CSC165 Quiz 9, Thursday July 28th

Name:

Student number:

Last lecture we determined that the running time for linear search, LS(A, x) on an array A of length n, denoted $t_{LS}(A, x)$ was:

- $tp_{LS}(A, x) = 15$ if A[0] == x (best case).
- $tp_{LS}(A, x) = 15n + 10$, if x is not in the array (wors5 case)

Let $T_p(n) = \max\{tp_{LS}(A, x) : A \text{ has length } n\}$. Answer the following questions. Briefly justify your answer WITHOUT writing a formal proof.

1. Is $T_p(n) \in O(n)$?

Yes. If $n \ge 10$ and c = 16, then $T_p(n) = 15n + 10 \le 16n$.

2. is $T_p(n) \in O(1/n)$?

No. There is no constant that will make $15n + 10 \le c/n$, once n is somewhat greater than 16c.

3. Is
$$T_p(n) \in O(n^2)$$
?

Yes. Being in O(n) implies being in $O(n^2)$.

4. Is $T_p(n) \in O(2^n)$?

Yes. If c = 1 and $n \ge 10$, then $T_p(n) = 15n + 10 \le 2^n$.

5. Is $T_p(n) \in \Omega(1/(n+1))$?

Yes. For every n, 1/(n+1) < 1 so $T_p(n) = 15n + 10 \ge 1/(n+1)$.