
CSC236, Summer 2005, Assignment 2 sample solution

Danny Heap

1. Manipulate a stack: Suppose you have a sequence of n distinct characters, and a LIFO (Last In,
First Out) stack that allows exactly two operations:

(a) push: If the sequence is nonempty, remove the �rst element from the sequence and add it to the
top of the stack. Otherwise do nothing.

(b) popp: If the stack is nonempty, remove the top element and print it to output. Otherwise do
nothing.

If you begin with a sequence of n = 2 distinct characters, then you can produce exactly 2 distinct
outputs. Suppose your sequence is hxyi, then you can produce

xy: push popp push popp

yx: push push popp popp

How many di�erent outputs can you produce with a sequence xyz, of length 3? How about of length
n? Prove your claims.

Claim: Let f(n) be de�ned as

f(n) =

(
1; n = 0Pn�1
i=0 f(i)f(n� 1� i); n > 0

:

Claim: Let P (n) be \There are f(n) distinct outputs from the stack described above starting with a
string with n distinct characters." Then for all n 2 N; P (n).

Proof (complete induction on n): If n = 0, then P (0) asserts that there is f(0) = 1 distinct
output starting with an empty string. This is certainly true, since the unique empty string
is output, so the base case holds.

Induction step: Assume that P (f0; : : : ; n � 1g) is true for some arbitrary natural number n.
I need to prove that this implies P (n) is true. If n = 0 there is nothing to prove, since
this was veri�ed in the base case. Otherwise the IH assume P (i) and P (n� 1� i) for every
0 � i � n � 1. WLOG, assume that the �rst character of the original sequence of length
n is the character x, and partition the output sequences according to where x occurs in the
output | at position i of the output, where 0 � i � n� 1. This partition counts all possible
outputs, and has no duplicates, since a particular output is speci�ed by the position of the
character x.
Since this is a LIFO stack, the i characters that are output before x, in positions f0; : : : ; i�1g,
must have been pushed onto the stack after x was pushed, and popped from the stack before x
was popped. Thus these characters are the next i characters pushed following x in the original
sequence, that is characters f1; : : : ; ig of the original sequence. Since they are pushed and
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popped through a stack with x sitting on the bottom, by the IH they have f(i) distinct
outputs.
Similarly the n� 1� i characters that are output after x, in positions fi+ 1; : : : ; n� 1g, are
both pushed and popped after x is popped, which means they pushed and popped after the i
characters output before x. Thus these characters follow the �rst i in the original sequence,
so they are characters fi + 1; : : : ; n � 1g of the original sequence. Since they are pushed

and popped through a stack that starts out empty (after x is popped), by the IH they have
f(n� 1� i) distinct outputs.
Let Fi be the set of distinct outputs of the �rst i characters following x in the original
sequence, and Fn�1�i be the set of distinct outputs of characters fi + 1; : : : ; n � 1 � ig of
the original sequence. The Cartesian product Fi � Fn�1�i has f(i)f(n � 1 � i) pairs (see
Chapter 0 of the Course Notes). There is a 1{1 correspondence between the pairs of outputs
in Fi�Fn�1�i and the outputs of length n with x in position i, simply by concatenating the
�rst element of the pair with x and then with the second element of the pair. Thus there are
f(n)f(n� 1� i) distinct outputs of length n with x in position i.
Summing these over all the partitions, for each possible position x may occupy in the output,
yields

Pn�1
i=0 f(i)f(n� 1� i) possible outputs. Thus P (f0; : : : ; n� 1g) ) P (n), as wanted.

I conclude that P (n) is true for all n 2 N. QED.

2. Here is a recursive de�nition for T �, a subset of the family of ternary strings. Let T � be the smallest
set such that:

Basis: 0 is in T �.
Induction step: If x; y 2 T �, then so are x0y, 1x2, and 2x1.

(a) Prove that if k 2 N, then there is no string in T � with exactly 3k + 1 zeros.

Claim a1: Let P (e) be \e has an odd number of zeros." Then for all e 2 T �; P (e).
Proof (induction on e): Suppose e is in the basis. Then e = 0, which has an odd number

of zeros, so the claim holds for the basis.
Induction step: Suppose x; y are arbitrary elements of T �. There are three cases to consider

i. e = x0y, then by the induction hypothesis for some j; k 2 Z, x has 2k + 1 zeros and
y has 2j + 1 zeros. Thus e has 2(j + k + 1) + 1 zeros, which is an odd number since
j + k + 1 is an integer (the integers are closed under addition).

ii. e = 1x2, then by the induction hypothesis x has an odd number of zeros, which is the
same number as e does, since e adds no zeros.

iii. e = 2x1, then by the induction hypothesis x has an odd number of zeros, which is the
same number as e does, since e adds no zeros.

Thus in all three possible cases, e has an odd number of zeros, so P (fx; yg) ) P (e).
I conclude that P (e) is true for all e 2 T �. QED.

Claim A2: Let P (k) be \3k + 1 is even." Then for all k 2 N; P (k).
Proof (induction on k): If k = 0 then P (k) states that 30 + 1 = 2 is even, which is

certainly true, so the claim holds for the base case.
Induction step: Assume P (k) for some arbitrary k 2 N. I must show that this implies

P (k+ 1). By the IH, 3k + 1 is even, so there is some integer i such that 3k + 1 = 2i. This
means that 3k+1 + 1 can be written as

3k+1 + 1 = 3(3k) + 1 = 3(2i� 1) + 1 [by IH]

= 6i� 2 = 2(3i� 1):
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Since 3i � 1 is an integer (integers are closed under multiplication and subtraction),
3k+1 + 1 is even, and so P (k)) P (k + 1).
I conclude that P (k) is true for all k 2 N. QED.

By A2, if expression e has 3k + 1 zeros, then e has an even number of zeros, hence not an odd
number of zeros. By A1, every expression in T � has an odd number of zeros, so e 62 T �. QED.

(b) Prove that if k 2 N, then there is no string in T � that has exactly 2k+1 digits.

Claim B1: Let P (e) be \e has an odd number of digits." Then 8e 2 T �; P (e).
Proof (induction on e): Suppose e is de�ned in the basis. Then e = 0, and hence has 1

digit, which is odd, so the claim holds for the basis.
Induction step: Assume that P (x) and P (y) hold for arbitrary expressions in T �. There

are three cases to consider:
i. If e = x0y, then the number of digits in e is the sum of the number of digits in x and
y, plus one more digit. Thus, for some integers j; k expression e has 2j+ 1 + 2k+ 1 + 1
digits, which can be rewritten as 2(j + k+ 1) + 1 digits. This is an odd number, since
(j+k+1) is an integer (integers are closed under addition). Thus in this case P (fx; yg)
) P (e).

ii. If e = 1x2, then the number of digits in e is the sum of the number of digits in x plus
2. Thus, for some integer k, e has 2k + 1 + 2 digits, or 2(k + 1) + 1 digits, an odd
number since (k + 1) is an integer. Thus, in this case, P (fx; yg) ) P (e).

iii. If e = 2x1, then the number of digits in e is the sum of the number of digits in x plus
2. Thus, for some integer k, e has 2k + 1 + 2 digits, or 2(k + 1) + 1 digits, an odd
number since (k + 1) is an integer. Thus, in this case, P (fx; yg) ) P (e).

In all three cases, P (fx; yg)) P (e), and these cases exhaust the possibilities, so P (fx; yg)
) P (e) for an arbitrary expression de�ned in the induction step.

I conclude that P (e) is true for all e 2 T �. QED.

Suppose some string e has 2k+1 digits, for some k 2 N. Then (re-writing) that e has 2�2k digits,
an even number (since 2k is an integer). Thus e does not have an odd number of digits, so P (e)
is false, so by B1, e 62 T �. QED.

(c) Prove that there is no string in T � whose digits sum to 97.

Claim C1: Let P (e) be \The digits of e sum to an integer multiple of 3." Then 8e 2 T �; P (e).
Proof (structural induction on e): If e is de�ned in the basis, then e = 0, and its

digits sum to 0 = 3� 0, which is an integer multiple of 3. Thus P (e) holds for the basis.
Induction step: Assume that P (x) and P (y) hold for arbitrary elements of T �. There are

three cases to consider:
i. If e = x0y, then the sum of the digits in e is the sum of the digits in x plus 0 plus the

sum of the digits in y. Thus, by the IH, for some integers j; k, the sum of the digits in
e is 3j + 3k + 0 = 3(j + k), which is an integer multiple of 3, since (j + k) is the sum
of integers, and hence an integer. So in this case P (fx; yg) ) P (e).

ii. If e = 1x2, then the sum of the digits in e is 1 plus the sum of the digits in x plus 2.
Thus, by the IH, for some integer k, the sum of the digits in e is 1 + 3k+ 2 = 3(k+ 1),
which is a multiple of 3 since (k+ 1) is the sum of integers (and hence an integer). So
in this case P (fx; yg) ) P (e).

iii. If e = 2x1, then the sum of the digits in e is 2 plus the sum of the digits in x plus 1.
Thus, by the IH, for some integer k, the sum of the digits in e is 2 + 3k+ 1 = 3(k+ 1),
which is a multiple of 3 since (k+ 1) is the sum of integers (and hence an integer). So
in this case P (fx; yg) ) P (e).
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The three cases are exhaustive, and in each case P (fx; yg)) P (e), so P (fx; yg)) P (e).
I conclude that P (e) is true for all e 2 T �. QED.

According to Proposition 1.7 of the Course Notes, any natural number has a unique quotient and
remainder when divided by 3. In the case of 97 the quotient is 32 and the remainder is 1, whereas
any multiple of 3 has a remainder of 0, so 97 is not a multiple of 3. Suppose a string e has 97
characters. Since 97 is not an integer multiple of 3, P (e) is false, so by C1 e 62 T �. QED.

3. In lecture we discussed the recursive formula for G(n), the number of binary strings of length n that
do not have adjacent zeros.

(a) Using the expression from class, derive a closed form for G(n), the number of binary strings of
length n that do not have adjacent zeros.

Solution: The formula we derived in class is:

G(n) =

8>><>>:
1; n = 0
2; n = 1
G(n� 1) +G(n� 2); n > 1

:

A short proof by induction would establish that this formula gives the number of binary
strings of length n that do not have adjacent zeros, but you are allowed to assume the
formula given. Comparing G(n) to F (n) (the Fibonacci function) shows that G(0) = F (2)
and G(1) = F (3). We would like to prove that, in general, G(n) = F (n + 2). Let P (n) be
\G(n) = F (n+ 3)."
Claim: 8n 2 N; P (n).

Proof (induction on n): If n = 0, then P (n) asserts that there are F (2) = 1 binary
strings of length 0 without adjacent zeros, which is certainly true since the unique
length-zero binary string doesn't have adjacent zeros. If n = 1, then P (1) asserts
that there are F (3) = 2 binary strings of length 1 without adjacent zeros, and this is
certainly true since both binary strings of length 1 do not have adjacent zeros. Thus
the claim holds for the basis.

Induction step: Assume that P (f0; : : : ; n�1g) is true for some arbitrary natural num-
ber n. I want to show that this implies P (n). If n < 2 there is nothing to prove, since
we have shown that P (n) holds in the base case. Otherwise, the induction hypothesis
claims that P (n� 1) and P (n� 2) are both true, so

G(n) = G(n� 1) +G(n� 2) [assumed defn. of G(n) for n > 1]

= F (n+ 1) + F (n) [induction hypothesis]

= F (n+ 2) [de�nition of F (n = 2)]

Thus P (f0; : : : ; n� 1g) ) P (n).
I conclude that P (n) is true for all n 2 N. QED.
We already have a closed form for F (n), and we can now use it to express a closed form
for G(n):

G(n) = F (n+ 2) =
�n+2 � b�n+2p

5
;

. . . where � = (1 +
p

5)=2, and b� = (1�p5)=2.
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(b) Using the approach from class, develop a recursive formula (but not a closed form) for H(n), the
number of binary strings of length n that do not have 3 adjacent zeros. Justify your formula.

Claim: De�ne H(n) by

H(n) =

(
2n; n < 3
H(n� 1) +H(n� 2) +H(n� 3); n > 2

:

Let P (n) be \There are H(n) binary strings of length n without 3 adjacent zeros." Then
8n 2 N; P (n).
Proof (induction on n): For n 2 f0; 1; 2g P (n) asserts there are 2n binary strings of

length n without 3 adjacent zeros. This is certainly true since there are (established in
the Course Notes) 2n binary strings of length n, and if n < 3 all of these do not have 3
adjacent zeros. Thus P (n) holds for the base case.

Induction step: Assume that P (f0; : : : ; n� 1g) holds for some arbitrary integer n. I want
to prove that this implies P (n). If n < 3, we're done, since P (n) was established in the
base case. Otherwise, the IH assume P (n � 1), P (n � 2) and P (n � 3). To count the
number of binary strings without 3 adjacent zeros, we partition them into three disjoint
sets:
i. The binary strings of length n without 3 adjacent zeros with �nal digit 1. These are

formed by appending a 1 to any binary string of length n � 1 that doesn't have 3
adjacent zeros, so there are H(n� 1) of these by the IH.

ii. The binary strings of length n without 3 adjacent zeros that end with the string 10.
These are formed by appending 10 to any binary string of length n � 2 that doesn't
have 3 adjacent zeros, so there are H(n� 2) of these by the IH.

iii. The binary strings of length n without 3 adjacent zeros that end with the string 100.
These are formed by appending 100 to any binary string of length n � 3 that doesn't
have 3 adjacent zeros, so there are H(n� 3) of these by the IH.

The three cases are exhaustive and disjoint, so there are H(n�1) + H(n�2) + H(n�3)
binary strings of length n without 3 adjacent zeros, so P (f0; : : : ; n � 1g) ) P (n), as
wanted.

I conclude that P (n) is true for all n 2 N. QED. Thus H(n) is the number of binary strings
of length n that don't have 3 adjacent zeros.

(c) Find a closed form for J(n), which is de�ned for n 2 N as:

J(n) =

8>><>>:
1; n = 0
1; n = 1
J(n� 1) + 2J(n� 2); n > 1

:

Solution: The �rst step is to seek a real number that obeys the given recurrence, that is �nd r
so that rn = rn�1 + 2rn�2. Dividing by rn�2 yields the quadratic equation:

r2 � r � 2 = 0:

This equation has roots r0 = 2 and r1 = �1, and any linear combination of these roots
satis�es the recurrence, so for n > 1, �rn0 + �rn1 = �rn�1

1 + �rn�1
1 + 2(�rn�2

0 + �rn�2
1 ). We

solve for � and � by considering the initial conditions, J(0) and J(1):

�r0
0 + �r0

1 = J(0) = 1 =) � = 1� �
�r1

0 + �r1
1 = 2�� � = 2�� (1� �) = 3�� 1 = 1 =) � = 2=3; � = 1=3:
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This yields a closed form for J(n):

J(n) =
2
3

2n +
1
3

(�1)n =
2n+1 + (�1)n

3
:

Let P (n) be \J(n) = (2n+1 + (�1)n)=3."
Claim: For all n 2 N, P (n).
Proof (induction on n): If n = 0, then P (0) asserts that J(n) = 1 = (21 + (�1)0)=3,

which is certainly true. If n = 1, then P (1) asserts that P (1) = 1 = (22 � 1)=3, which is
certainly true. So P (n) holds for the base cases.

Induction step: Assume that P (f0; : : : ; n � 1g) hold for some arbitrary integer n. I want
to show that this implies P (n). If n < 2 there is nothing to prove, since P (n) was veri�ed
in the base case. Otherwise the IH assumes that P (n� 1) and P (n� 2) are true, so

J(n) = J(n� 1) + 2J(n� 2) [de�nition of J(n) when n > 1]

=
2n + (�1)n� 1 + 2(2n�1 + (�1)n�2)

3
[IH for P (n� 1) and P (n� 2)]

=
2n+1 + (�1)n�2(�1 + 2)

3
[combine terms]

=
2n+1 + (�1)2(�1)n

3
=

2n+1 + (�1)n�2

3
[multiply by 1]

Thus P (f0; : : : ; n� 1g) ) P (n), as wanted.
I conclude that P (n) is true for all n 2 N. Thus J(n) = (2n+1 + (�1)n)=3 for all n 2 N.
QED.

4. Hack some algebra:

(a) The binomial coe�cient
�n
k

�
is de�ned for nonnegative integers 0 � k � n by:�

n
k

�
=

n!
k!(n� k)!

;

and it represents the number of ways of choosing k elements from a set of n elements. Use the
de�nition of

�n
k

�
to prove that if 0 < k < n, then:�

n
k

�
=
�
n� 1
k

�
+
�
n� 1
k � 1

�
:

Proof: Suppose k is some arbitrary positive natural number less than n. Then n � 1 � k >
k � 1 � 0, so both

�n�1
k

�
and

�n�1
k�1

�
are de�ned, and we can use the given de�nition:�

n� 1
k

�
+
�
n� 1
k � 1

�
=

(n� 1)!
k!(n� 1� k)!

+
(n� 1)!

(k � 1)!(n� k)!
[by given de�nition]

=
(n� k)(n� 1)! + k(n� 1)!

k!(n� k)!
[common denominators]

=
n!

k!(n� k)!
=
�
n
k

�
[by given de�nition]

Since k is an arbitrary positive natural number less than n, this proves the claim. QED.

(b) Prove that if 1 � k � n, then

k
�
n
k

�
= n

�
n� 1
k � 1

�
:
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Proof: Let k be an arbitrary natural number no greater than n, so n; k > k � 1 � 0, so
�n�1
k�1

�
is de�ned, and

k
�
n
k

�
= k

n!
k!(n� k)!

[by given de�nition]

=
n(n� 1)!

(k � 1)!(n� 1� [k � 1])!
[divide by non-zero n and k]

= n
�
n� 1
k � 1

�
[by given de�nition]

Since k is an arbitrary positive natural number no less than n, this proves the claim. QED.

(c) Suppose x; y 2 R. Use induction on n and part (a) to prove that:

(x+ y)n =
nX
k=0

�
n
k

�
xkyn�k:

Claim: Let P (n) be \(x+ y)n =
Pn
k=0

�n
k

�
xkyn�k." Then P (n) is true for all n 2 N.

Proof (induction on n): If n = 0 then P (n) claims that (x + y)0 = 1 =
P0
k=0

�0
0

�
x0y0,

which is certainly true since x0y0 is 1 for arbitrary real numbers x and y. Thus the base
case holds.

Induction step: Assume that P (n) is true for an arbitrary natural number n. I must prove
that this implies P (n+ 1). I can re-group (x+ y)n+1 and use the IH so that

(x+ y)n+1 = (x+ y)
nX
k=0

�
n
k

�
xkyn�k [by IH]

=
nX
j=0

�
n
j

�
xj+1yn�j +

nX
k=0

�
n
k

�
xkyn�k+1 [use variable j in �rst sum]

=
�
n
0

�
x0yn+1 +

n�1X
j=0

�
n
j

�
xj+1yn�j +

nX
k=1

�
n
k

�
xkyn�k+1 +

�
n
n

�
xn+1y0

[k = j + 1] =
�
n+ 1

0

�
yn+1 +

nX
k=1

�
n

k � 1

�
xkyn�k+1 +

nX
k=1

�
n
k

�
xkyn�k+1 +

�
n+ 1
n+ 1

�
xn+1

[Part (a)] =
�
n+ 1

0

�
yn+1 +

nX
k=1

�
n+ 1
k

�
xkyn�k+1 +

�
n+ 1
n+ 1

�
xn+1

=
n+1X
k=0

�
n+ 1
k

�
xkyn+1�k

Thus P (n) ) P (n+ 1), for an arbitrary natural number n.
I conclude that P (n) is true for every n 2 N. QED.

(d) Prove that
nX
k=0

k
�
n
k

�
= n2n�1:
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Proof: Use the fact that the zeroth term of the sum is zero, and part (b), so

nX
k=0

k
�
n
k

�
=

nX
k=1

k
�
n
k

�
[part (b)] =

nX
k=1

n
�
n� 1
k � 1

�
[j = k � 1, and part (c)] = n

n�1X
j=0

�
n� 1
j

�
1j1n�1�j = n(1 + 1)n�1

= n2n�1:

Thus the claim holds for an arbitrary natural number n. QED.

(e) Suppose n is a positive integer. Use the previous parts and some manipulation of the sum to
prove that:

nX
k=0

k
�
n
k

��
1
n

�k �n� 1
n

�n�k
= 1:

Proof: Let n be an arbitrary positive integer. Using the fact that the zeroth term of the sum
vanishes, and part (b)

nX
k=0

k
�
n
k

��
1
n

�k �n� 1
n

�n�k
=

nX
k=1

k
�
n
k

��
1
n

�k �n� 1
n

�n�k
[part (b)] = n

nX
k=1

�
n� 1
k � 1

��
1
n

�k �n� 1
n

�n�k
[factor out 1=n] =

n
n

nX
k=1

�
n� 1
k � 1

��
1
n

�k�1�n� 1
n

�n�k
[j = k � 1] =

n�1X
j=0

�
n� 1
j

��
1
n

�j �n� 1
n

�n�1�j

[part (c)] =
�

1
n

+
n� 1
n

�n�1

= 1:

Thus the claim holds for an arbitrary positive integer n. QED.
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