CSC236, Summer 2004, Assignment 4, sample solutions

1. Use the first-order language of arithmetic defined in Exercise 1, Course Notes page 183, to construct
the formulas below, assuming that the domain D = N, the natural numbers. You are also free to use
the additional formula Prime(z), defined in Exercise 2, to express the predicate “z is prime.”

(a) Give a formula that expresses “there are infinitely many primes.”

VzIy(L(z,y) A Prime(y))

(b) Give a formula that expresses “there are infinitely many composite numbers.”

Vz3Iy(L(z,y) A ~Prime(y))

(c) Give a formula that expresses “z? + y% = 22.”

YoVwVw((P(z,z,v) A P(y,y,w) A P(z,z,u)) = S(v,w,u))

(d) Give a formula that expresses “there are k consecutive composite numbers.”

JuIv3w(L(0,u) A S(u, k,v) A S(v,1,w) AVz((L(u, z) A L(z,w)) - —Prime(z))

(e) Give a formula that expresses “Any natural-number power of 11 equals 1 mod 10.”

I define constants 10V = 10 and 11V = 11

Vz(Vyvt(P(y,t,z) = (=~ (y,1)V = (y,11))) = Fudv(P(u, 10,v) A S(v,1,z)))

2. State whether each formula is valid or not. Prove your claim.

(a)

Vady (VyF(z,y) = JzM(z,y)) « JyVz (VyF(z,y) = Iz M(z,y))

CrAIM: The formula is valid.

Proor: I will show, using the logical equivalences from 6.6 (pages 160-163), that the formula
on the left-hand side of the biconditional (LF') is logically equivalent to the one on the right
(RF). This (by definition) means that LF + RF is valid.

[rename variables|] Vz3y (VyF(z,y) — JzM(z,v))
[factor quantifier]
[factor quantifier]
[factor quantifier]
[factor quantifier]

[rename variables]

LEQV
LEQV
LEQV
LEQV
LEQV

LEQV

Vedy (VuF(z,u) - JwM(w,y))
Ve (VuF(z,u) — Jy3wM(w,y))
(JzVuF(z,u) —» JyFwM(w,y))
Jy (FzVuF (z,u) - FJwM(w,y))
JyVz (VuF(z,u) - FJwM(w,y))
Jyvz (VyF(z,y) - JzM(z,vy))

Thus LF LEQV RF, which (by definition) means LF + RF is a tautology. QED.



(b)

()

(d)

VzIy (VyF(z,y) = FyM(z,y)) < IWVz (VyF(z,y) = FyM(z,y))

CraM: If F is a first-order formula in which variable ¢ does not appear, then Vz F is logically
equivalent to F', and both are logically equivalent to 3z F'. Furthermore, both are equivalent
to JzF'.

ProoF: Let (S,0) be an interpretation containing the predicate F, and let v be an arbitrary
element of D (D is non-empty by definition). Then F' is true in (S, o) if and only if F is true
in (S,0|2), since mapping ¢ to v has no effect on F. Since v is an arbitrary element of D,
the truth value of F' is the same as the truth value of VzF. Since the interpretation (S, o)
is arbitrary, F' is logically equivalent to VazF'. Furthermore, JzF is logically equivalent to
(by double negation rule) =—3Jz F, which is logically equivalent to (by negation of quantifier
rule) =Vz—F, which is logically equivalent to (by the first part of this claim) ——F, which is
logically equivalent to (double negation) F. QED.

Cram: Let LF = VzIy (VyF(z,y) = JyM(z,y)) and RF = FyVz (VyF(z,y) — JyM(z,v)).
Then LF LEQV RF, so (by definition) LF + RF is a valid formula.

ProOF: Apply the logical equivalence rules from page 160:

[renaming rule] Vz3y (VyF(z,y) - JyM(z,y)) LEQV Vzdy(VuF(z,u) - JuM(z,u))

[Claim proved above] LEQV Vz (VuF(z,u) — JuM(z,u))
[Claim proved above] LEQV JyVz (VuF(z,u) — JuM(z,u))
[renaming rule] LEQV JyVz (VyF(z,y) —» JyM(z,v)).

Thus LF LEQV RF, so LF < RF is a valid formula. QED.

(Ve F(z,y) vV VzM(y,z)) & Vz(F(z,y) vV M(y,z))

CrAmM: The formula is not valid. Let S be the structure where D = N, the natural numbers,
F(z,y) be interpreted as z < y, M(y,z) be interpreted as z > y, and let o(y) = 5. In
interpretation (S,0) VzF(z,y) is false, since F(z,y) is false under o|3. Also, VzM(y,z)
is false, since M(y,z) is false under o|3. Thus, in interpretation (S,c), the disjunction
(VzF(z,y) VVzM(y,z)) is false. On the other hand, in interpretation (S,0) every z € D
is either less than 5 or no less than 5, so the quantified disjunction Vz(F(z,y) Vv M(y,z))
is true. This exhibits an interpretation that falsifies LF but satisfies RF, so (by definition)
LF < RF is not valid. QED.

(Ve F(z,y) AVzM(y, z)) & Vz(F(z,y) A M(y, 7))

Cram Let LF = (VzF(z,y)AVzM(y,z)) and RF = Vz(F(z,y) A M(y,z)). Then LF LEQV RF,
so LF <> RF is a valid formula.

ProOF: Let (S,0) be an interpretation that satisfies LF. Then (by the definition of A) both
VzF(z,y) and VzM(y,z) are true in (S,0). This means that (by Definition 6.6, applied
twice) for every (vi,v2) € D x D, F(z,y) is true in (S, 0[] ) and M(y, z) is true in (S, 0[3,).
This implies, in the special cases where v; = vq, that for every v; € D, F(z,y) and M(y,z)
are true in (S, 05, ), which means Vz(F(z,y) A M(z,y)) is satisfied. Thus LF logically implies
RF.

On the other hand, let (S,0) be an interpretation that satisfies RF. This means that
Vz(F(z,y) AN M(y,z)) is satisfied in (S, 0), so (by Definition 6.6), for every v € D, F(z,y) A
M(y,z) is satisfied in (S, o|2). This means (by definition of A) that for every v € D both
F(z,y) and M(y,z) are satisfied in (S, 0%). Since this is true for every v € D, this means



that for every v; € D F(z,y) is satisfied in (S, o[§, ), and for every v € D M(y, z) is satisfied
in (8,0l3,). In other words, (VzF(z,y) AVzM(y,z)) is satisfied, so RF logically implies LF'.
Since LF and RF logically imply each other, they are logically equivalent, and (by definition)
LF < RF is a valid formula. QED.

3. Either prove the java code for binSearch?2 correct with respect to its precondition/postcondition pair,
or provide a counter-example of input for which it fails.

Cram: P(z): “If the loop has 7 iterations, then —1 < f; < l; < Alength, A[0..f;] < n, and
All;..A.llength — 1] > n,” is true for all 2 € N.

PROOF (INDUCTION ON %): Since array A has length at least 0, after the Oth iteration (which always

occurs), you have —1 = f; < A.length = [; = 0, and the empty array A[0, f;] has only elements
less than n, and the empty array A[l;, A.length — 1] has only elements greater than or equal to
n. Thus P(0), the base case, holds.
INDUCTION STEP: Assume P(z). If there is no 7 4+ 1th iteration, then P(i 4+ 1) holds vacuously.
Otherwise the exit condition is not satisfied, so l; # f; +1, which together with the IH P(z) means
that I; > fi+1, or l; > fi +2. The “if (f! =1—1)” branch is executed, and m;+1 = (f; +1;)/2 is
calculated, and mid; 11 = (f; +1,)/2 > (fi+ fi +2)/2 = fi +1 > fi. On the other hand, mid;;
=(fi+l)/2<({li+1li—-2)/2=1; —1< ;. Thus, f; < mid;y; < l;. There are two cases to
consider.

Case 1: If A[mid;y1] > n, then ;11 = mid;1 and fi11 = fi, so (using P(z) and f; < midiy1 <
lz‘)i
-1< fi = fi+1 <Mmiy1 = li+1 <lL; < A.length,
which confirms part of claim P(z). Since A is sorted, the fact that A[mid,11 = liy1] > n
means that A[l;y..A.length — 1] > n. By P(i) we can assume that A[0..f;] = A[0..fiy1 < n.
So P(i 4+ 1) holds in this case.
Case 2: If A[mid,1] < m, then l;1; =1; and fi 11 = mid;;1, so (using P(z) and f; < ms1 < L;):

1< fi < fiy1 =madiyy <I; < Alength,

which confirms part of claim P(z). Since A is sorted, the fact that Ajmid;11 = fiy1] < n
means that A[0..f;11] < n. By P(2) we can assume that A[l;..A.length—1] = A[l;4,..A.length—
1] > n. So P(2 + 1) holds in this case.

In both cases, P(¢) = P(i + 1), as wanted.
I conclude that P(z) holds for all z € N.

CLAIM (PARTIAL CORRECTNESS): Suppose the precondition is satisfied and binSearch2(A,n) termi-
nates. Then, when it does, the postcondition is satisfied.

PROOF: Suppose the precondition is satisfied and binSearch2(A,n) terminates after k iterations of
the loop. By the exit condition we know that I = fx +1, so A is the disjoint union of A[0..f] and
Allg..A.length — 1]. Suppose there is some 0 <z < A.length — 1 such that ¢ is the smallest index
with A[Z] > n. By P(k) ¢ € A[0.. fx], so it must be in A[l..A.length—1] (forcing A[lx..A.length—1]
to be non-empty, so lx < A.length). By P(k), A[lx] > n, and it is the smallest index with this
property, so ¢ = lx. Since the program returns [ = 7, it satisfies the postcondition in this case.
Otherwise, if there is no such ¢ then (by P(k)) the sub-array A[0.. fx] is equal to A, so the sub-array
Allg..A.length — 1] is empty, so Iy = A.length. In this case, the program returns Iy = A.length,
and the postcondition is satisfied. In both cases the postcondition is satisfied, as claimed. QED.

CramM: P(z): “If the loop iterates ¢ times, then [; — f; is a natural number,” is true for all : € N.

PROOF (INDUCTION ON t): Suppose ¢ = 0, then f; = —1 and I; = A.length > 0,s0l; — f; > 1 > 0,
and both f; and l; are integers, so there difference is an integer greater than 0. Thus P(0) holds.



INDUCTION STEP: Assume P(i) holds. If there is no (¢ + 1)th iteration of the loop, then P(z +
1) holds vacuously. Otherwise (proved in the process of proving the loop invariant) we have
fi < midiy1 < l;. If Almidiy1] > n, then the program sets l;11 = mid;y; and fiy1 = fi, so
1 <liy1 — fiy1 = midiy1 — fi, and L1 — fiy1 is a natural number. If A[mid; ;] < n, then the
program sets l;11 = I; and fi11 = midiy1, 50 i1 — fiv1 =1li —midiy1 > 1,and l;41 — fiy1is a
natural number. In both cases P(z) implies P(z + 1).

I conclude that P(z) holds for all : € N. QED.

CLAIM (TERMINATION): If the precondition is satisfied, then binSearch2(A,n) terminates.

PROOF: Suppose the precondition holds. Then (by the previous claim) (I; — f;) is a sequence of
natural numbers. If there is an (z + 1)th iteration of the loop, then we have two cases (using
fi < mid;11 < l; from loop invariant proof): either l;1 1 — fir1 = midiy1 — fi < I, — fi, or
livi — fix1 = li —mid; 1 < l; — f;. In either case, l;11 — fiy1 < l; — fi, so the sequence (I; — f;)
is a decreasing sequence of natural numbers and hence (PWO) finite. Let the last element be
(Ix — fx), so there is no element lx11 — fry1. This implies that there is no (k + 1)th iteration of
the loop, so the loop must terminate. QED.

Taken together, partial correctness and termination imply that binSearch2(A, n) is correct with respect
to its specification. QED.

. Denote a ternerary digit as a TRIT, and an array of ternary digits as a TRIT CORE. In the (lamentably
uncommented) methods below, methods tritCore.tweak and tritCore.groupTweak are defined, for
managing trit cores. Either prove that tritCore.groupTweak correctly satisfies its postcondition for
every valid input, or provide a counterexample of valid input for which it fails. You may assume,
without proof, that tweak is correct with respect to its specification.

CramM: P(n): “Suppose the precondition of groupTweak(digit, n, from,to, intermediate) is satisfied
when it is called. Then it returns, and when it does its postcondition is satisfied,” is true for all
n € N— {0}.

PROOF (COMPLETE INDUCTION ON n): If n = 1, then the “if (n == 1)” branch is executed, so status
is set to true Atweak(digit, from,to). The precondition for groupTweak when n = 1 implies the
precondition for tweak (which we are allowed to assume correct with respect to its specification),
so status = true A true = true, and for some 0 < k < digit.length, digit has digit[0.k — 1] =
intermediate, digit[k] = to, and all other elements of digit unchanged, which is what P(1) claims.
Thus the base case holds.

INDUCTION STEP: Assume that P({1,...,n—1}) is true for some arbitrary natural number n > 1.
We will show that this implies P(n). When groupTweak(digit,n, from,to,intermediate) is
called, status is initialized to true, and then the “(n == 1) else” branch is executed. Denote the

values passed in to parameters as f = from, t = to, and « = intermediate.

In the first recursive call, status is set to true A groupTweak(digit,n—1, f,7,t). We have already
assumed P(n — 1), and the precondition for groupTweak(digit,n — 1, f,1,t) (substituting f for

from and ¢ for to) is guaranteed by the precondition for groupTweak(digit, n, from,to,intermediate)..

So groupTweak(digit,n — 1, f,1,t) returns true (so status is set to true), digit[0..n — 2] == 1,
and all other elements are unchanged (this covers the case n = 2).

In the second recursive call, status is set to true A groupTweak(dzigit, 1, f,t,7). We've already
assume P(1), and the precondition for groupTweak(digit,n, from,to,intermediate), plus the
postcondition of groupTweak(digit,n—1, f,1,t), guarantee that digit[0..n—2] == ¢ and digit[n—
1] == f, which is exactly the precondition for groupTweak(digit, 1, f,¢,2) (with £ = n — 1), so
groupTweak(digit, 1, f,t,1) returns true (so status is set to true), and when it does digit[0..n —
2] ==1 and digit[n — 1] ==t.

In the third recursive call, status is set to true A groupTweak(digit,n — 1,1,¢, f). We've already
assumed P(n — 1),and the postcondition of immediately previous call to groupTweak guarantees



that digit[0..n — 2] == ¢, which implies the precondition for groupTweak(digit,n — 1,1,¢, f).
Thus, groupTweak(digit,n — 1,1,t, f) returns true (so status is set to true), and digit[0..n —
2] == t, and no other elements are changed. Combined with the postcondition of the second
call to groupTweak, this means that digit[0..n — 1] == t == to, no other elements of digits
are changed, and status == true is returned by groupTweak(digit, n, from,to,intermediate).
Thus P({1,...,n —1}) = P(n), as wanted.

I conclude that P(n) holds for all n € N — {0}. QED.

5. Although Vector doesn’t provide the most efficient implementation, baseSort outlines an O(n) (yes,
you read that correctly!) sorting algorithm. Either prove that the method baseSort correctly satisfies
its postcondition whenever its precondition is satisfied, or provide a counter-example.

SoLUTION: First I need a lemma to show that digitIndex is extracting digits of integer values in base
base.

CLAIM 5A: Suppose m = dy, - --didp, written in base b, so m = ZZ:O dib®, where 0 < di < b. Then
for 0 < k < n, digit dx = (ndivb*) mod b.

PROOF: Let g = Z?:k d;b*% and r,, = Ef;ol d;b*. Then m can be rewritten as:
m = boq + 7 and, by construction, 0 < 7 < b*.

This means, that by Proposition 1.7, gz = ndivb*t!. Every term of g is divisible by b except
the first term, so g mod b = d*, as claimed. QED.

Now in order to prove that the main while loop is correct with respect to its specifications, I need to
use the properties of three inner for loops. In all three for loops, termination is trivial (for example,
let (base — 1) be a sequence of natural numbers), so we assume 1t without proof. Two of the for loops
are small enough to state their properties without proof: the first one creates array digit[0. .base-1]
of empty Vectors, and the third one concatenates digit[0],...,digit [base-1] into numList;. Here
is a precondition/postcondition pair for the second for loop

//sublist by current digit

YELS
* Precondition: sorted is true, and the values in numList are sorted
* in non-decreasing order mod magnitude.

* Postcondition: sorted is true if and only if all values in numlList
* are < magnitude * base

* numlList contains the same elements as the

* concatenation of digit[0]...digit[base-1]

* digit[j] < digit[k], mod magnitude * base,

* for 0 <= j < k < base

* digit[j] in non-decreasing order mod magnitude

*

*/

Cram 5B: P(z) “If the precondition of the for loop headed //sublist by current digit is satisfied
and the loop has ¢ iterations, then at the end of the :th iteration sorted is true if and only if all
values in numList[0. .i-1]are less than magnitude x base, numList[0..i-1] contains the same
elements as the concatenation of digit[0]...digit[base-1], digit[j] < digit[k] mod
magnitude X base for all 0 < 7 < k < base, and digit[j] is in non-decreasing order mod
magnitude for 0 < 7 < base, is true for all z in N.

PROOF (INDUCTION ON 2): If 2 = O then sorted is true (by the precondition) and all values in the
empty sublist numList[0..-1] are less than magnitude x base, and the empty Vector contains
the same elements as the concatenation of the empty Vectors digit[0]..digit[base-1]. Since
they are empty Vectors, every value in digit[j] is less than digit[k], and digit[j] is in
non-decreasing order mod magnitude. So the base case, P(0) holds.



INDUCTION STEP: Assume that P(z) holds for some arbitrary natural number :. If there is no
(z + 1)th iteration, then P(z + 1) holds vacuously. Otherwise, numList has an :th element, n;,
whose value mod magnitude is no less than every lower-indexed value in numList (by the
precondition).

If n; > magnitude x base, then n;/magnitude > base, and sorted is set to false, as wanted since
there is now at least one element of numlist[0..i] no less than magnitude x base. Otherwise
sorted is true if and only if all the elements of numList[0..i-1] (and hence of numList[0..i]
are less than magnitude x base.

Since the concatenation of digit[0]..digit[base-1] already contained all the elements of
numList [0..i-1] (by assumption of P(z)), they contain all the elements of numList [0..1i] once
n; is added.

Suppose magnitude = base™, for some h € N (a very small induction shows this is always so).
Let dn = (n; divmagnitude) mod base, then n; is added to digit[ds]. Thus, by Claim 5a d;
is the hth digit of n; in base base, and n; mod magnitude x base is the (h + 1)-digit number
(in base base) dpdp_1 - - - dp, which is less than any (h + 1)-digit number with its most-significant
digit greater than dj, and less than any h-digit number with its most-significant digit greater
than dp. This preserves the property (assumed by P(z)) that digit[jl1<digit[k] whenever
0< 7 < k< base.

Thus P(z) = P(¢ + 1), as wanted.

I conclude that P(z) is true for all z € N. QED.

Partial correctness of the loop headed ¢ ¢//sublist by current digit’’ follows by setting z =
numList.size().

Cram: If m is the maximum integer value in numlList and magnitude; is the value of magnitude
after the ith loop iteration, then (m/magnitude;) is a strictly-decreasing integer sequence.

PRrROOF: Let m = d,, - - - dp in base base. Then m/magnitude; corresponds to removing the right-most

t digits of m (see the proof of Claim 5a). This always yields a natural number, so it only remains
to show that the sequence is strictly decreasing.
If there is an (¢ + 1)th iteration of the loop then (by the postcondition of the loop begin-
ning ‘‘//sublist by current digit’’ there is at least one integer in n in numList with
n/magnitude; > base. Since m is the largest integer in numList, we must have m/magnitude;
having two or more digits in its base base expansion. This, in turn, means that m/magnitude;
(being one digit shorter) is strictly less than m/magnitude;. QED.

CLAIM (TERMINATION): If the preconditions hold when baseSort(base, numList) is called, then it
terminates.

PROOF: Suppose the preconditions hold and baseSort(base, numList) is called. Each iteration of
the main while loop is finite (I assume termination of the for loop, which is easy to prove),
and associated with the value m/magnitude;, and by the previous claim (m/magnitude;) is a
decreasing sequence of natural numbers, and hence (PWO) finite. Denote the last element of the
sequence m/magnitudey, so there is no element m/magnituder;1. This implies that there is no
(k + 1)th loop iteration, so the loop terminates. QED.

Cram: P(z): “If there is an sth iteration of the loop, then the integer values of numList; are in
non-decreasing order, mod magnitude; and sorted is true if and only if ¢ > 0 and all array
elements are smaller than magnitude;” is true for all z € N.

PROOF (INDUCTION ON 2): For ¢ = 0 you have magnitude; = 1, so every integer value in numListg
is equal to 0 mod 1, and are thus (trivially) in non-decreasing order, and sorted is false. This
verifies the base case, P(0).

INDUCTION STEP: Assume that P(z) holds for some arbitrary integer . I want to show that this
implies P(2+ 1). If there is no (¢ + 1)th loop, then P(z+ 1) holds vacuously. Otherwise, sorted; is



false, and the first statement of the while loop sets sorted to true. This satisfies the precondition
(stated above, and proved in Claim 5b) of the loop preceded by the “// sublist by current
digit” comment, hence its postcondition is satisfied: Each digit[i] is sorted in non-decreasing
order mod magnitude;, if 0 <1 < j < base, then every element of digit[i] is less than every
element of digit[j] mod magnitude; x base, sorted is true if and only if every value in numList

is smaller than magnitude; X base, and

I assume without proof that the loop preceded by the comment “combine sublists” concatenates
digit[0] --- digit[base-1] into numList, so consider two indices 0 < j < k < numUList.size(),
withn; = (numList.elementAt(j)).intValue() and ny = (numlList.elementAt (k)).intValue().
There are two possibilities

CasE 1: n; and n; were both concatenated into numList from the same sublist, digit[d;], so
(by assumption) n; mod magnitude; < nx mod magnitude; and the ith digit of n; is d;, the
same as the ¢th digit of ng. So, by Claim 5a:

n; mod magnitude;1; = d; X magnitude; + n; mod magnitude;

IN

d; X magnitude; + ny mod magnitude;

ng mod magnitude; 1.

CASE 2: n; was concatenated into numList from sublist digit [d;] and n; was concatenated into
numlList from sublist digit[d]], where d; < d,. This means (postcondition of inner loop)
that n; mod magnitude; 11 < ny mod magnitude; ;.

In either case n; < n; mod magnitude;;1 and sorted is true if and only if the largest array
element is no smaller than magnitude; ;. Thus P(z) = P(: + 1).

I conclude that P(z) holds for all : € N. QED.

CLAIM (PARTIAL CORRECTNESS): If the preconditions hold, and baseSort terminates, then (when it
terminates) the postcondition holds.

PrROOF: If baseSort terminates, then sorted is true, and all values are less than magnitude;, and in
non-decreasing order mod magnitude;. Since each natural number in the range0, ..., magnitude;—
1 is equal to itself mod magnitude;, this means that numList contains the same values as it
started with, in non-decreasing order. QED.

. Bither prove that the method below satisfies its postcondition whenever its precondition is satisfied,
or else exhibit a valid input for which it fails.

Cram: P(b): “If a € N and MoreEuclid(a, b) is called, then it returns integer array result, where
result[0] is the greatest common divisor of a and b, and result[0] = result[1] x a + result[2] x b,”
is true for all b € N.

PROOF (COMPLETE INDUCTION ON b): Suppose MoreEuclid(a,0) is called, where a is an arbitrary
natural number. Then the assignment statement “result = {a, 1, 0} is executed,” the “if (b !=0)"
branch is not executed, and the program returns result. In this case, result[0] = a, and a divides
both 0 and a, and any natural number that divides both a and 0 divides a, so a = result[0] is the
greatest common divisor of 0 and a. Furthermore a = 1 x a+ 0 x 0 = result[1] x a + result[2] x b.
This verifies that P(0) holds.

INDUCTION STEP: Suppose P({0,...,b—1}) all hold, and MoreEuclid(a, b), where a is an arbitrary
natural number, and b is an arbitrary natural number greater than 0. Then (by Proposition 1.7 of
the course notes) 0 < a mod b < b, and (assuming without proof that a%b = a mod b is true for
positive integers) our induction hypothesis allows us to assume P(a%b). Since b > 0, the “if (b
= 0)” branch is executed, the assignment statement “result = MoreEuclid(b, a%b),” is executed.
For notational convenience, denote result = {ro, 71,72} immediately after this statement. By



P(a%b) we can assume that rq is the greatest common divisor of b and a%b, and that 7o = 71 x b
+ 7o X a%b.
The next three assignment statements set

result[1] = r, result[2] = r; — (result[1] x (a/b)) = r1 — (r2 X (a/b)),

and then MoreEuclid(a, b) returns result. Let ¢ and r be the quotient and remainder defined in
Proposition 1.7, so a = bg + r, (which implies both a%b = r = a — bgq and ¢ = a/b), and apply
the induction hypothesis P(a%b), so at the end of MoreEuclid(a, b)

[by IH] result[0] =79 = 710+ r2a%b =r1b+ ra(a — bg)
720 + (11— 729)b = 20 + (11 — 72(a/b))b
result[1] x a + result[2] x b.

[by assignment statements above]

This satisfies part of claim P(b). By P(a%b), d = result[0] is the greatest common divisor of
(b,a%b). This means there are arbitrary integers hy and hy such that b = h1d and a%b = had, so
(since a%b = a — gb)

a =a%b+ gb=d(hig+ ha),

and d divides a. Hence d is a natural number that divides both a and b. Let d’ be an arbitrary
natural number that divides both a and b, in other words there are integers k; and k, such that
k1d' = a and kod’ = b. This means that, by P(a%b),

d = result[1]a + result[2]b = d'(result[1]k; + result[2]kz),

so d’ divides d. In other words, d is the greatest common divisor of (a, b), which satisfies the other
part of claim P(b). Thus P({0,...,b— 1}) implies P(b).
I conclude that P(b) is true for all b € N. QED.

Predicate P(b) implies that MoreEuclid(a, b) is correct with respect to its specification.



