CSC236, Summer 2005, Assignment 4 Draft Solutions

Joe Whitney

1. Let z, y, and z be propositional variables and let n be a natural number. Using only the connectives
V,A, and — and the given variables, how many different propositional formulae are there with exactly
n connectives?

For n = 0 there are 3 formulae, namely z, y, and 2.
For n = 1 there are 27 formulae.
For n = 2 there are 486 formulae...

Derive a general formula for the number of such propositional formulae having n connectives. Prove
that your formula is correct.

SOLUTION: I claim that the number of formulae with n connectives is

3 ifn=0

f(n):{ Z?;Olgf(i)f(n—i—l) ifn >0

for all natural numbers n.

PROOF (By complete induction). When n = 0, there are only 3 formulae with 0 connectives (namely
"z”,"y”, and "2”). So the base case holds.

For the inductive step, let n > 0 be an arbitrary natural number and assume (IH) that for all natural
numbers k such that & < n, the number of formulae with k connectives is given by f(k). Now consider
an arbitrary propositional formula P, (of the prescribed kind) with exactly n connectives. Since n > 0,
P, has some connectives. There is then a unique innermost connective (by the inductive construction
of P,), which I'll generically call ®, so that P, can be rewritten (P, ® P,) where P, and P, are arbitrary
formulae having a total of n — 1 connectives between them. Thus, the number of ways of forming such
a P, from allowed choices of P,,P,, and ® will give the number of formulae with n connectives.

Let ¢ be a natural number between 0 and n — 1. Let S; be the set of formulae P having exactly n
connectives such that, when P is decomposed into P, P, and ®, P, has exactly ¢ connectives. It
follows that P, must have exactly n — ¢ — 1 connectives. Each distinct triple P},P,, and ©® gives a
distinct propositional formula (and every formula P in S; corresponds to such a choice). There are
always exactly three choices of ® from the fixed set {A,V, —}. And, by the IH, there are f(z) choices of
P, and f(n —t— 1) choices of P,. Therefore the number of formulae in S; is given by 3f(2) f(n —¢—1).

Each choice of 7 induces a distinct S;, since only formulae in S; can be uniquely decomposed so that
P, has ¢ connectives. Further, every formula with n connectives is in some S;. Therefore the sets
So0,51, -..Sn—1 partition the formulae with n connectives, and the total number of such formulae is
given by the sum

n—1
> Isil
1=0



which as argued above is

which is f(n).
I conclude that the number of propositional formulae (of the prescribed kind) with n connectives is
given by f(n), for all natural numbers n.

. In the propositional formulae below I use the rules of precedence from chapter 5 of the Course Notes
to reduce the number of parentheses. In your solution you are welcome to re-introduce parentheses if
it makes things clearer.

(a) Use the logical equivalences in section 5.6 (no truth tables) to prove that (P — (@ < R)) LEQV
“(PA(Q@—= R)V(R—= Q) A(QA-R)A=(QAR))

SOLUTION: Starting with the right hand side:

(PA((Q@—=R)V(R—=Q)A(—-QA-R)A—(QAR)) LEQV (— law twice)
(PA((-QV R)V(-RVQ))A-(—-QA-R)A—(QAR)) LEQV (commutative and associative laws)
~(PA((-QVQ)V(-RV R))A-(-QA—-R)A-(QAR)) LEQV (distributive laws)
((PA(QVQ)VPA(RRVR)A-(-QA-R)A-(QAR)) LEQV (identity law twice, idempotence)
“(PA=(=QA-R)A=(QA R)) LEQV (De Morgan'’s, double negation)
(PA((-QA-R)V(QAR))) LEQV (¢« law)

-(PA(Q < R)) LEQV (De Morgan’s, double negation)
—PV(Q ¢+ R) LEQV — law
P - (Q <+ R)

(b) Write a CNF formula equivalent to both formulae in part (a). Prove that your CNF formula is
correct using the logical equivalences from Section 5.6.
SOLUTION: An equivalent CNF formula is (-PV -Q V R) A (—mPV Q V —R), as shown below:

(-PV-QVR)A(-PVQV-R) LEQV (Distribute out —P)
“PV((=QV R)A (QV —R)) LEQV (Distributive law several times)
“PV(-QAQ)V(-@-R)V(RAQ)V(RV-R)) LEQV (identity laws)
“PV((-Q@-R)V (RAQ)) LEQV (-, ¢ laws)

P—(Q+ R)

(c) The Sheffer’s stroke (or nand) operator, |, is a binary connective defined on page 138 of the
Course Notes. Is | associative? Prove your claim.
SOLUTION: The | operator is not associative. Consider the truth assignment where z « 1,
y <+ 0and z + 0. Then ((z | y) | z) evaluates to 1 but ((z | (y | 2)) evaluates to 0.

(d) Let Py, P,,...P, and @ be arbitrary propositional formulae. Prove that for any n > 2,

is logically equivalent to
Q - "PLA-PAL..ADP,

by induction on n.
SOLUTION:
For the base case where n = 2, P, V P, — @ can be shown equivalent to =@ — (—P; A —F%)
directly using logical equivalences from section 5.6 of the course notes.
PVPk—Q LEQV (— law)
~(PLVER)VQ LEQV (— law, double negation, associativity)
Q= (P V P) LEQV (De Morgan’s, double negation)
—Q = ("PLAP)



For the inductive step we assume that for any arbitrary n > 2, L VP V...V P, - @ LEQV
Q@ —- "PLA-P,A...~P, holds for any P, ... P,.

Consider a formula F = P,V P V...V P,V P11 — @ where P, ... P,y are arbitrary. We
want to argue that F is equivalent to F/ = =Q — —-Pi A ~P... A °P,11. For convenience
I'll rewrite F as (\/;_, P,) V P41 — @ and F' as =Q — (A, Pi) A ~Pny1. By the induction
hypothesis (\/I_, Pi) — Q is equivalent to =Q — (A, ;). Now I'll argue by a sequence of
logical equivalences:

(Viey PV Poy1 = @ LEQV
(ViZ1 P) = Q) A (Pry1 — Q) LEQV apply the IH
(-Q — (/\?:1 P)) A (Pry1 — Q) LEQV contrapositive

(@ —= (Nizi ) A (2@ — =Pay1)  LEQV
(=@ = (Aizy Pi) A =Pnyta)
The last formula above is F’, so [ have shown that F = F’ as desired.
I conclude that for all natural n > 2, VPR V...V P, > Q LEQV ~Q — "PLAP, A ...~ PB,.

3. The Course Notes mention that the | (nand) and | (nor) operators form complete sets of connectives
by themselves. We’ve also seen the binary operators —, V, A, <> and @ (exclusive or), each of which
cannot form a complete set of connectives by itself. The 7 boolean functions represented by these
connectives are frequently used in mathematics, logic, and computer science. There are other boolean
operators, but they don’t seem to get as much attention.

(a) Two binary boolean operators (or functions) ® and ¢ are distinct if there exist propositional
formulae P and @ such that P ® @ is not logically equivalent to P ¢ ). The 7 operators listed
above are all distinct. How many distinct boolean operators are there in total? Explain your
answer.

SOLUTION

If two binary operators are distinct then they must have different truth tables. Conversely,
operators ® and & with different truth tables must be distinct: since there is a row on the truth
table for ® that differs from the corresponding row on the truth table for @ then we can always
find formulae P and @ such that P ® @ has a different truth value than P & Q. (Remember that
we have tautologies and contradictions like (z V —z) and (z A ~z) available to use as P and Q). A
truth table for a binary operator has 4 rows, each of which can contain a 0 or a 1 as the "return
value” for the operator!. Therefore there are 2* = 16 different such truth tables, so there are 16
distinct binary boolean operators.

(b) A binary boolean operator ® is trevial if for all propositional formulae P, @, R, and S, PO @
LEQV R ® S. How many distinct trivial boolean operators are there? Explain your answer.

SOLUTION

If POQ LEQV RO S for any choice of P, @, R, and S, then the truth value of P © @ must always
be the same as the truth value for @ ® R. Since P, @, R, and S could have any two pairs of truth
values, it must be that P ©® @ takes on the same truth value regardless of its arguments. There
are only two truth functions (truth tables) satisfying this requirement: the truth function that

maps every pair of arguments to 0 (false) and the function that maps every pair of arguments to
1 (true).

(c) A binary boolean operator ® is one-sided if for all propositional formulae P, @ and S, either
POQLEQVP O S or POQELEQVS ® (. How many distinct one-sided boolean operators are there?
Explain your answer.

11 assume of course that the rows are identified by the truth values of the two operands; changing the order of the rows does
not change the table.



SOLUTION

A one-sided operator essentially ignores one of its arguments, since leaving one of the arguments
unchanged guarantees an unchanged truth value. We can view a one-sided operator which ignores
its lefthand argument as a function of its righthand operator only. Such an operator can be
represented by a truth table having only one ”input” variable, which has only two rows. There
are 22 = 4 of these. Similarly there are 4 one-sided operators which ignore their righthand
argument, but two of these (the trivial ”always true” and ”always false” operators) also ignore
their lefthand argument. Thus there are 6 distinct one-sided binary boolean operators.

(d) How many non-trivial, non-one-sided operators are missing from the above list of seven? Could
we use the missing operators as a complete set of connectives? Prove your claims.

SOLUTION

We have been given seven operators, and we’ve found six one-sided operators, two of which are
trivial. That accounts for 13 out of 16 possible operators. The remaining 3 are all non-trivial
and non-one-sided, which can be verified by inspecting their truth tables. (Specifically, since
each table has a single row with a different truth value from all the others, none of them can be
one-sided since changing the value of either argument from the values on that row will change
the result). I've chosen symbols which seem a reasonable reflection of the ”semantics” of these
operators: «,4,amd 4.

The truth table for «:

0|01
0|10
1]0]1
111
The truth table for +:
0|0|0
0111
1100
1110
The truth table for 4:
0|0|0
0|10
1101
17110

It is easily verified by comparing truth tables that P — @ is logically equivalent to @ « P,
and that —P is equivalent to (P 4 P) « P. Therefore any formula using only connectives
from {—,~} can be rewritten using connectives from {«, ¢, /4 }. Since {—, 7} is known to be a
complete set of connectives, {«, ¢, /4 } is also a complete set.

4. Let LG be a first-order language having an infinite set of variables including a, b, and ¢, predicate P of
arity 3, and predicate ~ (the equality predicate). Consider an interpretation where the domain D is
the set of all vertices of some (simple) graph G, and P(a, b, c) is true if and only if b lies on a shortest
simple path from a to ¢ in G 2.

(a) Give a formula expressing the claim: "there are exactly three vertices in G”. Explain what your
formula says in precise English.

2Recall that a path from a to b is a sequence of vertices v1,va,. .. v such that each two adjacent vertices are connected by
an edge, a = v1 and b = vg. A simple path is a path such that all k vertices in the path are distinct (not equal). A shortest
simple path from a to b is a simple path such that no other path from a to b has fewer vertices (smaller k). Note that a path
from a to b includes both a and b, so P(a,a,b) and P(a,b,b) are always true if there is a path from a to b. Also note that every
path runs in both directions (on a simple graph) so P(a,b,¢) — P(¢,b,a).



SOLUTION:
A formula expressing this claim is:

JzIyFz(~ = (z,y) A~ = (¥,2) A~ = (2,2) AVw(= (w,z)V = (w,y)V = (v, 2)))

An English reading of the formula says:
"There exists vertices x, y, and z such that the following is true: x is not equal to y, y is not equal
to z and z is not equal to x, and for all vertices w either w is x, or w is y, or w is z.”

(b) Give a formula expressing the claim "there exists an edge from vertex a to vertex b in G”. Explain
what your formula says in precise English.

SOLUTION: A formula expressing the claim is:
Vz(P(a,z,b) = (= (z,a)V = (z,b))) A JzP(a,z,b)

. An English reading of the formula says: ”For any vertex x, if x is on shortest path from ato b
then either x is a or x is b. Furthermore, there exists an x such that x is on a shortest path from
atob.”

(c) Give a formula expressing the claim "G is a tree”3.

English.

Explain what your formula says in precise

SOLUTION:
This one is a bit more complicated so I'll break it into parts (conjuncts). The first part expresses
the fact that G is connected (i.e. there is a shortest path between every pair of distinct vertices):

VaVy3z(- = (z,y) — P(z,2,v))

A literal English reading of this part says: ”For any vertices x and y, if x and y are distinct then
there exists a vertex z such that z is on shortest a path from x to y”.

The second part expresses the fact that there is at most one shortest path between any pair of
distinct vertices. I've already shown how to express the fact that there is an edge between two
vertices (a and b in part (b)). Let E(x,y) be shorthand for the formula expressing the fact that
there is an edge between z and y. Then [ can express the uniqueness of shortest paths like this:

VzVyVzVz' ((P(z,z,y) A P(z,2',9) A BE(z,2') A B(z,2')) =~ (z,2"))

Translation: ”For all vertices a, b, z, and 2/, if both z and 2’ are

— connected to z by an edge; and

— on a shortest path from z to y

then z and 2z’ are identical.

Having expressed that all shortest paths must be unique, I've ruled out the possibility of a shortest
cycle in G with even degree. I must also rule out the possibility of a shortest cycle with odd degree.
This is equivalent to saying that for any three distinct vertices z, y, and z, at least one of them
must lie on a shortest path between the other two*. We already saw in part (a) how to express

3A tree is a graph which is connected (every vertex has at least one path to every other vertex) and acyclic (every vertex
has no more than one path to any other vertex).

4This is violated by an odd shortest cycle because such a cycle will have an edge (a,b) and vertex c such that c is equidistant
from a and b, and none of a,b, or ¢ is then on a shortest path between the other two. Since the cycle is shortest we know that
all the shortest paths between its vertices are on the cycle (this was given as a hint).



the distinctness of three vertices, so let D(z,y,z) be shorthand for the formula expressing that z,
y and z are distinct. Then our final conjunct is simply:

VzVyVz(D(z,y,z) = (P(z,y,2) vV P(y,z,2) V P(z,2,9))

Translation: ”If any three vertices z, y and z are distinct, then at least one is on a shortest path
between the other two.”

Putting the three parts together we have:

VzVy3dz(— =~ (z,vy) = Pz, z,y))A

VaVyVaVz' ((P(z,z,y) A P(z,2',y) A E(z,2') A E(z,2")) == (2,2"))A

YzVyVz(D(z,y,z) — (P(z,y,2) vV P(y,z,2) V P(z, z,y))



