CSC270
Algorithms and Data Structures,
(day section)

Danny Heap
heap@cs.utoronto.ca
978-5899
SF4306
and Francois Pitt

December 16, 2002

You may prefer the HTML version of this document, at
http://www.cs.utoronto.ca/heap/270F02/Notes /Notes.html
Contact information

I can be reached at heap@cs.utoronto.ca, 978-5899, or in SF4306A. My office hours are 4-5 pm, Tuesdays
and Thursdays.

Time | Monday | Tuesday | Wednesday | Thursday Friday
9:00
10:00
11:00 ECE242 CSC270 CSC270
GB120 SF1101 SF1101
12:00
13:00
14:00 | ECE242 ECE242
M(C252 RS211
15:00
16:00 | ECE242 CSC270 CSC270 CSC270 ECE242
office hour | office hour problems office hour | office hour

Announcements (reverse chronological order)

e Tuesday, December 17 office hour: starts 35 minutes late (4:35), since I must invigilate another exam
from 2-4:30.

e Exam Summary

e Assignment 4 is now available.
e Sample (PostScript), Sample (PDF) midterm solution (except Q3).

e Assignment 3 is now posted: Assignment 3 (PostScript), and Assignment 3 (PDF). There are also
Assignment 3 FAQ

e Midterm summary (PostScript), and Midterm summary (PDF) now available.
e Aid sheet: Yes — it must be no larger than 8.5”x11”, handwritten on (up to) 2 sides.

e Where do you write your midterm? If the third letter of your userid is in [a-1], then you write in CG
150. Otherwise, you write in CG 250.

e Previous midterms include Francois Pitt’s Test 1: PostScript, Test 1: PDF, Test 2: PostScript, Test
2: PDF. The usual cautions apply: we aren’t covering the material in the same order as Francois did,
we have one test instead of two, I'm not Frangois.. ..

e Midterm, November 1, 11:10-12: This will be held in the Canadiana Gallery, rooms 150 and 250.
Here’s the information on the Canadiana Gallery:

Canadiana Gallery (CG)
14 Queen’s Park Crescent West

...and you can look for building (CG) on the U of T map (behind Gerstein Library):
e September 22: Here’s Assignment 1

e September 20: Assignment 1 will be posted this weekend.

September lecture summary

September 11

This course has two components, and each component has either two or four parts.
The first component is a collection of topics that stimulate computer programs:

e numerical methods

e graph theory

e simulation

e dynamic programming

The second component is an extremely condensed introduction to the C and C++ programming lan-
guages. You'll use one or the other of these two languages throughout the course, and later in your career.

Introduction to UNIX

Your cdf account is uses a unix (or linux) OS. You’ll need to be familiar with the filesystem and a few com-
mands, and these are (mostly) available in “A Student’s Guide to CDF.” We’ll make photocopies available.

Introduction to C

We use the Gnu compiler gcc. Here’s an example, assuming that somebody created a C source file called

program.c in the current directory:
gcc -Wall -ansi -pedantic -o program program.c
e -Wall prints “all” (not exactly all, but lots of) warnings.

e -ansi scolds you if your C source is not compliant with the ANSI (1989) standard.

e -pedantic scolds you for even more things, which may be legal C, but are considered (by the compiler,

at least) to be bad.

e -0 program says put the executable in program

C is similar to Java

C and Java have some similarities:
e Statements continue until a semicolon (”;”) character
e primitive data types (except C has no boolean)

e if while, for, and switch statements are very similar to Java

e C functions resemble Java static methods

C differs from Java
C precedes Java, and isn’t object-oriented:
e C doesn’t have classes (C structs are a long way off), and no exception mechanism.

e program structure differs (see below)

C has pointers (addresses) rather than references. These are more easily abused!

C has no booleans: 0 == false, !0 == true.

I/0 is different

A simple (single-file) C program is like a Java program where all methods are static

Sample C program

/* add.c
* a simple C program

*/

#include <stdio.h>
#define LAST 10

int main()

{

int i, sum = 0;

for (i = 1; i <= LAST; i++) {
sum += 1i;
} /*-for-x*/

printf ("sum = %d\n", sum);

return 0;

}

The main parts are:

e preprocessor directives (notable by the # character and the lack of semicolons)
e global variable declarations

e function declarations

e int main()

e function definitions

Here’s a brief description of those parts:

Comments: These start with /* and continue, ignoring newlines, until the next */. Notice that this means
there is no nesting of comments. We adhere to ANSI-C standard (until C99 becomes more ubiquitous),
S0 you cannot assume that // comments until the end of a line will work. It may turn out that some
compilers accept these, but you cannot assume that all compilers (particularly the one used by the
marking TA) will.

#include directives: includes declarations of functions from header files for standard libraries. For exam-
ple, #include <stdio.h> includes declarations of functions for the standard library that are useful
for input/output. Note the distinct absence of semicolon

#define directives: Performs textual replacement, which is useful to define constants. For example, this
is legal C:

#include <stdio.h>
#define BEGIN {
#define END }
int main()
BEGIN
printf("Hello World!\n");

return 0;
END

int main(): An executable program must have a main method, which is what’s called when the program
is executed. int indicates that this function returns an integer value to the shell where it is executed.
In this course we will normally return 0.

September 13

Our sample C program included a function printf from the standard I/O library. You can declare and
define your own functions:

/* add.c
* a simple C program

*/

#include <stdio.h>
#define LAST 10

void Incr(int *num, int i);

int main()

{
int i, sum = 0;
for (i =1; i <= LAST; i++) {
Incr(&sum, i); /* add i to sum */
} /x-for-*/
printf ("sum = %d\n", sum);
return 0O;
}

void Incr(int *num, int i) {
*num = *num + i;

}

Several things are going on here
1. There is a declaration of Incr.
2. There is a definition of Incr.

3. Since I want to change the value of sum, I need to pass its address to Incr. The & can be thought of
as the “address-of” operator, and the * can be thought of as the “value-at” operator.

The include file <stdio.h> provides a declaration, but not a definition, of printf. If this is omitted, C
will make assumptions about the return type and parameter list for printf — and these assumptions may
well be wrong!

During the first compilation pass, the C compiler turns add.c into object code (machine language),
making a note that it will link to printf and Incr. Linking to Incr is internal: its definition is in the
same compilation unit (file) as its declaration and use. Linking to printf is implicit: the compiler links to
an enormous library object (the C library) without even asking your permission. Occasionally you’ll have
to specify that the compiler should link to a non-standard library, such as 1libm.o, which has math.h as a
header. This is the reason for the -1 m required at the end of a compilation command that some of you saw
during the problem session Wednesday afternoon.

Pointers

C allows you to directly manipulate the byte address in main memory of data and program code. Every
type (e.g. int, char, double) has a corresponding pointer type, declared

int *ip, k= 3;
ip= &k;

This declaration helps by suppressing the (often platform-dependent) details of the data type when doing
pointer arithmetic. For example, if the declaration above set ip == 0xfff0, what should the value of ip +
1 be? This operation would be different for a character or long pointer.

When we want a function to change a variable (as a side effect), we generally pass the address of the
variable.

void swap(int *a, int *b);

/* some intervening code that uses swap */

void swap(int *a, int *b)

{
int temp= *a;
*a= *b;
*b= temp;

}

Convince yourself that swap couldn’t be implemented if its prototype were void swap(int a, int b).
There are three chapters in KN King “C programming, A Modern Approach” on pointers, and we’ll be
giving more information in tutorials.

September 18
C has a rather small set of data types:

e int represents integers, with the “natural” precision for the platform you’re on (typically, but not
necessarily 32 bits these days). More or less precision can be specified using the modifiers short or
long. You may also specify unsigned, whereas signed is the default. A literal such as 4321 is an int,
if you append an L (e.g. 4321L it is a long int. The suffix U indicates unsigned. A leading 0 indicates
an octal (base 8) integer, a leading Ox or 0X indicates a hexadecimal (base 16) integer.

e char is a single byte, representing a single character in the local character set. These may be signed
or unsigned. A character literal is delimited by single quotes (e.g. ’x’). Certain characters can be
represented by an escape sequence, e.g. \n for newline, \t for tab. chars are actually small integers,
and can participate in integer arithmetic.

e double represents a number with a fractional part with double precision (how much precision is, again,
machine-dependent). More precision may be specified with long, less by using type float. Include a
decimal point (e.g. 123.4) or an exponent (e.g. 1e-2) to indicate double, add the suffix F to indicate
float

How much precision? This is specified in the header <float.h> for the particular machine you are on.
Variables are declared before use. The declaration statement may include initialization:

int i, num, k= 3;
char a= ’T’, *cp;
int *ip= &k;

num= k+3;
cp= &a;

A declaration may have the prefix const, which which case warnings (may) occur if there is an attempt to
change its value after it is initialized.

September 20
Arithmetic

The arithmetic operators you’re familiar with from Java were (pretty much) inherited from C: +, -, *, /, %.
In C the modulus
If you mix “narrower” and “wider” types in an arithmetic expression, the result is wider:

int i;
double d;

. 1+ d <--- double expression

An assignment from a wider to a narrow type is legal. It may generate a warning:

int i= 3;
double d= 3.14159;

i=d <----- truncation may generate warning
Use a cast statement to document (and reassure the compiler) that you know what you’re doing:

int i= 3;
double d= 3.14159;

i= (int) d;

Logic

Logical operators from Java were inherited from C: >, >=, <, <= have highest precedence, then come
==, !=_ All have precedence lower than arithmetic operators. Expressions connected with && or || are
evaluated from left to right, and evaluation stops as early as it can. An expression is negated with !

if (condition) { statement(s) } tests whether condition is O (false) or non-zero (true), and then
executes statements(s) if it is true. if (condition) { statement(s) } else { other statement(s)
} executes statement (s) if condition is non-zero, and other statement(s) if condition is zero. This
resembles Java, once you make the leap from boolean to int conditions.

Arrays

The commonest aggregate type is an array:

int intArray[5], *ip;

intArray[2]= 1073;
*(intArray + 3)= 1074;
ip= &intArray[2];
. ip[1] == intArray[3] <---- this expression evaluates to 1

The declaration reserves 5 x sizeof (int) contiguous bytes of memory. The identifier intArray, without
the subscript, contains the address of the zeroeth element. Pointers and arrays may be manipulated in
similar ways. Important difference: address corresponding to an array may not be changed:

char word[3];

word= "hi"; <--- strings are char arrays terminated by ’\0’
g y y
the constant array on the RHS cannot be assigned
to word

When you pass an array to a function, it sees a pointer, and it doesn’t know the size of the array.

int arrayFunc(int *intArray) <------- same as int intArray[])
{

int k= 2;

return intArray([k]; <-------- same as k[intArray] --- WHY?
}

Another important aggregate type is struct. You can read some of Alan Rosenthal’s notes on struct

September 25
Input/Output

If you #include <stdio.h> you have access to C’s standard library of I/O functions. To print a formatted
string to standard output (probably your console) you can use printf:

int i= 67;
double d= 97.8;

printf ("Our lucky numbers are %d and %f\n", i, d);

The %d is a format specification (aka conversion specification), which tells C to replace it with the corre-
sponding integer argument, formatted as a decimal (base 10) integer. Unexpected results if the corresponding
argument is not an integer (try a character or a double). The %f indicates either a float or a double, and
there are (many) details to printf that will allow you to control the number of decimal places, alignment,
etc.

If you want to get input from your standard input (probably your keyboard), you can use scanf:

int i;
double d;

printf ("Type your lucky integer, then your lucky double: ");
scanf ("%d %1f", &i, &d);

printf ("Your lucky numbers are %d and %f\n", i, d);

The %d again matches an integer, and %1f matches a double (that’s an ”1” [ell] not a ”1” [one]). If you want
to use all the features, you need to look up the arguments to scanf in a C manual. In an extreme case, type
man 3 scanf.

You can input strings delimited by whitespace (similar to tokens):

char myString[10];

scanf ("%s", myString); <---- why no ampersand?

The string to be scanned should have, at most, 9 non-whitespace characters. If you want to include whitespace
characters up to a newline (inclusive) use fgets:

char inputLine[80];

printf ("Type a line: ");
fgets(inputLine, 80, stdin);
printf("You typed: %s\n", inputLine);

Don’t use gets(inputLine), since no checking is performed if the user of your program types 81 charac-
ters. ..

Here’s an example of I/O with some standard C types, as well as some included information about float
and int that will be useful in the next topic:

/* fool around with I/0 */
#include <stdio.h>
#include <limits.h>
#include <float.h>

int main()
{

char c;

int i, imax= INT_MAX, exp_min = FLT_MIN_EXP,
exp_max = FLT_MAX_EXP, mant_dig = FLT_MANT_DIG;
float f;

printf ("Enter a character: ");
scanf ("%c", &c);

printf ("Enter an integer: ");
scanf ("%d", &i);

printf ("Enter a float: ");
scanf ("%4f", &f);

/* what happens if you mix up the arguments? */
printf ("You entered character: %d, integer: %f, and double: %c\n",
c, i, £);

return 0;

How are data represented internally?

Physically data are stored in transistors that can be in an off (0, low voltage) or an on (1, or higher voltage).
This allows a natural identification between collections of transistors and binary numbers (sequences of Os
and 1s, interpreted as a number base 2). You should practice a bit converting from familiar decimal (base
10) numbers to binary, and back again.

A char in C is represented by 8 bits (binary digits), or a byte. This can represent 256 distinct values,
from 0-255. C specifies that chars in the range 0-127 represent ascii values for characters, and the remaining
values are implementation dependent.

An int in C is represented by at least 16 bits, often 32 bits, and occasionally 64 bits. You can figure
this out by evaluating sizeof (int) on a particular machine, which will tell you how many bytes an int
occupies.

Suppose you have a 32-bit unsigned int. These will represent values from 0—(2%2 —1), and do arithmetic
modulo 232 — in other words, 1+ (2%? — 1) == 0.

Signed int (the default) is a bit trickier. The most significant bit (msb) on the left is reserved to represent
the sign: 0 for non-negative and 1 for negative. Non-negative ints in the range 0—(23! —1) are represented by
a 0 followed by their 31-bit binary representation. Negative ints with absolute values in the range 0-23! are
represented by their two’s complement — 232 minus their absolute value. This representation is efficient
for hardware (essentially hardware subtraction becomes just addition).

Floats are commonly 32-bit, but you should check sizeof(float) on your platform. The first bit
indicates the sign (1 for negative, 0 for positive). The next 32-FLT_MANT_DIG bits represent the exponent
(the constant FLT_MANT_DIG is defined in float.h), usually to the base (aka radix) 2. Suppose we have an
8-bit exponent. Rather than being limited to exponents in the range 0..255 we shift (or bias) the exponent
by subtracting 127, so we can represent exponents in the range -127..128.

The mantissa (which has FLT_MANT_DIG bits, or 24 bits in our example) represents the significant digits of
our float as a binary number in the range 1 < num < 2. The exponent is chosen so that sign x 26xPonent—127 y
1.{mantissa} equals our float. Notice that all binary numbers that are no smaller than 1 and smaller than
2 have a leading bit 1. In floating point representation, this leading 1 is omitted (it’s assumed), allowing us
to represent a 24-bit number with 23 bits. For a 32-bit float this gives us 1 bit for the sign, 8 bits for the
exponent, and 23 bits for the mantissa.

Perhaps you’re wondering: how could you ever represent 0 with a mantissa that has a leading 1?7 The
answer is that there is one further trick. A floating point number with all zeroes in the exponent is interpreted
as 27126 x (0.{mantissa}. In this way, very small floats (including 0) can be represented.

September 27

Numerical computation involves constant compromising between the theoretically perfect objects we model,
and the finite resources of a computer. Consider the function:

€ =1+z+z*/20+23/31+--.

The infinite series on the right converges to the true value. In theory you can get as close as you want to
e” by simply calculating enough terms. In practice, your wrist gets tired of the repeated multiplication and
addition when you do it by hand. So use a computer.

It turns out that although computers do a fine job of calculating such a function, there are some surprising
sources of error that must be guarded against.

Roundoff

Even if your computer had no other source of error in calculating e®, it would need to fit it into some
finite memory location. In what follows we’ll assume (to make our calculations easier) that our computer
represents floating point numbers using scientific notation and 5 decimal (base 10 digits). So, for example,
11% would be represented as:

1.1333 x 10'.

This is no different in principle from how floats are usually represented. If we used 5 binary digits instead,
we’d represent 113 as:
1.0110 x 23

This is basically the IEEE representation, except the latter uses 24 binary digits. In any case, roundoff error
afflicts base 2, base 10, and any other conceivable finite representation. Here’s how it works.

The decimal (aka base 10) expansion of e! is 2.718281828459045.. . If we insist on squashing it into 5 digits,
we have two reasonable choices: 2.1782 (truncation) or 2.1783 (rounding). Truncation is computationally
easier, since for rounding we must examine the first omitted digit and round up if it is 5 or greater, down
otherwise. How bad are our 5-digit approximations? A reasonable measure would be to find the difference
between our approximation and the true value, and see what proportion of the true value the discrepancy
is. This is called the relative error:

. approximate value — true value
relative error = .
true value

In our 5-digit e!, the truncated version gives us a relative error of about 0.003%, whereas the rounded version
gives a better relative error of -0.00067%. Rounding seems to be more reliable, since it’s too high about half
the time, too low about half, whereas truncation is always too low. So, we’ll stick with rounding (as most
floating point arithmetic units do).

So, what’s the worst relative error we can expect from rounding? Well, if the first digit that we omit is a
5 followed by zeros, we round up and our total error is half the distance between two consecutive numbers.
For example, if the true value were 5.43215, to keep only 5 digits we’d round up to 5.4322, and our total
error would be 0.00005. Notice that the total error changes if we approximate 5.43215 x 10% by 5.4322 x
10% (the total error gets a thousand times bigger). What we really want is the relative error.

Re-write 5 as 10/2, since what’s important is that 5 is half of the base (10). Also, since we're trying
to find the maximum relative error, make the denominator as small as possible by having mantissa 1.0000.
Then, no matter what exponent k you raise 10 to, the relative error is:

10/2 x 1075 x 10% x 10/2
1.0000 x 10%

The 10* cancels out, and you get 10;_5. The same reasoning works for bases other than 10 (just replace 10

by the symbol b for the base in the above expression. The reasoning also works if you have a different number

10

of digits than five (just replace 5 by ¢ in the above expression. Then the relative error due to roundoff in a
base b floating point representation with ¢ digits is:

bl—t

The number b'~t is called the “machine epsilon.” It is the smallest number that can be added to 1.0 to
produce a different floating point number.

Floating arithmetic

Addition of large and small floating point numbers can lead to loss of information. Again, we’re using base
10 with 5 significant digits. Suppose we decide to add 3.4725 times 10° and 1.1203 x 10~3. Our floating
point arithmetic unit aligns these two numbers (somewhat as you would line them up to add them on paper)
by expressing them with the same exponent: 3.4725 x 10° plus 0.0011 times 10° — the second mantissa
lost the significant digits 203 by being squashed into 5 digits! The sum is 3.4736 x 10°.

Things would be even worse if the exponent, of the second number were smaller. Suppose we added 3.4725
x 10° plus 1.1203 x 1075, To align the two numbers, the second one is re-normalized as, well, 0.0000 x 10°
— all the significant digits fell off the right hand side. So the sum is 3.4725 x 10°. Care is required when
adding numbers of greatly different magnitudes.

Stranger still, floating point addition is no longer associative. The following equation says we can group
addition according to taste, and the results should be the same:

((((1.0000 x 10% + 3.0000 x 10~2) 4 3.0000 x 10~*) + 3.0000 x 10~%) + 3.0000 x 10~ %)
= (1.0000 x 10% + (3.0000 x 10~ 4 (3.0000 x 1073 + (3.0000 x 10~2 + 3.0000 x 107?))))

The floating point calculation on the right is 1.0000 x 102, the one on the right is 1.0001 x 10> — not quite
the same.

Subtraction can have catastrophic cancelling when the numbers being subtracted are very close. Suppose
the true values we were subtracting were 4.57235000 - 4.57234999. We can only keep 5 digits, and the rules
say to round one up and the other down, so we end up with 4.5724 - 4.5723 = 0.0001. However, the true
difference is 0.00000001, yielding a relative error of 9999, or 999,900%

October lecture summary

October 2

Course Readings, 14,15, 199-218
Last time we discussed catastrophic cancellation error when subtracting two relatively close numbers.
This error can come up in a couple of ways. Suppose you decide to evaluate exp(—2) using the series:

exp(—10) = 1 — 10 + 10?/2! — 10%/3! + 10*/4! — - ..

Notice that the later terms in this series get very small, and so does the entire series. Once you get past
the first dozen terms you are repeatedly subtracting very small values (odd terms like —10%2/23!) from the
partial sum, which is itself small. This gives repeated cancellation error.

Similarly, whenever you compare two floating point numbers for equality, you are vulnerable to cancella-
tion error:

1.2,

3 3

The line above is certainly an equation, but the floating-point representations of 1 — 1/3 and 2/3 may be
close but different.

11

Polynomial evaluation

Suppose you had to evaluate 5z* + 323 + 7z? + 22 + 9, given x = 7. The straightforward approach would
SUmM up S*T*x LT+ + 3*r*xr*x + Txx*T + 2% + 9 — 10 multiplications 4 additions. Although multiplication
and division don’t generate as much error at a single step as catastrophic cancellation (the operations are done
in double precision, and then converted to float), the errors accumulate (and multiplication is computationally
expensive). A better approach is to re-write the polynomial using Cramer’s rule:

(b +3)z+ Tz +2)x+9

This uses 4 multiplications (the degree of the polynomial) and 4 additions. A small re-arrangement makes
a large difference (for a degree 100 polynomial, the first method would use 5050 multiplications versus 100
multiplications if re-arranged).

Find roots by bisection

A common computational job is to find the root(s) of a function. That is, for some function f(z), find all
the values of x that make f(z) = 0. If f(x) = 27 — 2, the root would be v/2, a bit of a job to find before
hand-held calculators.

The first step is to make a guess, or two. If you’re lucky and guess two numbers z; < x5 with f(z1) <0
and f(z2) > 0, then you can make the following conclusion: so long as f is continuous, the interval [z, Z2]
contains at least one root. “Proof” is a picture: the graph of f is above the axis at 1 and below the axis
at 3, so somewhere in between it must cross the axis (this “proof” of the Intermediate Value Theorem
wouldn’t get you through Calculus, but it will help you find a root).

The same conclusion holds if f(z1) > 0 and f(z2) < 0. One way to combine the two conditions is:
f(z1) x f(z2) < 0.

So, we cut the interval in half. Let 23 be (21 4+ 22)/2. There must be a root in either [z1, 23] or [z3,z2],
so we can repeat our test: if z3 # 0 (in which case we’d be done), then either f(z1) x f(z3) < 0 or
f(z3) x f(z2) < 0. We can now restrict our search to half the original interval. Keep doing this until the
interval is “small enough.” If we decide in advance that we want to be within some tolerance factor ¢ of the
root r, then we keep cutting our interval in half until it is smaller than ¢. Notice that, even if ¢ is small (for
example ¢ = 0.00001), the fact that f(r) == 0, doesn’t guarantee that f(r + t) is small — f may have a
large slope near r.

If you took the approach that you would keep bisecting until the mid-point (call it m) of your interval
had f(m) < €, then you might have an infinite loop. For example, consider finding the root of £ — 2 on a
computer that could represent 5 decimal digits. If you bisected until you had the interval [1.4142,1.4143], then
the mid-point (in 5-digit precision) would be 1.4143...With this approach, you must specify the maximum
number of iterations (loops).

If you repeat this process i times, getting an interval [z;,y;], and you return m; = (z; + y;)/2) as your
best approximation of the root r, you can be assured that |r — m;| < (y; — z;)/2. If we denote the length
of kth interval by ey, then ey41 = (1/2)e}, and we say that the bisection method converges linearly (due to
the exponent 1).

There are root finding methods that converge with a higher exponent than 1, but they are not guaranteed
to converge, whereas bisection always converges once we’ve made two appropriate initial guesses.

Newton’s method

A much faster, but less certain, root-finder is Newton’s method. Suppose you make one initial guess at the
root, 1. You'd like to find 5 such that f(z2) = 0. If you take the first two terms of the Taylor series for f
around z, then you have:

0= f(z2) = f(z1) + f'(z1)(z2 — z1).
Re-arranging things, and assuming that f'(z1) is non-zero, you get:

_ f(=@)
f'(z1)

To & T1

12

You decide you have to live with the approximation for z», and you plug it back into the formula to get z3,
and so on. So long as this method converges, it does so at a quadratic rate: ex+1 < ae? (Course readings,
p. 217). How can you tell whether it converges. A picture gives some intuition, since approximating f by
its tangent is risky when the slope is near zero. Another pictorial method comes to us from chaos theory.
If we call z — (f(z))/f'(z)) g(z), convergence means that g(g(z)) is getting closer to our root. If we draw
the function g(z) and the diagonal y = z through the root, we can see that g(z) is a contraction (i.e. gets
closer), if ¢'(x) has magnitude less than 1, or
f(2)f" (x) 12 "
[ﬂm2=ﬂﬂm>U@f@L

If this holds true near the root, then Newton’s method will converge at a quadratic rate.

15140 |

October 4

Newton’s method used the first two terms of a function’s Taylor series, and omitted the others. Page 14 of
the Course Notes provides a formula for the error you can expect from this omission, called the truncation
error. If you omit all the terms from (™ (z)h"/n! on, your error is:

F™@)n" /n! 6 € [z,z+ h]

Although this formula doesn’t tell us exactly what 6 is, it tells us its general neighbourhood. Often we can
estimate the maximum size that f(™)(@) can be in the interval [z, + h], and get an idea of how bad our
error can be. In the case of Newton’s method, this tells us that if z;, is distance h from the root, then xpy;
is some constant times h? from the root — quadratic convergence.

However, when h is big, you might not have convergence. You might experiment with the innocent
function f(z) = 2 — 1 in the interval [~2,0] to find a couple of points where Newton’s method fails to
converge.

Numerical integration (aka quadrature)

From a user’s perspective, integral calculus has a strange paradox. You’re told that for any continuous
function, the area under its graph (roughly its integral) exists. However, there is an exact paper-and-pencil
method for finding integrals only for a tiny minority of continuous functions, and a large part of the art
of calculus consists of guessing which of the various methods (integration by parts, substitution, partial
fractions, ...) will work on a particular function. This sort of thing is difficult (probably impossible) to
specify in an algorithm for a computer, so we use numerical methods to find a number sufficiently close to
a definite integral.

The idea is to divide up the x values our function f(z) is defined on into a group of intervals. Over each
interval, we make an estimate of our function whose integral we already know. As we partition into smaller
and smaller intervals, we get closer approximations of our desired integral.

If a typical subinterval is [a,b], then the simplest approximation of the area under the graph is the
rectangle with base of length b — a and height of f at the midpoint. This leads to the midpoint or rectangle

rule:
1)~ (b-a)x f (a;”).

A better approximation of our function might be gained by drawing a line segment between f(a) and
f(b), called the trapezoid rule:
fla) + f(b)
I(f) = (b—a) x —
If the function might be well-approximated by a quadratic curve (parabola), then we use the two endpoints
and the midpoint to determine a unique parabola, and use Simpson’s rule:

I(f) ~ (b—a) x LOF 4f([a;§ 8)/2) + £(b)

Which rule to use means making judgements about the nature of the function being approximated, and
are beyond the scope of this brief description.

13

October 9

Readings for the next few lecture are from the course Readings on Graphs.

But first, structs and malloc

You already seen the aggregate type struct in tutorial, which allows varying data types to be grouped
together at the same address. A couple of features of structs are now relevant.

If we want a struct type to be able to refer to something of its own kind, for example in a linked list,
we need a declaration of the following form:

#include <stdlib.h>

struct node {
int data;
struct node *next;

};

struct node *head = NULL;
struct node *nl, *n2, *n3;

The (possibly) odd feature of the declaration of struct node is that it includes a pointer to itself. From the
point-of-view of the compiler, it ensures that struct node has a member that is a pointer to struct node
before it has even completed the statement (reached the semicolon) creating struct node. The somewhat
similar declaration replacing struct node *next with struct node next is NOT allowed in C: a structure
cannot contain a member of the same type!

Self-referential structures have many uses. Given our declarations above, we could now set up a small
linked list:

nl = (struct node *) malloc(sizeof (struct node));

n2 = (struct node *) malloc(sizeof (struct node));
n3 = (struct node *) malloc(sizeof (struct node));
head = ni;

nl->data = 1;

nl->next = n2;

n2->data = 2;

n2->next = n3;

n3->data = 3;

n3->next = NULL; /* <-— indicates end of list */

malloc allocates sizeof (struct node) bytes, and returns a void pointer to it, which we cast to struct
node *. Under some conditions malloc could fail to allocate the required space, in which case it returns the
special address NULL. We don’t check for (nor act on) this possibility, but in A2 emalloc does.

The fact that C allows us to declare a pointer to a struct whose members have not yet been defined
allows other flexibility. For example, we can use typedef to declare a type that points to struct graph,
before struct graph itself has been defined, as the following declaration in A2’s graph.h does:

/%
* "Graph" abstract data type.
*/

typedef struct graph *GRAPH;

This allows the user interface in graph.h to declare functions with type GRAPH as parameters or return type,
while the actual implementation of struct graph is left to the module defined in graph.c, for example

/* Colour the graph. */
extern void colour_graph(GRAPH g) ;

14

Graph definitions

The intuitive notion of a graph is a drawing of (possibly labeled) nodes (often circles) with edges connecting
some of them. Graphs turn out to be a model that many problems can be translated to, and often solved.
You've already seen a special case of a graph, since a tree is an acyclic, connected graph with one node
distinguished as the root (see definitions below).

Here are some formal definitions:

e A graph (denoted G) is a pair of sets (V, E), where V is the set of vertices (or nodes) and E is the set
of edges. Vertices are usually the elements of the problem we’re interested in. Fach edge connects two
vertices, so it can be represented as a pair (v1,v2).

e We can also denote the vertices of a graph G as V(G) and its edges as E(G). The number of vertices,
|V (G)] is the called G’s order, and the number of edges, |V (E)| is called G’s size.

e Since edges are ordered pairs, (v;,v2) indicates there is an edge from v; to v, but not necessarily from
vy to v; — if so there must be an edge (vs,v1) in E. When this distinction is important, we have a
directed graph. In this course the edge relationship is usually symmetrical: there is an edge (vy,v2)
if and only if there is an edge (va,v;). In this case the edge is in fact the set {v1,v5} (since sets have
no order), and we have an undirected graph. A vertex may not have an edge to itself (unless we
have a pseudograph).

e When two vertices share an edge they are “adjacent” (or “neighbours”). The number of neighbours
vertex v has is called the degree of v (for a directed graph we have in-degree and out-degree). A path
is a list of vertices where each pair of vertices that are adjacent in the list are also adjacent in the
graph.

e A circuit is a path that begins and ends on the same vertex without repeating any edges. A cycle is
a path that begins and ends on the same vertex and doesn’t repeat any vertices (and usually includes
at least three vertices).

e Vertices v; and v, are connected if there is a path beginning with v; and ending with v,. Graph G
is connected if every pair of vertices in G is connected.

e Graph G is complete if every vertex is a neighbour of every other vertex. Clearly a complete graph is
also connected. If G is a complete, undirected graph, how many edges does it have? It turns out that
two complete graphs of the same order (same number of vertices) are equivalent (isomorphic, which is
defined later), so it makes sense to talk about the complete graph of order 2, K5, or order 4, K4, etc.

e A colouring is an assignment of colours to a graph so that

1. every vertex is assigned a colour.

2. no two neighbouring vertices are assigned the same colour

Usually we represent the colours by small integers. If it is possible to colour a graph with & colours,
we say the graph is “k colourable.” If you know that it’s possible with colour a graph with k different
colours, then you can certainly colour it with more than k colours: being k colourable doesn’t require
that all k£ colours are used, only that & colours are enough.

e The chromatic number of graph G, denoted x(G), (that’s the greek letter chi) is the minimum number
of colours required to colour G. It’s easy to come up with an upper bound for x(G), since you G is
certainly k colourable if ¥ = |V(G)|. Usually x(G) is less than |V (G)|, but in the case of a complete
graph G, x(G) = [V(G)|.

e To prove that x(G) = k for a given graph G, you need to prove both that G is not (k — 1) colourable,
and that G is k colourable.

15

October 11
Graph isomorphism

Suppose I have two undirected graphs, each with 3 vertices and 3 edges: G; has V(G1) = {a,b,c} and E(G;)
= {(aa b)a (aa C), (b7 C)}, and G has V(GQ) = {da 6, f}a and E(GQ) = {(da 6), (da f)a (67 f)} If you draw these
graphs, it’s pretty clear that they are equivalent: you get G2 by changing the vertex labels a,b,c on G; to
d,e, f. But they aren’t equal, since their vertex sets and edge sets are different (in a superficial way).

We capture the idea that G; and G4 are equivalent except for their labeling by saying they are iso-
morphic. Two graphs G; and G2 are isomorphic if there is a bijection f such that f(V(G1)) = V(G2),
FY(V(G2)) = V(G1) and f(E(G:1)) = E(G2). What all the symbols mean is that if you can find a way
of matching each vertex of G; with a corresponding vertex of G5 (this matching is your bijection f), and if
your matching means that the edges of G; are mapped to the edges of G2, then GGy and G5 are isomorphic.
Another way of saying the same thing is that v; and v are neighbours in G if and only if f(v1) and f(v2)
are neighbours.

We consider graphs up to isomorphism, that is we consider isomorphic graphs to be equivalent, and a
property that we prove about one is true of the other. So we talk about the complete graph of order 5, K.
Even though there are many isomorphisms, they are all equivalent.

Graph representation

Two common ways to represent graphs on a computer are as an adjacency list or as an adjacency matrix.

Adjacency list: Vertices are labelled (or re-labelled) from 0 to |V(G)| — 1. Corresponding to each vertex
is a list (either an array or linked list) of its neighbours.

Adjacency matrix: Vertices are labelled (or re-labelled) with integers from 0 to |V(G)| — 1. A two-
dimensional boolean array A with dimensions |V (G)| x |V (G)| contains a 1 at A[4][;] if there is an edge
from the vertex labelled i to the vertex labelled j,and a 0 otherwise.

Both representations allow us to represent directed graphs, since we can have an edge from v; to v;, but
lack one from v; to v;. To represent undirected graphs, we simply make sure that are edges are listed twice:
once from v; to v, and once from v; to v;.

Which representation is best? Both. If graph G has a large portion of its edges, then the adjacency
matrix doesn’t waste much space, and it indicates whether edge (i, j) exists with one access (rather than
following a list). However, if graph G is sparse (not many of its vertex pairs have edges between them), then
an adjacency list becomes preferable. For example, if G has 10,000 vertices and only about 20,000 edges,
then its adjacency matrix representation will need 108 (100 million) entries — 400 megabytes if each took
a word. Representing the same G with an adjacency list might require, say, 10,000 words for the node plus
20,000 words for the list of neighbours: 30,000 words or 120K. The difference may make one representation
feasible and the other infeasible.

Depth-first search (DFS)

There are various ways to traverse (visit all the nodes) of a graph systematically. A couple of these ways
(depth-first and breadth-first) give us some information about graph structure (e.g. connectedness).

In depth-first search the idea is to travel as deep as possible from neighbour to neighbour before back-
tracking. What determines how deep is possible is that you must follow edges, and you don’t visit any vertex
twice.

To do this properly we need to keep track of which vertices have already been visited, plus how we got
to (the path to...) where we currently are, so that we can backtrack. We could keep track of which nodes
were visited in a boolean array, and a stack to push nodes onto that we mean to visit (the course Readings
have a recursive algorithm for DFS which takes a slightly different approach). Here’s some pseudocode:

DFS(G,v) (v is the vertex where the search starts)
Stack S := {}; (start with an empty stack)

16

for each vertex u, set visited[u] := false;
push S, v;
while (S is not empty) do
u := pop S;
if (not visited[u]) then
visited[u] := true;
for each unvisited neighbour w of u
push S, w;
end if
end while
END DFS()

It would probably be useful to keep track of the edges we used to visit the vertices, since these edges would
span the vertices visited. One way to do this is with another array predecessor[u] which indicates which
vertex u was reached from. When we are processing the neighbours of, say, vertex u, for each neighbour (say
v) of u that we push onto the stack, we set predecessor[v] to u. Eventually we end up with a tree: an
acyclic, connected graph of all the vertices that can be reached from our starting point.

What happens if our original graph G isn’t connected? Then DFS(G,v) won’t visit any vertices that
aren’t connected to its starting point. You’ll need an outer loop that iterates over unvisited vertices, and
then calls DFS(G,V).

The end result is a forest (a collection of trees) representing the connected components of G.

Breadth-first search

Breadth-first search means we visit all of vertex v’s neighbours before we visit the neighbours’ neighbours.
One way to achieve this is to add all of v’s neighbours to a queue, and then visit each element of the
queue(adding that element’s neighbours to the tail of the queue) in FIFO order. There is pseudocode for
this algorithm in the Course readings that numbers each vertex with a unique number according to when it
is visited (as does the Readings’ DFS algorithm).

October 16

Earlier we noted that a path from vy to itself is called a circuit (sometimes simple circuit) if it repeats no
edges, and a cycle (sometimes simple cycle) if it repeats no vertices except v;. A graph is acyeclic if it
contains no cycles with 2 or more edges. A connected, acyclic graph with a distinguished vertex (a vertex
that we choose and keep track of) is called a tree (the distinguished node is the root).

One sort of information that can be added to a graph is edge weight: with each edge (v;,v;), associate
a number. Various applications might use weighted graph to represent properties, for example inter-city
distances, average packet time between internet hosts, etc.

Our two graph representations can be coerced into adding this information: an adjacency matrix can
store the edge weight for edge (v;,v;) in matrix[i]1[j]. In this scheme, matrix[i][i] would be 0, and
matrix[i] [j] could contain some special value (say oo) if there is no edge (v;,v;). Similarly, an adjacency
list could add a member to each list element to record the edge weight.

Shortest distance

A reasonable question to have about a weighted graph is “what’s the shortest distance from A to B?”
(assuming that A and B are nodes on this graph). Translating the question into graph theory, this means
that if G is a weighted graph with vertices u and v, we want to know which path from u to v has the
minimum cumulative weight (minimum sum of edge weights in the path). For example, if G were a weighted
graph representing cities in southern Ontario and Quebec, with the weights being road distances between
cities, then it would be reasonable to ask what the shortest distance from Toronto to Montreal is (probably
not taking the QEW to Hamilton, the 403 to London, and then the 401 to Montreal).

Some conditions need to be set. Although we may be able to tolerate negative weights on some edges of
G, negative cycles (even a cycle with only 2 vertices) are not allowed (or else there would be no minimum!).

17

Notice that this means that any undirected graph with a negative weight, say w(i,j) = —1, has a negative
cycle (you can step back and forth from 7 to j and pick up a negative one each time).
Here’s an algorithm that works for non-negative weights, by Edgster Dijkstra:

Dijkstra’s algorithm

DIJKSTRA (V, E, s)
for each v in V

d[v] := oo; ("infinity")
pred[v] := NULL;

end for

dls] := 0;

S := {};

Vv o=V,

while (V’ is not empty) do
find a vertex u in V’ such that d[u] is minimum;
Vv’ =V’ - {u};
S := 8 U {u};
for each edge e = (u,v) in E
if (v is not in S) and (d[v] > d[u] + w(u,v)) then
d[v] := d[u] + w(u,v);
pred[v] := u;
end if
end for
end while
END

At each iteration of the while loop we add a vertex u to the solution set S, and never change its distance
(d[u]) again. You should worry that, perhaps, there is some shorter distance from s to v using some vertex
that hasn’t yet been added to S. Convince yourself that this can’t happen.

October 18
Floyd-Warshall all-pairs shortest path

Here’s an algorithm that can tolerate negative edges (but not negative cycles, even with only 2 vertices) and
returns a table of the shortest distance between all pairs of vertices.

The idea is to first find all the minimal distances for pairs without using any intermediate vertices (this is
easy to calculate, since it will be 0o if no edge exists between the pair, the edge weight otherwise). We then
relax the restriction, step-by-step: first allow paths that use node 0 as an intermediate, and see whether the
minimum distances can be adjusted downwards, then paths that are allowed to use nodes 0 and 1, and so on
until all paths are considered. We denote the minimum distance from v; to v; that considers intermediate
nodes from the set {0,...,k} as DJ[i, j, k] (special case, D[, j, —1] doesn’t allow any intermediate nodes).

Now we have a way of building up results. If we already know DJi, j,m], for m € {0,...,k — 1}, and
every pair (7, j), then the shortest path from ¢ to j either passes through k or it doesn’t. In the first case,
the portion of this minimal path from 7 to & is itself minimal and doesn’t use k& (convince your self of this),
as is the portion from & to j, so D[i, j, k] = D[i, k,k — 1] + D[k, j, k — 1]. In the second case, DJi, j, k] equals
D[i7j7 k— 1]

Since we can easily calculate D[i, j, —1] for all pairs (i, j), we can build up to D[i, j,n] (where n = |V])
as follows (the third parameter is suppressed, but corresponds to the outer loop parameter & in the bottom
triply-nested loop):

FLOYD-WARSHALL(V, E)
for i :=0 to n-1 do
for j :=0 to n-1 do

18

if i == j then

D[i,j] := 0;
else if (i,j) is in E then
D[i,j] := w(i,j); /* <—— weight function w */
else
D[i,j] := oo;
end if
end for

end for
for k¥ := 0 to n-1 do
for i :=0 to n-1 do
for j :=0 to n-1 do
if DI[i,k] + D[k,j] < D[i,j] then
D[i,j] = D[i,k] + D[k,j];
end if
end for
end for
end for
END

Here’s something to worry about. How do you know that D[i, k] and D[k, j] correspond to D[i, k, k — 1],
D[k, j, k — 1], and haven’t been updated with minimum distances that pass through k?

An easy calculation shows that Floyd-Warshall has O(n®) complexity, which is consistent with using
Dijkstra n times (and much simpler). How would you recover a shortest path, given this table of distances?

October 23

Paradox lost

In class last time I presented a small undirected graph that defeated Dijkstra and (I claimed) would work
with Floyd-Warshall. Unfortunately, the graph contained a negative cycle (a trivial one that got under
my radar), hence the shortest-path problem is not well-defined. The fix is to make it a directed graph.
The directed graph both defeats Dijkstra and works for Floyd-Warshall. Here are the resulting adjacency
matrices (the cases k¥ = 0 and k¥ = 3 are omitted, the first because vertex 0 has no incoming edges, the
second because vertex 3 has no outgoing edges).

k=-1 k= k=

0 1 2 3 0 1 2 3 0 1 2 3
Oloo |10]| 00| 0 Oloco |10 14| 13 Oloco |10 14| 8
1|oo| 0| 4 3 1|0 | 0| 4 3 1| || 4 | -2
2|00 | 00|]| -6 2|00 |00 | x| -6 2|00 |00 |]| -6
3|00 |00 |00 | 3|oco |0 |00 | 3|00 |00 |00 |

Graph problems often need to find out whether graph G contains a cycle. One way to answer this
question is to use modify DFS (Readings 388) to see whether our search ever re-visits a vertex. Note that
the modification in the course Readings considers two vertices with an undirected edge between them to be
a cycle. Usually we’re interested only in cycles with 3 or more distinct vertices, so this algorithm would have
to be modified.

This approach runs into problems with a directed graph. Since, in a directed graph there may be a
path from v; to ve, but not from vy to vy, the fact that v has already been visited doesn’t necessarily
indicate a cycle. Consider the example from Readings p. 376 (Figure 8.4(b)). Although a has already
been visited, and found all the edges “downstream” from it, there is an edge from ¢ to a that the simple
DFS modification would flag as a cycle. We need to set a special value (perhaps oo) if a node has been
visited and all nodes reachable from it have been visited. Another way to do the same thing is to record
arrival/departure numbers.

19

Figure 1: The top (undirected) graph doesn’t have a well-defined shortest path between pairs, because you can hop back and
forth between nodes 2 and 3, making any path as short as you like. The bottom (directed) graph defeats Dijkstra’s algorithm
(with 0 as the source), but is okay with Floyd-Warshal

October 25

CPP macros and conditional compilation

Earlier in the course we saw that the C pre-processor performs textual substitution. The preprocessor can
do more than this, it can conditionally compile (or ignore) portions of code, and it can expand macros to
behave like functions (with no compiler checking of parameter and return types). Many standard library
functions are implemented as macros. A useful example is the assert function, declared in assert.h. If
your code contains a statement such as:

assert(n > 0);

... stating some condition you intend to be true at all times, then if the condition is ever false your program
exits, prints the file and line number, plus stating that the condition failed.

You can create your own macros. The following example defines DD1 to print the file, line number, and
then a formatted string (argument a) that uses an argument (b). This version of DD1 is defined only if DEBUG
is defined, otherwise DD1 becomes an empty macro (resulting in an empty, but legal, statement). When
compiling you can make sure DEBUG is defined by including -DDEBUG in the gcc command (e.g. gcc -DDEBUG

myprog.c

/* experiment a bit with macros */
#include <stdio.h>

#ifdef DEBUG

#define DD1(a,b) printf("%s: %d " a
#else

#define DD1(a,b)

#endif

FILE LINE b);

3 —— _ —— -

int main()
{

int i= 5;

20

#ifdef DEBUG

printf ("Debugging on!\n");
#else

printf ("Debugging off!\n");
#endif

DD1("The value of i is %d\n", i);

return O;

}

If the replacement list for a macro contains an operator (e.g. “*”), you should enclose the list with parenthe-
ses. Similarly, if the arguments for the macro are expressions, they should be enclosed in parentheses (See
K.N. King, chapter 14). Here’s an example

#ifdef CARELESS

#define MAX(x,y) =x>y7x:y
#else

#define MAX(x,y) ((x)>M7&x): ()
#endif

With CARELESS defined, you might get surprising results from, say 3 * MAX(2,3).
Next Monday’s tutorial will give you more details about preprocessor and conditional compilation.

C++ overview

The last two assignments in this course will be implemented in C++. We don’t teach C++ in lecture
(although there will be a number of tutorials dealing with it) so you’ll need a manual (consider Stroustrup’s
The C++ Programming Language or Satir and Brown C++, the Core Language.

Having said that, let’s consider the differences and similarities between C and C++.

Some similarities:

e C++ is an extension (superset) of C: most C programs are also C++ programs.
e Basic data types (int, char, float, void) are the same in C and C++
e You declare variables and functions in the same way.

e A program still has main() outside any class, which is the starting point for execution. There may be
other functions outside any class.

e preprocessor directives are inherited from C (#include, etcetera).
Some differences:

e C++ has an additional streamed I/0 facilitiy (cout, cerr etc.). We won’t go there, but keep using
stdio.h

e dynamic memory allocation adds features to make it easier.

e C++ has classes

e C-++ allows the // form of comment (lasts until the end of the currentline).

e struct foo ...; creates a type foo — declarations foo a; and struct foo a; both work.

e You can mix declarations and other statements.

21

Dynamic allocation

In addition to C’s malloc-like functions, and free, C++ has new and delete. These can provide convenient
dynamic allocation. There is no garbage collection.

int *a, *b;

a = new int; // new provides a pointer

xa = 100;
b = new int[*al; // array of 100 ints
b[3] = 7;

delete a; // frees the allocated memory
delete [] b; // weird, eh? frees the 100 ints.
Classes

One early name for C++ is “C with classes” (there are other Cs with classes, e.g. Objective C). The ability
to group data and behaviour (functions) into a class should be familiar from java, and exists in C++. Also,
the ability to inherit behaviour and data from base classes exists in C++. Classes look a lot like C structures
(even including the final semicolon) but

e They can contain functions (not just pointers to functions) that “know” about their data (variables)
e they can hide both data and functions
Here’s a C++ stack class:

class stack

{
public:
void push(int x);
int pop();
int empty(Q);
stack() {size = 0;}
private:
int size;
int a[100];
};

Notice the final semicolon!

The class stack mainly contains declarations of functions except for the constructor, stack(). Conven-
tionally only small functions are implemented inside the class, since each instance of the class will contain
in-line code for functions defined between the left and right braces. Most of the functions are defined in the
namespace of the class:

bool stack::empty()

{

return size == 0;
}
October 30

In order to predict the outcome of processes we usually model them, that is we construct some ideal rep-
resentation that concentrates on the important details and neglects the others. For example, to figure out
when a body in free-fall will hit the ground we construct a model that describes the behaviour of gravity,

22

air resistance, and other important factors but neglect the (probably small) effect that the body’s choice of
clothing might have on their descent.

Sometimes we can apply analytical solutions, for example an equation or system of equations that can
be solved in a few steps, to make predictions. To get information from a system where we lack an analytic
solution we need to simulate or model the system’s components: the entities in the system, the relationships
between them, and events that change the state of the system.

Simulations come in a few varieties. Discrete simulations have entities that take on finitely many states,
continuous simulations allow their entities to range over infinitely many values. Static simulations don’t have
time as a variable, dynamic simulations do have time as a variable. Deterministic simulations apply rules
in the same way each time, stochastic simulations have a random component to their application of some
rules. Here are some examples:

1. Randomized integration: could be discrete or continuous, static, and stochastic (perhaps faster than
the numerical methods learned).

2. Simulate the trajectory of a projectile: continuous, dynamic, stochastic (perhaps easier than solving
all the related equations).

For this course we’ll concentrate on dynamic, discrete, probablistic simulations. We’ll need some way of
keeping track of the simulation time, and generating events at various times. There are a couple of ways of
doing this.

Time-driven simulation

In a time-driven simulation we have a variable recording the current time, which is incremented in fixed
steps. After each increment we check to see which events may happen at the current time point, and handle
those that do. For example, suppose we want to simulate the trajectory of a projectile. At time zero we
assign it an initial position and velocity. At each time step we calculate a new position and velocity using the
forces acting on the projectile. Time-driven simulation is suitable here because there is an event (movement)
that happens at each time step.

How do know when to stop the simulation? We can use either the criterion of time reaching a certain
point, or the model reaching a certain state, or some combination of the two.

Here’s a general algorithm for time-driven simulation:

1. Initialize the system state and simulation time
2. while (simulation is not finished)

(a) Collect statistics about the current state
(b) handle events that occurred between last step and now

(¢) Increment simulation time

November lecture summary

November 6
Event-driven simulation

If events aren’t guaranteed to occur at regular intervals, and we don’t have a good bound on the time step (it
shouldn’t be so small as to make the simulation run too long, nor so large as to make the number of events
unmanageable), then it’s more appropriate to use an event-driven simulation. A typical example might be
simulating a lineup at a bank, where customers don’t arrive at regular time intervals, and may be deterred
by a long lineup.

This approach uses a list of events that occur at various time, and handles them in order of increasing
time. Handling an event may alter the list of later events. The simulation makes time “jump” to the time
of the next event.

23

How do we stop? Again, we can stop when time reaches a certain point, or when the system reaches a
certain state. Here is a generic event-driven algorithm:

1. Initialize system state
2. Initialize event list
3. While (simulation not finished)

(a) Collect statistics from current state
(b) Remove first event from list, handle it

(c) Set time to the time of this event.

How is the list of events managed? It should be ordered by increasing time (a priority heap might be
efficient). We don’t generate all the events in the list at the beginning (this would be analogous to knowing
the entire sequence of states of the simulation at the outset). Instead we initialize the simulation with certain
events, with their associated times. Certain events may be handled by scheduling later events, which are
inserted at the appropriate place in the event list.

As stated above, we could stop when time reaches or exceeds a certain point, or once the system reaches
a certain state (the bank is lined up for two blocks...). Sometimes we want the stopping condition itself to
be randomized: we can schedule a random pseudo-event which doesn’t change the state of the model, but
simply stops the simulation.

Barber simulation

A single-chair barbershop. From when it opens in the morning until it closes, customers arrive at random
times. If the barber is not busy, he serves a customer immediately, otherwise they must wait in a queue
(FIFO order). The time needed to serve each customer is also random.

The entities are:

e Server (idle or busy)

e customer (arrival and service times)
The events:

e customer arrives

e customer departs

The arrival and departure events encapsulate everything we care to know about a customer, so we don’t
need to track customers explicitly.
System state:

e Simulation time (starts at 0)

e event list (starts empty)

e server status (initially idle)

e customer queue (initial value empty)

The first two elements are properly part of the simulation program, rather than the system we’re mod-
elling. The last two are part of the barbershop simulation. There is always a single event list, since it
represents the flow of time and all events end up there. There may be multiple event lists, depending on the
system we’re modelling.

Initialization:

e Schedule the first customer

24

Arrival event:

e If the server is idle, start service immediately (change server status to busy and schedule an end of
service event). Otherwise the customer waits in queue (in some models they may “balk” and decide
they don’t have time to wait).

e Schedule the next customer arrival at random, given the desired distribution (more about this later).
Departure event:

e Change server status to idle

e If the customer queue is not empty, start service on the first customer in the queue (change the server
status back to busy and schedule an end of service event).

Statistics

e Average delay: keep track of how long each customer waits (even if the waiting time is zero). At the
end of the simulation, compute the average waiting time per customer (assuming ;= 1 customer).

e Average server utilization: the fraction of the total time that the server was busy. Add up all the time
the server was busy, divided by the total simulation time.

e Average number of customers in the queue: this could be a weighted sum: 0*(fraction of time the
queue is empty) + 1*(fraction of time the queue has 1 person) + 2*(fraction of time the queue has 2
people) + ...

e To compute all of these statistics, we need to keep track of the following additional quantities during
the simulation (the total simulation time is already stored in the system state): the total number of
customers for the duration of the simulation, the total time spent waiting for all customers, the total
amount of time that the server was busy, and the weighted sum of the number of customers waiting in
the queue.

e At the end of the simulation, the server finishes working the the current request (if any), ignores anyone
in the waiting list, except to record the size of the waiting list. No further statistics about the length
of delay are collected, since this is unknowable (everybody goes home).

October 8

In many simulations we want a value to be calculated “randomly,” that is chosen from some distribution of
values where each particularly choice is unknowable in advance. Since we’re simulating this on a computer
where there has to be some rule for calculating the values, we usually use a pseudo-random sequence of
values that obey our desired distribution of values, and instead of “unknowable” we settle for hard-to-know
in advance.

Some of the distributions we simulate are

uniform: Each value in some range has an equal chance of occurring (for example we expect each number
on a single fair die to occur in 1/6 of the rolls)

normal: Two or more independent events are summed (e.g. two dice), yielding a familiar bell-shaped curve.

exponential: The range of values is infinite, but we determine in advance what the mean (average) value is.
Streetcars may arrive every 10 minutes on average, but this includes cases where five arrive bunched
together plus the cases when equipment failure suspends service for several hours.

As well as these distributions we distinguish discrete distributions (there is a finite set of possible values),
and continuous distributions (infinitely many values along some segment of the real line).
We describe probability that a value, or range of values, will occur by inventing a random variable X,
a probability density function fx(z) indicating the likelihood that X will be z (note the upper/lower case
distinction), setting fx(z) to some value in [0,1], and insisting that the sum of fx(z) for all z is 1. If
== g is impossible, then fx(z) is zero. If X == z is certain, then fx(x) is 1. Most cases are between
these extremes.

25

Discrete distributions

Suppose our random variable X can take only values v1,vs,...,vn. We insist that 0 < fx(v;) <1, and
N
Z fX (UZ) =1.
=1
If each v; is equally likely to occur, then these conditions lead to a uniform distribution with fx(v;) == 1/N.

A binomial distribution expresses how often we expect a particular value to occur out of n events. If fx(e)
= p (the probability that our chosen event occurs once is p), then the probability of exactly k& occurrences
is:

n

) = () - pr

The reasoning is that in a sequence of n events there are nchoosek ways to select exactly k event es, and the
probability of each selection is the product of the ps with the product of the (1 — p)s (the probability that e
doesn’t occur).

This is a discrete normal distribution.

Continuous distributions

Things are slightly less intuitive when our event can be selected from a segment of points on the real line.
For example, I usually tell anyone who cares that I’'m 166 centimeters tall. However, I’'m sure that a precise
enough measure would determine that I'm not exactly 166.000000...cm tall. Adult human heights are
distributed over some interval between 1 meter and 3 meters (to be generous), but the chance that some
particular exact height is achieved is basically zero.

So we change our point of view and talk about the probability that our value falls within some particular
range. We define fx (z) so that its values are always non-negative and its integral from a to b represents the
probability that X takes a value in [a, b]:

b
/ fx (t)dt = probability that X is in [a, b].

From the continuous point of view, the uniform distribution over the interval [a, b] needs an fx whose integral
is 1 and whose value for any two equally-wide subintervals of [a, b] is the same:

1/(b—a) =z € a,b]
0 otherwise

Ix(z) Z{

Suppose you want a distribution that models the distribution of times between events that happen at rate
r (reciprocal of mean time between events), but you have no upper limit on the maximum possible time. A
distribution that works is the exponential distribution:

—rt
fx(t) = {re 20

0 otherwise

Generating a distribution

A subtle point is that fx describes the distribution we want, but it doesn’t directly help create it. Program-
ming languages often provide a way of generating a sequence of pseudo-random integers in the range 0...m
by starting at some integer xg and then continuing using the relation:

Zny1 = (azy + b) mod m.

With a good choice of a, b, and m this will generate a sequence of integers that satisfy some criteria of
randomness, and not repeat any for m steps. If m is chosen fairly large, we can divide by it to scale these

26

values into [0,1) (the half-open interval from zero to 1). But there’s more to do to generate our desired
distributions.

We need a way to associate each number we generate in [0, 1) with a number in our desired distribution.
The first step is to construct the cumulative distribution function Fx(x) which represents the probability
that X < z:

Fx(z) = /_ R

Fx has the nice property that its values are increasing and in the interval [0,1]. If we apply it to our
exponential distribution, we get:

Fx(z) = /Ow re”"tdt = r(e‘rt/(—r))|g =1—e"".

Here’s the picture:

///////// oxpx) —
1-exp(-x) -

0.8 -
0.6 -
04t

02/

0‘ L L L L
0 2 4 6 8 10

Now we can invert Fx(z) — turn the graph sideways! For each y € [0,1) we generate, we can solve
y = 1—e " in order to find the corresponding z. Rearrange the equation and take ln (natural log) of
both sides, and you have z = —In(1 — y)/r. We don’t have to worry about taking In(0), since we rigged
things so that y is never 1. A more straight-forward task is to invert a uniform continuous distribution on
the interval [a,b]. If z € [a,b] the cumulative distribution is Fix(z) = (z — a)/(b — a), so now we solve for
y=(x—a)/(b—a),or z=a+y(b—a).

November 13

Dynamic Programming

You’ve already seen problems that can be reduced to subproblems with the same structure — recursion
comes to mind. A classical sequence whose value is expressed recursively is the Fibonacci sequence:

0 n=>0
Fn)y=<1 n=1
F(n—-1)+F(n—2) otherwise

Given this recursive definition (a recurrence relation), it is very efficient in programmer labour to write down
an algorithm:

int fib(int n)
{
if (n < 2) {
return n;

27

} else {
return fib(n-1) + fib(n-2);
}
}

However, for fairly modest n this algorithm turns out to be inefficient for the computer. Consider £ib(8):
£ib(7) gets called once, £ib(6) gets called twice, ...the complexity ends up being exponential.
A more reasonable way to calculate fib(n) is from the bottom up:

int fib(int n)
{
int *f, answer;
if (n < 2)
return n;
f = new int[n+1];
£[0] = 0;
f[1] = 1;
for (int i = 2; 1 <= n; i++)
f[i] = £[i-1]1 + £[i-2];
answer = f[n];
delete f;
return answer;

}

Even given the new/free operations to allocate and free memory, this is a much better algorithm, being
O(n). Tt is also an example of Dynamic Programming.

Another algorithm that fits the same mold is the Floyd-Warshall all-pairs shortest distance. At the heart
of that algorithm was the following recurrence:

D[i,j, k] = min{D[i,j, k — 1], D[i, k, k — 1] + D[k, j, k — 1]}.

If you were to use recursion to solve this problem, you’d need two recursive calls to evaluate the minimum.
Each of those would require two recursive calls ... and you’d have exponential complexity.

The Dynamic Programming approach would be to start at the bottom: DJi,j, —1] is defined to be the
weight of edge (4,7), and we can easily build up a three-dimensional array starting from these values, and
using the recurrence. The solution presented in our course readings uses a two-dimensional array (saving
space), although the algorithm is still O(n?).

What are the principles that tie these approaches together under the heading Dynamic Programming?
Given a problem that you want to find an optimal solution for:

1. Characterize the optimal subproblem structure.

2. Define an array (table) that contains the value you want to optimize for, plus all the relevant subprob-
lems.

3. Write down a recursive definition for building the array.

4. Compute the solution from known values.

Knapsack problem

Your knapsack (or possibly your back) has the capacity to hold C kilograms (C is a nonnegative integer).
You are presented with a collection of n categories of goodies that are free for the taking, category ¢ items
have weight w; and value v; (weights and values also nonnegative integers). Fill your knapsack so that you
can carry off (C is not exceeded) the maximum value. Since you’re allowed to take more than one item of
the same type, you can express your answer as a list of indices i1, 42,. .., such that w;; +---+w;, < C,
and you maximize v;, + -+ + vj, .

28

Here’s an example you may be able to solve without any high-powered algorithm. Suppose C' = 11,
w1 =3, wy =4, w3 =5, wy =8,and vy =2, v2 =3,v3 =4, vy =5.

Solving this using greedy algorithms (add the most valuable item that fits, etc.) doesn’t yield an optimal
solution. Follow the DP approach to try to identify how an optimal solution is related to optimal solutions
for subproblems.

If 41,...,495_1,% is an optimal solution, then we can at least say that 4;,...,45_; must be an optimal
solution for a knapsack with capacity C' — w;, . This suggests we can define an array V], where V[j] is the
maximum value that can be carried in a knapsack with capacity j. If we can find V[C], then we’re done.
What we already know yields a recurrence:

V[n]:{o n=0

max{V[j — 1], max,,<;{vi + V[j — w;]}} otherwise

If you use the straight-forward approach of writing a recurrence program, you will have an extremely expen-
sive (in running time) algorithm. Instead, compute the values bottom-up as follows (C is as above, v[i] is
v;, and wli] is w;):

V[0l = 0;
for (int j = 1; j <= C; j++) {
VI3l = v[j-11;

for (int i = 0; i < n; i++) {
if (wlil <= j && v[il + V[j-w[ill > V[j1) {
V[j] = v[i] + V[j-w[il];
}

}

Now you know the value of the loot you can carry away in your knapsack, but you still need to work out
the actual composition. One way to do this is by creating an extra array L[j], containing the last choice of
article added to get V[j].

November 15

Wednesday we looked at how to find the highest value that can be packed into a knapsack with capacity C,
n items with weights wy, ..., w,, and values vy, ..., v,. That algorithm told us how find the highest value
we can pack into the knapsack, but now which items to pack. Add an array L[j] (the index of the last item
packed into an optimal packing not exceeding capacity j), and we can track the choices of what fills up an
ideal knapsack:

VL0l = 0;

for (int j = 1; j <= C; j++) {
VIj1l = V[j-11;
L[j]1 = LI[j-11;

for (int i = 0; i < mn; i++) {
if (wlil <= j && v[i] + V[j-w[il] > V[j]1) {
V[j] = v[i] + V[j-w[il];
L[] = i;

}

Now we can work backwards from L[C]. We know we added item with index L[C], and that item had weight
w[L[C]], so the previous item must have been L[C — w[L[C]]], and so on.

29

Matrix chains

Suppose you (or your computer) have to multiply a chain of matrices:
AxBx(CxDxE.

Matrix multiplication of a pair of matrices is well-defined (if it’s defined at all), and for more than two,
multiplication is associative:

((AB)(CD))E) = (A((BC)(DE))).

You get the same answer, either way, but the amount of work (measured in the number of multiplications)
may well differ. Suppose A is a 10 x 100 matrix, B is a 100 x 5 matrix, and C is a 5 x 50 matrix. If we group
the multiplication as ((AB)C'), then the amount of work is proportional to 10 x 100 x 5 + 10 x 5 x 50, or 7500
multiplications. On the other hand, if we grouped the product as (A(BC)) we’d be faced with 100 x 5 x 50
4+ 10 x 100 x 50, or 75000 multiplications — 10 times as many! So, order counts.

How much work is it to check out all the ways of parenthesizing a product? Try it out with just a few
matrices (no more than 10), and you’ll find the number of groupings grows rapidly — it’s proportional to
4™ for n matrices. The exact number of groupings is a challenging thing to calculate, it’s called the Catalan
number.

It’s not practical to check something proportional to 4™ before we even get down to the business of
calculating the matrix product. Let’s look at the structure of the problem. Suppose we (magically) have an
optimal grouping for multiplying n matrices. Examine the last matrix multiplication performed:

((Ar X Ag) (Appr X -+~ An)).

If the entire product is optimal (uses the fewest possible multiplications), then the subproducts (A4; - - - Ag)
and (Ag41 -+ - A,) must also be optimal. Otherwise, if there were a better way to calculate either subproduct,
it would lead to a more efficient grouping to calculate the entire product. So, our Dynamic Programming
solution will keep track of the best ways of calculating subproducts, and combine these into the best ways
of calculating the entire product. We can define the following array, for 1 <i < j < n:

C[i][j] = minimum cost of multiplying A; - - - A;.

Clearly CTi][¢] is zero, for all i, since there is no cost in the “product” of one matrix. If j > 4, then we get
the recurrence relation:
Clilj) = min {CllK + Clb +] + rirksacs}.

... where r;rgp41¢; is the product of the number of rows in matrix ¢, the number of rows in matrix k41, and
the number of columns in matrix j.
November 20

Let’s write the algorithm using the convention that we begin counting from 0, so we consider matrices Ag
through A,,_1, Ao has dimensions sg X s1, A1 has dimensions s; X sa, etc. The most natural approach would
be a recursive function (supposing we have an array with sg, ...sp):

int rec_matrix_product(int i, int j, int *s) {

if (i==3) {
return 0;
} else {

int C = rec_matrix_product(i, i, s) +
rec_matrix_product(i+l, j, s) +
s[il*s[i+1]*s[j+1];

for (int k = i+1; k < j; k++) {

int ¢ = rec_matrix_product(i, k, s) +
rec_matrix_product(k+1, j, s) +

30

s[il*s[k+1]1*s[j+1];
if (c < C) C =c;
}

return C;

}

If we solve the recurrence for the running time of the above code, we find that T'(n) is still exponential,
so we haven’t made any progress from 4™! We need to solve this problem “bottom-up.” If we start along
the diagonal where i == j, the problem is easy, since C[i][¢] is zero. Then we work on the diagonal where
j==1+1, and so on:

for (int i = 0; i < n; i++)
C[il[i] = 0;
for (int len = 1; len < n; len++) {
for (int i = 0; i < n - len; i++) {
int j = i + len;
C[il[j]1 = C[i]1[i] + C[i+1]1[j] + s[ilxs[i+1]*s[j+1];
for (int k = i+1; k < j; k++) {
if (C[il[k] + C[k+1]1[j] + s[il*s[k+1]*s[j+1] < C[iI1[j1)
C[il[j]1 = Clil[k] + C[k+1]1[j] + s[il*s[k+1]1*s[j+1];

Now we know the cost of a best grouping, but we need to recover grouping itself. You could work
backwards from the optimal cost, and find two subcosts that would yield that number, but it’s probably
more straightforward just to keep track of the best groupings at each step:

for (int i = 0; i < n; i++) {
C[il[i] = 0;
B[il[i] = i;
}
for (int len = 1; len < n; len++) {
for (int i = 0; i < n-len; i++) {
int j = i + len;
CLil[3] = Clil[il + CLi+11[j] + s[il*s[i+11*s[j+1];
B[il[j] = i;
for (int k = i+1l; k < j; k++) {
if (C[i][k] + CLk+1][j] + s[il*s[k+1]*s[j+1] < CL[i][j1) {
C[i]1[3] C[i][k] + C[k+11[j]1 + s[il*s[k+1]1*s[j+1];
BLi1[j] = k;
}

Optimal binary search trees

Suppose you have data organized into a BST by keys. It seems wise to keep the most frequently accessed
keys near the root, and the rarely accessed keys further down. In fact, you can quantify this wisdom by
decreeing that it takes one step to get to the root, two steps to get to its children, etc., and (if you know the
frequency, say f; of key K;) you can calculate the cost of accessing K; as f; x K;. If you sum this up over
all f; x K;, you get the weighted internal path length of your BST. Inspection shows that this may be
different for two BSTs with identical keys, so structure matters.

31

Suppose you're given an ordered list of keys, K1 < Ko, ..., K,, and each key has an associated frequency
fi,--+y fn- We want to build a BST that minimizes the work we expect to do accessing each key. Suppose
we know that a BST with a minimal weighted internal path has root K, then it follows that its left subtree
(with keys Ki,...,K;_1) and its right subtree (with keys Kj41,...,K},) must also have minimal weighted
internal path length. This leads to the recurrence, where C[i][j] represents the lowest possible cost of a BST
with keys K, ..., K, and w(i, j, k) is the cost added by making the node with key K the root for subtrees
Ki; .- .,Kj,]_ and Kj+1, .- .,Kk.

0 kE<i
Cli)[k] = 4 fi k==i
mini < j < k{C[i][j — 1] + C[j + 1][k] + w(4,5,k)} otherwise

Notice that when we make the node with key Kj; the root of subtrees with nodes K;,...,K;_1 and
Kjti1,...,Kg, we increase all the paths to nodes in the subtrees by 1, so we add f; +--- + f;—1 and
fj+1 +---+ fr to our cost, plus the cost (f;) of getting to the new root note. That gives us a formula for
w(%, j, k) (which, curiously, doesn’t depend on j).

You should be able to modify the code for matrix multiplication to find an optimal BST, using a triply-
nested loop (exercise). Some care is needed in manipulating the indices. This problem is magnified in
Assignment 4, where we re-tool the indices in the pursuit of generic code.

November 22

Current genetics and biochemistry have given prominence to the problem of quickly identifying patterns in
sequences of amino acids and other biological objects. Clearly you’d want algorithms for rapidly match-
ing strings and substrings, but other subtler patterns are important. Consider the problem of sequences,
subsequences, and supersequences (this example if from Algorithms by Cormen, Leiserson, and Rivest).

We can consider strings to be sequences, for example ”ACCTGAA” can be thought of as a sequence of
characters with the first character ’A’, the second character 'C’, the fifth character ’G’, and so on (I'm using
a 1-origin instead of 0-origin for a reason that will become clear in a moment).

Suppose string X = "ACCTGAA" and string Y = "ATA". Then we say that Y is a subsequence of X (or
X is a supersequence of Y), since we can produce Y by deleting characters 2,3, 5, and 7 from X (there’s
another deletion that also works). Clearly, by this rule, the empty sequence "" is a subsequence of any other
sequence.

Given two sequences, X = (z1,%2,...,Zm), and Y = (y1,y2,...,Yn), what is a longest common subse-
quence of X and Y? Brute force would mean we would list every subsequence of X — each element is either
in or out of each subsequence, leading to 2™ possibilities — and then check whether each is a subsequence
of Y. Exponential algorithms get old really fast.

However, the problem has an optimal-substructure property. Define X;, the ith prefix of X, to be the
sequence (x1,.-.,2; (the special case Xg is the empty sequence — that’s the reason for the 1-origin). Now
we can make the following observation about any Longest Common Subsequence (LCS) Z = (zq,...,2z) of
X ={x1,...,xm) and Y = (y1,...,yn). If £, = yp, then zx, = z,,, = y, and Zj_; is an LCS of X,,,_1 and
Yoo1. 2 # y, and 2z # T, then Z is an LCS of X, and Y,,. Symmetrically, if x,, # y, and zx # yn,
then Z is an LCS of X,,, and Y,,,_1.

Define a two-dimensional array c[i][j] == the length of an LCS of X; and Y;. You have the following
recursive formula:

0 i==00Rj==0
cilfl = Qi —1][j -1 +1 i,7 > 0AND z; ==y; -
max(c[i][j — 1], ¢c[i — 1][j] 4, > 0 AND z; # y;
The recursive definition immediately gives us the row ¢[0][j], and column ¢[¢][0], for 0 <i <mand 0 < j < n.
We then proceed from top-to-bottom and left-to-right to fill in ¢[i][j]. You can write (exercise) a doubly-

nested loop that iterates over ¢ and j and finds, simultaneously, the length of an LCS of X; and Y; and the
last character of such an LCS. This has complexity O(mn) — much nicer than exponential.

32

You can also pose (and solve) the problem of a shortest common supersequence of X and Y, in an
analogous way.

A weirder (to me) result comes from asking: in how many distinct waysis Y a subsequence of X. In other
words, how many distinct deletions of letters from X yield Y. In our previous example, X = "ACCTGAA",
and Y = "ATA", we’d find that Y occurs as a subsequence of Y twice. The empty sequence occurs exactly
once as a subsequence of any other sequence.

Counting these subsequence is clearly not possible. Suppose X is a sequence of 64 ’A’s and Y is a
sequence of 32 ’A’s. Then Y occurs as a subsequence of X in as many ways as you can choose 32 ’A’s to
delete: 64-choose-32 — greater than 232.

To make this concrete, suppose you apply to legally change your name to a sequence of characters taken
from the set {A4,C,T,G}. You quietly obtain DNA samples from friends and acquaintances. Now you count
the number of times your new name (let’s call it TACCAG) occurs in other people’s DNA, and you bill them
a dollar for each use of your intellectual property. You might be fabulously rich, but you’re faced with the
prospect of an exponential algorithm to count the number of licenses to charge for.

But, optimal substructure comes to the rescue. If we denote your new name as X, your friend’s DNA
sequence as Y, and C[i][j] as the number of times X; occurs as a subsequence of Y}, we get the following
cases

1. If 4 == 0, then C[i][j] is 1, since the empty sequence occurs exactly once as a subsequence of any
sequence.

2. If i > j, then CTi][j] is 0, since a sequence can’t be a subsequence of a shorter sequence.
3. If j >i >0 AND X; #Y], then C[i][j] is the same as C[i][j — 1].

4. If j > i > 0 AND X; =Yj, then C[i][j] = C[i][j — 1] + C[i — 1][j — 1], since you count the number
times X; occurs as a subsequence of Y;_; (without using y;), plus the number of ways X;_; occurs as
a subsequence of Y;_1, and then match z; with y;.

This also leads to a O(nm) algorithm. Start sending those bills today!

November 27

A reasonable question might be whether there is some easier way to calculate the optimal grouping of
matrices (optimal BST structure, etc.) than the Dynamic Programming solution I presented.

In particular, a class of algorithms called greedy algorithms attempt to build up a solution to an opti-
mization question one step at a time, never reconsidering a step once it has been taking (perhaps myopic
algorithms would be a better name than greedy algorithms).

For example, in the case of grouping matrices for optimal multiplication, you might wonder whether you
would get the optimal grouping by always choosing the top-level parenthesization so as to minimize (or,
alternatively, maximize) the number of multiplications in the last step.

In the first case, consider matrices Ag, with dimensions 2 x 3, A;, with dimensions 3 x 4, and A,, with
dimensions 4 x 3. If we group them so that the last matrix multiplication is minimal, we get:

(Ao(A14))
...for a total of 54 multiplications. But the grouping
((AoA1)As)

...yields 48 multiplications. So that greedy algorithms doesn’t work.
The opposite approach (maximize the number of multiplications at the top level) runs into trouble with
Ag and A; having the same dimensions as previously, but As having dimensions 4 x 2. The greedy criterion
leads to
((AgAr)4s)

33

... with 40 multiplications, versus 36 multiplications if we group the matrices:
(Ao(A1A4,)).

So greediness doesn’t work so far for matrix grouping. How about BST structure? A likely choice is to
place the most frequent keys as high as possible, but that doesn’t seem to work for key ’A’ has frequency 3,
key ’B’ has frequency 2, and key ’C’ has frequency 2.

Of course, these counterexamples don’t prove that there doesn’t exist any greedy algorithm for solving
these problems, I’ve just dealt with the first ones that come to mind.

C strings

I present this material out-of-sequence since we needed some of the earlier topics in order to make assignments
do-able. However, a few comments on how to treat strings in C is needed.
When you’re finished, you should be able to say what the following code does, and why:

char*s="char*s=Y,c)s¥c;main() {printf(s,34,s,34);}";main() {printf(s,34,s,34);}

Can you do something similar without the magic number 347

C doesn’t truly have strings, it has arrays of char terminated by the special zero character >\0’. Once
you’ve left the scope where an array of char was declared, C can’t distinguish between char s[5] and char
*s,

Here are a few C string functions you should become familiar with (see K.N. King for details). You need
stdio.h’ for the first two, and string.h for the others.

printf You’ve already used this. The first argument is a (possibly) formatted string. The remaining ar-
guments are addresses of objects, that are inserted into the formatted string wherever a conversion
specifier (%-something) is found.

scanf Use this to read space-delimited strings from standard in. It will read to the next whitespace or the
string delimited ’\0°’, so be sure you have enough room to hold expected input:

#include <stdio.h>

int main()

{
char s1[80+1], *s2;
scanf ("%80s", s1); /* okay */
scanf ("%80s", s2); /* not okay */
printf ("Strings %s, %s\n", s1, s2);
return O;

}

strlen(char *s) This returns the number of characters before the first occurrence of ’\0’ at address s.

strcpy(char *s1, const char *s2) Copy characters from s2 to s1. It copies up to the first *\0’ in s2,
and has no way of checking whether there is enough room in s1 to accommodate these. User beware.
Behaviour is undefined if s1 and s2 overlap.

strcmp(char *s1, char *s2) The comparison s1 == s2 doesn’t work (you’re comparing pointers). What
you really want to know is whether the characters preceding the first \0’ in s1 are the same as
the corresponding characters in s2. This function tells you more: is s1 greater than (positive value
returned), equal to (0 returned), or less than (negative value returned) s2 in alphabetical order.

34

November 29

Until this point you’ve used scanf and printf from <stdio.h>. This works well when you have one standard
input and one standard output, and can be adapted to reading and/or writing from files where needed, using
a unix shell’s IO redirection.

$ prog <infile /* redirect stdin to infile */
$ prog >outfile /* redirect stdout to outfile */
$ prog <infile >outfile /* do both */

Inevitably you’ll want more. You may want to read or write to more than one file, or perhaps put error
messages somewhere different than other output.

We’re assuming that the files you're interested in are streams of bytes to be interpreted as characters,
broken into lines by an OS-specific end-of-line character(s) (in CSC209 you’ll discuss binary files). You can
declare a file pointer, and then open a file attached to that pointer for reading:

FILE *fp;

if ((fp = fopen("/path/to/my/file", "r")) == NULL) {
/* file can’t be opened --- do something */;

};

The r indicates that data will be read from this file, but not written to it. The value of fp should be tested,
since it will be NULL if the file could not be opened. You may also open a file for writing with the argument
w (clobbers previous instances of this file, if it exists, creates it otherwise), or appending with a (appends
to the end of a file, if it exists, creates it otherwise). There options to combine reading with writing or
appending, but that’s too exciting for today’s lecture.

You might also want to change which file an already-open stream is attached to. The file-pointers stdin,
stdout, and stderr are open by default, and your program can redirect them to named files:

if (freopen("/path/to/myerror", "w", stderr) == NULL) A
/* error, handle it */;

}

If this was successful, any output to stderr is sent to myerror.

Before doing anything useful with a file pointer, you should know how to close a file that’s attached to a
file pointer. This operation ensures that any data buffered for the file is flushed to it, and satisfies any OS
constraints on how many files may be open simultaneously:

fclose (fp);

With file pointers, you can write output to specific streams. fprintf behaves like printf, except you
specify which file is being written to (printf writes to stdout by default):

fprintf (fp, "The number is: %d\n", num);
fprintf (stderr, "The number is not: %d\n", num-1);
fprintf (stdout, "The number could be: %d\n", num * num);

The first statement writes to whatever stream is attached to fp, the second to standard error. The third is
identical to printf (without the file-pointer argument).
Symmetrically, there is fscanf to read space-delimited strings from a file:

while(fscanf (fp, "%d", &i) != EOF) {
/* do something with i */;

}

Since scanf returns the number of of items matched and assigned to variables, the loop above could have
replaced != EQOF with == 1.
If you want to read in lines, use fgets NOT gets:

35

char *buf[80+1];
while (fgets(buf, sizeof(buf), fp) != EOF) {
/* process buf */;

}

This stores either the first sizeof (buf) - 1 characters, or up to (and including) the first newline from the
stream attached to fp in buf.

You may need to get your input character-by-character (if you can’t get what you want from scanf or
fscanf):

char ch;

while ((ch = getc(fp)) !'= EOF) {
/* do something with ch */;

}

There is (nearly identically) fgetc, which has the advantage/disadvantage of being defined as a function
(getc is usually a macro).

Here’s a fragment of code to merge two files containing sorted lists of integers (represented as strings)
(this may well be the starting point for either next Monday’s tutorial or next Wednesday’s tutorial):

FILE *fp0, *fpil;
int x, y;
int eof0, eofl;

/* open fp0 and fpl for reading ... */

eof(= fscanf(fp0, "%d", &x);
eofl fscanf (fpl, "%d", &y);
while (eofQ !'= EOF && eofl != EOF) {
if (x <y) {
printf ("%d\n", x);
eof(Q = fscanf(fp0, "%d", &x);
} else {
printf ("%d\n", y);
eofl = fscanf(fpl, "%d", &y);

}
}
while (eofQ != EOF) {
printf ("%d\n", x);
eof0 = fscanf (fp0, "%d", &x);
}
while (eofl != EOF) {
printf ("%d\n", y);
eofl = fscanf(fpl, "%d", &y);

December lecture
December 6
Here are some things I’ve been asked to review.

e How do we create dynamic arrays of dimension two or higher in C/C++7?

There are two very distinct approaches. In the FAQ for A2 you were shown how to manipulate a
one-dimensional array of size n*n as a two-dimensional array. This approach has the advantage that it

36

uses fewer calls to malloc (or new), but it leaves the programmer with the responsibility for working
out the array indexing arithmetic — A[i][j] is represented as A[i*n +j]. This becomes even more
detailed as you extend to higher dimensions (you might want to experiment with how you’d created a
three-dimensional dynamic array).

A different approach is to make your two-dimensional array an array of pointers. This involves more
calls to malloc or new, but it may seem more natural to the programmer, and extends simply to higher
dimensions. It also allows you to have rows of different lengths, which might be suitable for, say,
Pascal’s Triangle or an array of strings (i.e., a two-dimensional array of char). Here’s some example
code:

int **buildTable(int n)
{
int **table = new int*[n];
for (int i = 0; i < n; i++) {
table[i] = new int[n];
for (int j = 0; j < mn; j++)
table[i] [j] = 7;
}

return table;

int **Pascal(int n)

int **table = new int*[n];
for (int i = 0; i < n; i++) {
table[i] = new int[i+1]; /* row i has i+1 elements */
table[i] [0] = 1;
table[i] [i] = 1;
for (int j = 1; j < i; j++)
table[i][j] = table[i-1]1[j-1] + table[i-11[j];
}

return table;

int *buildTable2(int n)

int *table = new int[n*n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
table[i*n + j] = 7;
}

return table;

int main()

int **p = Pascal(b);
for (int i = 0; i < 5; i++) {
for (int j = 0; j < i+1; j++)
printf ("%d\t", p[i1[j1);
printf ("\n");

37

return 0;

}

e If class B is derived from class A and has a member function with the same name, which function gets
called, and when.

It depends. A function of the same name in the derived class hides the function in the base class, even
if the signatures (e.g. parameter list) differ. You can refer explicitly to the base classes version by using

: (the namespace operator). A reference to the base class will look for a match only there, unless
you modify the function with virtual. Here is some code that illustrates some of this behaviour (you
should experiment with examples of your own):

#include <stdio.h>

class A {
public:
void funci(int i);
virtual void func2(int i);

};
void A::funcl(int i)
{
printf ("funcl in A\n");
}
void A::func2(int i)
{
printf ("func2 in A\n");
}

class B : public A {

public:
void funcl(int i, int j);
void func2(int i);

};
void B::funcl(int i, int j)
{

printf ("funcl in B\n");
}
void B::func2(int i)
{

printf ("func2 in B\n");
}
int main()
{

A a, *ap;

B b, *bp;

a.funcl1(1);
b.func1(1,2);
/* b.func(1l) won’t work--- no matching signature */

38

b.A::funcli(l);

a =b;

a.funcl1(1);

/* a.func1(1,2); can’t find this signature in A */
ap = &b;

bp = &b;

ap->funci(1);

/* ap—>func1(1,2); can’t find this signature in A */
ap—->func2(1);

a.func2(1); /* calls base class version */

/* bp=>funcl1(1); can’t find this signature in B */
bp->func1(1,2);

return O;

39

