1 variables is 2n+1

With this predicate, Q(0) means that the number of rows in a truth table with one variable is two, which
is true.

We generally prefer to implicitly generalize the principle of simple induction a little bit, and implicitly
use the fact that

∀n0 ∈ N, [P (n0) ∧ (∀n ∈ {n0, n0 + 1, n0 + 2, ...}, P (n) ⇒ P (n + 1))] ⇒ [∀n ∈ {n0, n0 + 1, n0 + 2, ...}, P (n)]

This fact is also referred to as the principle of simple induction. The base case will now be P (n0) for
whatever n0 we pick.

We define the predicate as:
P(n) := the number of rows in a truth table with n variables is 2n

P (0), unlike Q(0), is false, so we have to use n0 = 1 as the base case:
Assume T is a truth table with n0 = 1 variable

Assume WLOG the variable is called P
Then the truth table T contains a row for P = true and a row for P = false and no other row
# only possible values
The the truth table T contains two rows # we listed all of the two possibilities

Then all truth tables with a single variable contains two rows. # introduce universal
We can now prove the induction step. The basic idea is to observe that we can list all the lines of a truth

table with (n + 1) variables by gluing together two truth tables for n variables, and assigning True to the
n-th variables the first time, and False the second time.
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Assume n ∈ {1, 2, 3, ...}
Assume P (n) is true

Assume T is a truth table with (n+1) variables (WLOG, call them P1, P2, ..., Pn, Pn+1.
Assume WLOG that all the truth tables under consideration only have variables (and not
expressions) as columns (since additional columns don’t matter)

Then we can build the rows of T by taking the rows of the truth table for P2, ..., Pn+1

twice, setting the value of P1 as true the first time, and as false the second time # the
possible values of P2...Pn+1 are the same in the smaller table as in the larger table, and
the only possible values of P1 are true and false
Then T is twice as large as the truth table for P2...Pn+1 # T is built by taking that
truth table and writing it twice, varying the values of P1 The size of the truth table for
P2, ..., Pn+1 is 2n # P(n) is true by assumption
Then the size of T is 22n = 2n+1 # algebra

Then P (n + 1) # substitution all tables with the same number of variables have the same
number of rows

Then P (n) ⇒ P (n + 1) # introduce implication
Then ∀n ∈ {1, 2, 3, ...}.P (n) ⇒ P (n + 1) # introduce universal

We can now finish the proof:
P (1) # proven above
Also, ∀k ∈ {1, 2, 3, ...}, P (k) ⇒ P (k + 1) # proven above
Then ∀n ∈ {1, 2, 3, ...}, P (n) # principle of simple induction
Then for all natural n > 1, a truth table with n variables has 2n rows # substitution
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