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told what it needs to know, and expected to infer 
the rest.
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representation and reasoning. Assuming some 
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Foreword to the Second Edition

This book is the second edition of one with the same name and authors published by MIT
Press in 2000. Both editions have exactly the same focus: the concept of knowledge as it
applies to an agent that represents what it knows in a symbolic knowledge base consisting
of formulas of the first-order predicate calculus, and that reasons from this knowledge base
using logic and introspection.

The book is divided into two parts: Part I, Chapters 1 to 8, presents the basics of
a dialect of the predicate calculus augmented with epistemic operators for knowing and
(what is called) only-knowing; Part II, Chapters 9 to 14, is a collection of independent
chapters that consider various research topics relating to Part I.

In this new edition of the book, Part I is the same except for the correction of a few
small errors. Part II, however, has been rewritten to take into account the research on these
topics by us and our colleagues over the last twenty years. The order of chapters 9 and 10
has been switched, but the main changes have to do with chapters 11 to 14:
• Chapter 11 is concerned with default reasoning. A knowledge base is now considered

to contain a predicate calculus component as before, but also a separate collection of
default rules. Three forms of default reasoning are considered, due to Robert Moore,
Kurt Konolige, and Ray Reiter (whose account is the most studied of the three). These
modes of default reasoning are characterized semantically in terms of only-knowing.
• Chapter 12 is the first of two chapters that explore what can be done to make the

reasoning required of an agent computationally tractable. In this chapter, this is done
by restricting the knowledge base to predicate calculus formulas of a certain form.
The emphasis in the chapter is on keeping the representation language as expressive as
possible while preserving the tractability of the required logical reasoning.
• Chapter 13 is perhaps the most demanding chapter in the book. Again the goal is

to keep the reasoning computationally tractable, but here the knowledge base is once
again allowed to use arbitrary predicate calculus formulas. Tractability is ensured by
defining a new, more complex model of knowledge that requires calculating some but
not all the logical consequences of the knowledge base.
• Chapter 14 deals with reasoning about a dynamic world. A knowledge base now con-

tains a predicate calculus component as before to characterize initial knowledge of the
world, but also a separate collection of formulas characterizing how the world changes
as the result of actions available to the agent, as well as how knowledge of the world
changes as the result of sensing operations available to the agent.

As in the previous edition, each of the chapters of Part II end with bibliographic notes and
suggestions for future research.

Hector Levesque and Gerhard Lakemeyer
March 2022





Preface

The idea that defines the very heart of “traditional” Artificial Intelligence (AI) is due to
John McCarthy: his imagined ADVICE-TAKER was a system that would decide how to
act (in part) by running formal reasoning procedures over a body of explicitly represented
knowledge, a knowledge base. The system would not so much be programmed for specific
tasks as told what it needed to know, and expected to infer the rest somehow. Knowledge
and advice would be given declaratively, allowing the system to operate in an undirected
manner, choosing what pieces of knowledge to apply when they appeared situationally
appropriate. This vision contrasts sharply with that of the traditional programmed com-
puter system, where what information is needed and when is anticipated in advance, and
embedded directly into the control structure of the program.

This is a book about the logic of such knowledge bases, in two distinct but related
senses. On the one hand, a knowledge base is a collection of sentences in a representation
language that entails a certain picture of the world represented. On the other hand, having
a knowledge base entails being in a certain state of knowledge where a number of other
epistemic properties hold. One of the principal aims of this book is to develop a detailed
account of the relationship between symbolic representations of knowledge and abstract
states of knowledge.

This book is intended for graduate students and researchers in AI, database manage-
ment, logic, or philosophy interested in exploring in depth the foundations of knowledge,
knowledge bases, knowledge-based systems, and knowledge representation and reason-
ing. The exploration here is a mathematical one, and we assume some familiarity with
first-order predicate logic (and for motivation at least, some experience in AI).

The book presents a new mathematical model of knowledge that is not only quite
general and expressive (including but going well beyond full first-order logic), but that is
much more workable in practice than other models that have been proposed in the past. A
reader can expect to learn from this book a style of semantic argument and formal anal-
ysis that would have been quite cumbersome, or even outside the practical reach of other
approaches.

From a computer science point of view, the book also develops a new way of specifying
what a knowledge representation system is supposed to do in a way that does not make
assumptions about how it should do it. The reader will learn how to treat a knowledge base
like an abstract data type, completely specified in an abstract way by the knowledge-level
operations defined over it.

The book is divided into two sections: Part I, consisting of Chapters 1 to 8, covers
the basics; Part II, consisting of Chapters 9 to 14, considers a number of more-or-less
independent research topics and directions. (The contents of these chapters are described
at the end of Chapter 1.) The material in the book has been used in graduate level courses
at the authors’ institutions in Canada and Germany. In one semester, it should be possible



xviii Preface

to cover all of Part I and at least some of the advanced chapters of Part II. Exercises and
bibliographic notes are included at the end of each chapter. Suggestions for further research
are made at the end of the chapters of Part II. An index of the important technical terms,
whose first use is underlined in the text, appears at the end of the book. Comments and
corrections are most welcome and can be sent to the authors at

hector@cs.toronto.edu

gerhard@cs.rwth-aachen.de.

Although every effort has been made to keep the number of errors small, this book is
offered as is, with no warranty expressed or implied.
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1 Introduction

In a book about the logical foundations of knowledge bases, it is probably a good idea to
review if only briefly how concepts like knowledge, representation, reasoning, knowledge
bases, and so on are understood informally within Artificial Intelligence (AI), and why so
many researchers feel that these notions are important to the AI enterprise.

1.1 Knowledge

Much of AI does indeed seem to be concerned with knowledge. There is knowledge rep-
resentation, knowledge acquisition, knowledge engineering, knowledge bases and knowl-
edge-based systems of various sorts. In the early eighties, during the heyday of commercial
AI, there was even a slogan “Knowledge is power” used in advertisements. So what exactly
is knowledge that people in AI should care so much about it? This is surely a philosoph-
ical issue, and the purpose of this chapter is not to cover in any detail what philosophers,
logicians, and computer scientists have said about knowledge over the years, but only to
glance at some of the issues involved and especially their bearings on AI.

1.1.1 Propositions

To get a rough sense of what knowledge is supposed to be, at least outside of AI, it is useful
to look at how we talk about it informally. First, observe that when we say something like
“John knows that . . . ,” we fill in the blank with a simple declarative sentence. So we
might say that “John knows that Mary will come to the party” or that “John knows that
dinosaurs were warm blooded.” This suggests that, among other things, knowledge is a
relation between a knower (like John) and a proposition, that is, the idea expressed by a
simple declarative sentence (like “Mary will come to the party”).

Part of the mystery surrounding knowledge is due to the abstract nature of propositions.
What can we say about them? As far as we are concerned, what matters about propositions
is that they are abstract entities that can be true or false, right or wrong.1 When we say
that “John knows that p,” we can just as well say that “John knows that it is true that p.”
Either way, to say that somebody knows something is to say that somebody has formed a
judgement of some sort, and has come to realize that the world is one way and not another.
In talking about this judgement, we use propositions to classify the two cases.

1 Strictly speaking, we might want to say that the sentences expressing the proposition are true or false, and
that the propositions themselves are either factual or non-factual. Further, because of linguistic features such as
indexicals (that is, words like “me” and “yesterday”), we more accurately say that it is actual tokens of sentences
or their uses in contexts that are true or false, not the sentences themselves.
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A similar story can be told about a sentence like “John hopes that Mary will come to
the party.” The same proposition is involved, but the relationship John has to it is different.
Verbs like “knows,” “hopes,” “regrets,” “fears,” and “doubts” all denote propositional atti-
tudes, relationships between agents and propositions. In all cases, what matters about the
proposition is its truth: if John hopes that Mary will come to the party, then John is hoping
that the world is one way and not another, as classified by the proposition.

Of course, there are sentences involving knowledge that do not mention a proposition.
When we say “John knows who Mary is taking to the party,” or “John knows how to get
there,” we can at least imagine the implicit propositions: “John knows that Mary is taking
so-and-so to the party,” or “John knows that to get to the party, you go two blocks past
Main Street, turn left,” and so on. On the other hand, when we say that John has a skill as
in “John knows how to play piano,” or a deep understanding of someone or something as
in “John knows Bill well,” it is not so clear that any useful proposition is involved. We will
have nothing further to say about this latter form of knowledge in the book.

1.1.2 Belief

A related notion that we are concerned about, however, is the concept of belief. The sen-
tence “John believes that p” is clearly related to “John knows that p.” We use the former
when we do not wish to claim that John’s judgement about the world is necessarily accu-
rate or held for appropriate reasons. We sometimes use it when we feel that John might not
be completely convinced. In fact, we have a full range of propositional attitudes, expressed
by sentences like “John is absolutely certain that p,” “John is confident that p,” “John is
of the opinion that p,” “John suspects that p,” and so on, that differ only in the level of
conviction they attribute. For now, we will not distinguish among any of them.2 What
matters is that they all share with knowledge a very basic idea: John takes the world to be
one way and not another.

So when we talk about knowledge or any other propositional attitude, we are implicitly
imagining a number of different ways the world could be. In some of these, Mary comes
to the party; in others, she does not. When we say that John knows or believes or suspects
that Mary will come to the party, we are saying that John takes it (with varying degrees of
conviction) that those where Mary does not come to the party are fantasy only; they do not
correspond to reality.

In this very abstract and informal picture, we can already see emerging two very differ-
ent but related views of knowledge or belief. First, we can think of knowledge (or belief)
as a collection of propositions held by an agent to be true. Second, we can think in terms

2 One way to understand (subjective) probability theory is as an attempt to deal in a principled way with these
levels of conviction as numeric degrees of belief. This is the last we will say on this subject in the book.
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different possible ways the world could be, and knowledge (or belief) as a classification of
these into two groups, those that are considered incorrect, and those that are candidates for
the way the world really is.

1.1.3 Representation

The interest of AI in knowledge is obviously that we want to design and build systems that
know a lot about their world, enough, in fact, that they do not act unintelligently.3 But
there is more to it. Any system, AI-based or not, can be said to have knowledge about its
world. Any Java compiler, for example, knows a lot about the details of the Java language.
There’s even the joke about a thermos “knowing” whether the liquid it contains is hot or
cold, and making sure it preserves the correct one. This idea of attributing knowledge to
a more-or-less complex system (or person) is what the philosopher Dennett calls “taking
the intentional stance.” But when people in AI talk about knowledge bases, knowledge
engineering and so on, they mean more than this. They have in mind a system that not
only knows a lot in the above sense, but also a system that does what it does using a
representation of that knowledge.

The concept of representation is no doubt as philosophically problematic as that of
knowledge. Very roughly speaking, representation is a relationship between two domains
where the first is meant to “stand for” or take the place of the second. Usually, the first
domain, the representer, is more concrete, immediate, or accessible in some way than the
second. The type of representer that we will be most concerned with here is that of a formal
symbol, that is, a character or group of them taken from some predetermined alphabet. The
digit “7,” for example, stands for the number 7, as does the group of letters “VII,” and in
other contexts, the words “sept,” “sieben,” and “shichi.” As with all representation, it is
assumed to be easier to deal with symbols (recognize them, distinguish them from each
other, display them etc.) than with what the symbols represent. In some cases, a word like
“John” might stand for something quite concrete; but many words, like “love” or “truth,”
stand for abstractions.

Of special concern to us is when a group of formal symbols stands for a proposition:
“John loves Mary” stands for the proposition that John loves Mary. Again, the symbolic
English sentence is concrete: it has distinguishable parts involving the 3 words, for ex-
ample, and a recognizable syntax. The proposition, on the other hand, is abstract: it is
something like a classification of the ways the world can be into two groups: those where
John loves Mary, and those where he does not.

Knowledge Representation, then, is this: it is the field of study within AI concerned

3 What we call “commonsense” clearly involves considerable knowledge of a variety of sorts, at least in the
sense of being able to form a judgement about different ways the world could be.
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with using formal symbols to represent a collection of propositions believed by some pu-
tative agent. As we will see however, we would not want to insist that there be symbols to
represent each of the propositions believed by the agent. There may very well be an infi-
nite number of propositions believed, only a finite number of which are ever represented.
It will be the role of reasoning to bridge the gap between what is represented and the full
set of propositions believed.

1.1.4 Reasoning

So what is reasoning? In general, it is the formal manipulation of the symbols representing
a collection of believed propositions to produce representations of new ones. It is here
that we use the fact that symbols are more accessible than the propositions they represent:
they must be concrete enough that we can manipulate them (move them around, take them
apart, copy them, string them together) in such a way as to construct representations of
new propositions.

The analogy here is with arithmetic. We can think of binary addition as being a cer-
tain formal manipulation: we start with symbols like “1011” and “10,” for instance, and
end up with “1101.” The manipulation here is addition since the final symbol represents
the sum of the numbers represented by the initial ones. Reasoning is similar: we might
start with the sentences “John loves Mary” and “Mary is coming to the party,” and after
a certain amount of manipulation produce the sentence “Someone John loves is coming
to the party.” We would call this form of reasoning logical inference because the final
sentence represents a logical entailment of the propositions represented by the initial ones.
According to this view (first put forward, incidentally, by the philosopher Leibniz in the
17th century), reasoning is a form of calculation, not unlike arithmetic, but over symbols
standing for propositions rather than numbers.

1.2 Why knowledge representation and reasoning?

Let’s talk motivation: why do people in AI who want their systems to know a lot, also want
their systems to represent that knowledge symbolically? The intentional stance above says
nothing about what is or is not represented within a system. We can say that a system
knows that p without claiming that there is anything represented within the system corre-
sponding to that proposition. The hypothesis underlying much (but not all) of the work in
AI, however, is that we want to construct systems that do contain symbolic representations
with two important properties. First is that we (from the outside) can understand them as
standing for propositions. Second is that the system is designed to behave the way that it
does because of these symbolic representations. This is what Brian Smith has called the
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Knowledge Representation Hypothesis:

Any mechanically embodied intelligent process will be comprised of structural
ingredients that a) we as external observers naturally take to represent a proposi-
tional account of the knowledge that the overall process exhibits, and b) indepen-
dent of such external semantic attribution, play a formal but causal and essential
role in engendering the behaviour that manifests that knowledge.

In other words, the Knowledge Representation Hypothesis is that we will want to construct
systems for which the intentional stance is grounded by design in symbolic representations.
A system of this sort is called a knowledge-based system and the symbolic representation
involved its knowledge base (or KB).

1.2.1 Knowledge-based systems

To see what a knowledge-based system amounts to, it is helpful to look at two very simple
Prolog programs with identical behaviour.4 The first is:

printColour(snow) :- !, write("It’s white.").

printColour(grass) :- !, write("It’s green.").

printColour(sky) :- !, write("It’s yellow.").

printColour(X) :- write("Beats me.").

The second is:

printColour(X) :- colour(X,Y), !,

write("It’s "), write(Y), write(".").

printColour(X) :- write("Beats me.").

colour(snow,white).

colour(sky,yellow).

colour(X,Y) :- madeof(X,Z), colour(Z,Y).

madeof(grass,vegetation).

colour(vegetation,green).

Observe that both programs are able to print out the colour of various items (getting the
sky wrong, as it turns out). Taking an intentional stance, both might be said to “know” that
the colour of snow is white. The crucial point, however, is that only the second program is
designed according to the Knowledge Representation Hypothesis.

Consider the clause colour(snow,white), for example. This is a symbolic structure
that we can understand as representing the proposition that snow is white, and moreover,

4 No further knowledge of Prolog is assumed beyond this motivating example.
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we know, by virtue of knowing how the Prolog interpreter works, that the system prints out
the appropriate colour of snow precisely because it bumps into this clause at just the right
time. Remove the clause and the system would no longer do so.

There is no such clause in the first program. The one that comes closest is the first
clause of the program which says what to print when asked about snow. But we would
be hard-pressed to say that this clause literally represents a belief, except perhaps a belief
about what ought to be written.

So what makes a system knowledge-based, as far as we are concerned, is not the use
of a logical formalism (like Prolog), or the fact that it is complex enough to merit an
intentional description involving knowledge, or the fact that what it believes is true; rather
it is the presence of a KB, a collection of symbolic structures representing what it believes
and reasons with during the operation of the system.

1.2.2 Why knowledge representation?

So an obvious question arises when we start thinking about the two Prolog programs of the
previous section: what advantage, if any, does the knowledge-based one have? Would it
not be better to “compile out” the KB and distribute this knowledge to the procedures that
need it, as we did in the first program? The performance of the system would certainly be
better. It can only slow a system down to have to look up facts in a KB and reason with
them at runtime in order to decide what actions to take. Indeed advocates within AI of
so-called “procedural knowledge” take pretty much this point of view.

When we think about the various skills we have, such as riding a bicycle or playing
a piano, it certainly feels like we do not reason about the various actions to take (shifting
our weight or moving our fingers); it seems much more like we just know what to do, and
do it. In fact, if we try to think about what we are doing, we end up making a mess of it.
Perhaps (the argument goes) this applies to most of our activities, making a meal, getting
a job, staying alive, and so on.

Of course, when we first learn these skills, the case is not so clear: it seems like we need
to think deliberately about what we are doing, even riding a bicycle. The philosopher Hu-
bert Dreyfus first observed this paradox of “expert systems.” These systems are claimed to
be superior precisely because they are knowledge-based, that is, they reason over explicitly
represented knowledge. But novices are the ones who think and reason, claims Dreyfus.
Experts do not; they learn to recognize and to react. The difference between a chess master
and a chess novice is that the novice needs to figure out what is happening and what to
do, but the master just “sees” it. For this reason (among others), Dreyfus believes that the
development of knowledge-based systems is completely wrong-headed, if it is attempting
to duplicate human-level expertise.

So why even consider knowledge-based systems? Unfortunately, no definitive answer
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can yet be given. We suspect, however, that the answer will emerge in our desire to build
systems that deal with a set of tasks that is open-ended. For any fixed set of tasks, it
might work to “compile out” what the system needs to know; but if the set of tasks is not
determined in advance, the strategy will not work. The ability to make behaviour depend
on explicitly represented knowledge seems to pay off when we cannot specify in advance
how that knowledge will ever be used.

The best example of this, perhaps, is what happens when we read a book. Suppose
we are reading about South American geography. When we find out for the first time that
approximately half of the population of Peru lives in the Andes, we are in no position to
distribute this piece of knowledge to the various routines that might eventually require it.
Instead, it seems pretty clear that we are able to assimilate the fact in declarative form for
a very wide variety of potential uses. This is the prototypical case of a knowledge-based
system.

From a system design point of view, the knowledge-based approach seems to have a
number of desirable features:

• We can add new tasks and easily make them depend on previous knowledge. In our
Prolog program example, we can add the task of enumerating all objects of a given
colour, or even of painting a picture, by making use of the KB to determine the colours.

• We can extend the existing behaviour by adding new beliefs. For example, by adding
a clause saying that canaries are yellow, we automatically propagate this information
to any routine that needs it.

• We can debug faulty behaviour by locating the erroneous belief of the system. In the
Prolog example, by changing the clause for the colour of the sky, we automatically
correct any routine that uses colour information.

• We can concisely explain and justify the behaviour of the system. Why did the program
say that grass was green? It was because it believed that grass is a form of vegetation
and that vegetation is green. Moreover, we are justified in saying “because” here since
if we removed either of the two relevant clauses, the behaviour would indeed change.

Overall, then, the hallmark of a knowledge-based system is that by design it has the ability
to be told facts about its world and adjust its behaviour correspondingly. We will take this
up again below.

This ability to have some of our actions depend on what we believe is what the cog-
nitive scientist Zenon Pylyshyn has called cognitive penetrability. Consider, for example,
responding to a fire alarm. The normal response is to get up and leave the building. But
we would not do so if we happened to believe that the alarm was being tested, say. There
are any number of ways we might come to this belief, but they all lead to the same effect.
So our response to a fire alarm is cognitively penetrable since it is conditioned on what we
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can be made to believe. On the other hand, something like a blinking reflex as an object
approaches your eye does not appear to be cognitively penetrable: even if you strongly
believe the object will not touch you, you still blink.

1.2.3 Why reasoning?

To see the motivation behind reasoning in a knowledge-based system, it suffices to observe
that we would like action to depend on what the system believes about the world, as op-
posed to just what the system has explicitly represented. In the Prolog example, there was
no clause representing the belief that the colour of grass was green, but we still wanted the
system to know this. In general, much of what we expect to put in a KB will involve quite
general facts, which will then need to be applied to particular situations.

For example, we might represent the following two facts explicitly:

1. Patient x is allergic to medication m.

2. Anyone allergic to medication m is also allergic to medication m′.

In trying to decide if it is appropriate to prescribe medication m′ for patient x, neither
represented fact answers the question. Together, however, they paint a picture of a world
where x is allergic to m′, and this, together with other represented facts about allergies,
might be sufficient to rule out the medication. So we do not want to condition behaviour
only on the represented facts that we are able to retrieve, like in a database system. The
beliefs of the system must go beyond these.

But beyond them to where? There is, as it turns out, a simple answer to this question,
but one that we will argue in later chapters is too simplistic. The simple answer: the system
should believe p if, according to the beliefs it has represented, the world it is imagining is
one where p is true. In the above example, facts (1) and (2) are both represented. If we
now imagine what the world would be like if (1) and (2) were both true, then this is a world
where

3. Patient x is allergic to medication m′

is also true, even though this fact is only implicitly represented.
This is the concept of entailment: we say that the propositions represented by a set

of sentences S entail the proposition represented by a sentence p when the truth of p is
implicit in the truth of the sentences in S. In other words, if the world is such that every
element of S comes out true, then p does as well. All that we require to get some notion
of entailment is a language with an account of what it means for a sentence to be true or
false. As we argued, if our representation language is to represent knowledge at all, it must
come with such an account (again: to know p is to take p to be true). So any knowledge
representation language, whatever other features it may have, whatever syntactic form it
may take, whatever reasoning procedures we may define over it, ought to have a well-
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defined notion of entailment.
The simple answer to what beliefs a knowledge-based system should exhibit, then, is

that it should believe all and only the entailments of what it has explicitly represented. The
job of reasoning, then, according to this account, is to compute the entailments of the KB.

What makes this account simplistic is that there are often quite good reasons not to cal-
culate entailments. For one thing, it is too difficult computationally to decide if a sentence
is entailed by the kind of KB we will want to use. Any procedure that gives us answers in
a reasonable amount of time will occasionally either miss some entailments or return too
many. In the former case, the reasoning process is said to be incomplete; in the latter case,
the reasoning is said to be unsound.

But there are also conceptual reasons why we might consider unsound or incomplete
reasoning. For example, suppose p is not entailed by a KB, but is a reasonable guess, given
what is represented. We might still want to believe that p is true. To use a classic example,
suppose all I know about an individual Tweety is that she is a bird. I might have a number
of facts about birds in the KB, but likely they would not entail that Tweety flies. After
all, Tweety might turn out to be an ostrich. Nonetheless, it is a reasonable assumption that
Tweety flies. This is unsound reasoning since we can imagine a world where everything in
the KB is true but where Tweety does not fly.

As another example, a knowledge-based system might come to believe a collection of
facts from various sources which, taken together, cannot all be true. In this case, it would
be inappropriate to do logically complete reasoning, since every sentence would then be
believed. This is because for any sentence p, any world where all the sentences in the set
are true is one where p is also true, since there are no such worlds. An incomplete form of
reasoning would clearly be more useful here until the contradictions are dealt with, if ever.

But despite all this, it remains the case that the simplistic answer is by far the best
starting point for thinking about reasoning, even if we intend to diverge from it. So while
it would be a mistake to identify reasoning in a knowledge-based system with logically
sound and complete inference, it is the right place to begin.

1.3 Knowledge representation systems

The picture of a knowledge-based system that emerges from the above discussion is one
where a system performs some problem-solving activity such as deciding what medicine
to prescribe, and does so intelligently by appealing at various points to what it knows: is
patient x allergic to medication m? what else is x allergic to? The mechanism used by the
system to answer such questions involves reasoning from a stored KB of facts about the
world. It makes sense in this scenario to separate the management of the KB from the rest
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of the system. The data structures within a KB and the reasoning algorithms used are not
really of concern to the problem-solving system. Ultimately, what a medical system needs
to find out is whether or not x is allergic to m (and perhaps how certain we are of that fact),
not whether or not a certain symbolic structure occurs somewhere or can be processed in a
certain way.

We take the view that it is the role of a knowledge representation system to manage the
KB within a larger knowledge-based system. Its job is to make various sorts of information
about the world available to the rest of the system based on what information it has obtained
perhaps from other parts of the system and whatever reasoning it can perform.5 So its
job is smaller than that of a full knowledge-based problem solver, but larger than that
of a database management system which would merely retrieve the contents of the KB.
According to this view, the contents of the KB and the reasoning algorithms used by the
knowledge representation system are its own business; what the rest of knowledge-based
problem solver gets to find out is just what is and is not known about the world.

1.3.1 The knowledge and symbol levels

Allen Newell suggested that we can look at the knowledge in a knowledge-based system
in at least two ways. At the knowledge level, we imagine a knowledge-based system as
being in some sort of abstract epistemic state. It acquires knowledge over time, moving
from state to state, and uses what it knows to carry out its activities and achieve its goals.
At the symbol level, we also imagine that within the system somewhere there is a sym-
bolic KB representing what the system knows, as well as reasoning procedures that make
what is known available to the rest of the system. In our terms, the symbol level looks at
knowledge from within a knowledge representation system where we deal with symbolic
representations explicitly; the knowledge level looks at knowledge from outside the knowl-
edge representation system, and is only concerned with what is true in the world according
to this knowledge. So at the knowledge level, we are concerned with the logic of what
a system knows; at the symbol level, within a knowledge representation system, we are
concerned with how a system does it.

There are clearly issues of adequacy at each level. At the knowledge level, we deal with
the expressive adequacy of a representation language, the characteristics of its entailment
relation, including its computational complexity; at the symbol level, we ask questions
about the computational architecture, the properties of the data structures and algorithms,
including their algorithmic complexity.

This is similar in many ways to the specification/implementation distinction within

5 In this most general picture, we include the possibility of a knowledge representation system learning from
what it has observed, as well as it having various levels of confidence in what it believes.
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traditional computer science. The symbol level provides an implementation for the more
abstract knowledge level specification. But what exactly does a knowledge level specify?
What would a symbol level need to implement? In a sense, being precise about these is the
topic of this book.

1.3.2 A functional view: TELL and ASK

We said that the role of a knowledge representation system was to make information avail-
able to the rest of the system based on what it had acquired and what reasoning it could
perform. In other words, we imagine that there are two main classes of operations that a
knowledge representation system needs to implement for the rest of the system: operations
that absorb new information as it becomes available, and operations that provide informa-
tion to the rest of the system as needed. In its simplest form, a knowledge representation
system is passive: it is up to the rest of the system to tell it when there is something that
should be remembered, and to ask it when it needs to know something. It is up to the
knowledge representation system to decide what to do with what it is told, and in particu-
lar, how and when to reason so as to provide answers to questions as requested.

For a large section of the book, we will be concerned with a very simple instance of
each of these operations: a TELL operation and an ASK operation each of which take as
argument a sentence about the world. The idea is that the TELL operation informs the
knowledge representation system that the sentence in question is true; the ASK operation
asks the system whether the sentence in question is true. We can see immediately that any
realistic knowledge representation system would need to do much more. At the very least,
it should be possible to ask who or what satisfies a certain property (according to what
is known). We will examine operations like these later; for now, we stick to the simple
version.

So the idea at the knowledge level is that starting in some state of knowledge, the sys-
tem can be told certain sentences and move through a sequence of states; at any point, the
system believes the world is in a certain state, and can be asked if a certain sentence is true.
In subsequent chapters, we will show how these two operations can be defined precisely
but in a way that leaves open how they might be implemented. We will also discuss simple
implementation techniques at the symbol level based on automated theorem-proving, and
be able to prove that such implementations are correct with respect to the specification.

1.3.3 The interaction language

With this functional view of knowledge representation, we can see immediately that there
is a difference at least conceptually between the interaction language, that is, the language
used to tell the system or to ask it questions about the world, and the representation lan-
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guage, the collection of symbolic structures used at the symbol level to represent what is
known. There is no reason to suppose the two languages are identical, or even that what
is stored constitutes a declarative language of any sort. Moreover, there are clear intuitive
cases where simply storing what you have been told would be a bad thing to do.

Consider indexicals, for example, that is, terms like “I,” “you,” “here,” and “now,” that
might appear in an interaction language. If a fact about the world you are told is that “There
is a treasure buried here” for instance, it would be a bad idea to absorb this information
by storing the sentence verbatim. Two weeks from now, when you decide to go looking
for the treasure, it is likely no longer true that it is located “here.” You need to resolve the
“here” at the time you are told the fact into a description of a location that can be used
in different contexts. If later the question “Is there a treasure here?” is asked, we would
want to resolve the “here” differently. We need to distinguish between how information
is communicated to or retrieved from the system and how it is represented for long-term
storage.

In this book, we will not emphasize indexicals like those above (although they are
mentioned in an exercise). There is an important type of indexical that we will want to
examine in considerable detail, however, and that is one that refers to the current state of
knowledge.

Suppose, for example, we have a system that is attempting to solve a murder mystery,
and that all it knows so far is that Tom and Dick were at the scene of the crime (and
perhaps others). If the system is told that “The murder was not committed by anyone you
currently know to have been present,” the system learns that the murderer was neither Tom
nor Dick. It is this “currently” that makes the expression indexical. As the knowledge of
the system changes, so will what this expression refers to, just as “here” did. Suppose the
system later finds out that Harry was also at the scene and was in fact the murderer. If
it is now asked “Was the murder committed by someone you currently know to have been
present?” the correct answer is yes, despite what it was told before. As we will see in
Chapter 3, it is extremely useful to imagine an interaction language that can use indexicals
like these to request information or provide new information. But it will require us to
distinguish clearly between an interaction language and any language used at the symbol
level to represent facts for later use.

1.4 The rest of the book

The remaining chapters of the book are divided into two broad sections: Chapters 2 to 8
cover the basics in sequential order; Chapters 9 to 14 cover advanced research-oriented
topics.
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• In Chapter 2, we start with a simple interaction language, a dialect of the language of
first-order logic (with which we assume familiarity). However, there are good reasons
to insist on some specific representational features, such as standard names and a spe-
cial treatment of equality. With these, the semantic specification of the language ends
up being clearer and more manageable than classical accounts. This will be especially
significant when we incorporate epistemic features.
• In Chapter 3, we extend the first-order interaction language to include an epistemic

operator, resulting in a language we call KL. This involves being clear about what we
mean by an epistemic state, distinct from a world state. This will allow us, among
other things, to distinguish between questions about the world (e.g. the birds that do
not fly) and questions about what is known (e.g. the birds that are known not to fly).
• Since what we mean by “knowledge” is so crucial to the enterprise here, in Chapter

4, we examine properties of knowledge in detail as reflected in the semantics of the
language KL. Among other things, we examine the interplay between quantifiers and
knowledge, as well as the status of knowledge about knowledge.
• In Chapter 5, we define the TELL and ASK operations for the interaction language KL.

This provides a clear knowledge-level specification of the service to be provided by a
knowledge representation system. We also include in this chapter a detailed example
of the kind of questions and assertions that can be handled by our definition.
• In Chapter 6, we examine the relationship between the two views of knowledge men-

tioned above: knowledge in a KB, and knowledge in an abstract epistemic state. In
other words, we look at the relationship between the symbol-level and knowledge-
level views of knowledge. As it turns out, the correspondence between the two, as
required by the semantics of the language KL, is not exact.
• In Chapter 7, we prove that, despite the results of Chapter 6, it is possible to produce

a symbol-level implementation of the interaction operations TELL and ASK, based
on ordinary first-order reasoning. In particular, we show that the result of a TELL
operation on a finitely represented state can itself always be properly represented, even
if the sentence contains (indexical) references to what is currently known.
• In Chapter 8, we introduce a new concept called only-knowing that captures in a purely

logical setting what is behind the TELL and ASK operations. The idea is to formalize
using a new epistemic operator the assertion that a sentence is not only known, but all
that is known.
• In Chapter 9, we consider a proof theory for the logic of only-knowing. We show

soundness and completeness in the propositional case and discuss why it is incomplete
in the first-order case. Nevertheless, the axiom system allows us to obtain nontrivial
derivations involving quantifiers and epistemic operators.
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• In Chapter 10, we relate only-knowing to what is called Autoepistemic Logic, a spe-
cial brand of so-called nonmonotonic logic which has been studied extensively in the
literature. We are able to fully reconstruct Autoepistemic Logic using only-knowing
and, in addition, extend it since we are using a more expressive language.

• Chapter 11 is a continuation of the previous chapter but with a focus on default rea-
soning. The chapter considers three forms of default reasoning, due respectively to
Robert Moore, Kurt Konolige, and Ray Reiter (whose account is the most studied of
the three). What is significant here is that these modes of default reasoning can now be
understood not only in proof-theoretic terms, but in semantic terms via three forms of
only-knowing.

• Chapter 12 is the first of two chapters that explore what can be done to make the
reasoning required of an agent computationally tractable. In this chapter, this is done
by restricting the form of the knowledge base. Instead of allowing arbitrary formulas
of the first-order predicate calculus, only certain formulas are allowed to be used. The
emphasis in the chapter is on keeping the representation language as expressive as
possible while still being able to prove that the reasoning required is tractable.

• In Chapter 13, the goal once again is to keep the reasoning computationally tractable,
but this time the knowledge base is allowed to contain arbitrary first-order formulas.
Tractability is obtained by defining a new, more complex model of knowledge that
requires calculating some but not all the logical consequences of the knowledge base.

• Chapter 14 deals with the issue of reasoning about a dynamic changing world. A
knowledge base is now considered to contain a first-order component as before to
characterize knowledge of the world before any actions take place, but also a separate
collection of formulas characterizing how the world changes as the result of actions
available to the agent, as well as how knowledge of the world changes as the result of
sensing operations available to the agent. Again the characterization is done semanti-
cally in terms of only-knowing.

There are different ways of approaching this book. The first eight chapters are the core, but
the remaining ones can be read more or less independently of each other. Those interested
in proof systems and questions involving the logic of only-knowing should read Chapter
9; those interested in default reasoning or nonmonotonic reasoning should read Chapters
10 and 11; those interested in tractable logical reasoning and the problem of logical omni-
science should read Chapters 12 or 13; finally, those interested in how knowledge relates
to action (including perceptual action), for robotic applications, for example, should read
Chapter 14.
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1.5 Bibliographic notes

Much of the material in this chapter is shared with a textbook on knowledge representation
[11]. For a collection of readings on knowledge representation, see [10]. For a more philo-
sophical discussion on knowledge and belief see [57, 13, 49], and [53] on the difference
between the two. The notes at the end of Chapters 3 and 4 discuss attempts to formalize
these notions. A general discussion of propositions, declarative sentences, and sentence
tokens, as bearers of truth values, including the role played by indexicals, can be found in
[5]. The connection between knowledge and commonsense is discussed in [138], one of
the first papers on AI. The intentional stance is presented in [33], and critically examined in
[34]. On Leibniz’ views about thinking as a form of calculation see, for example, [38], vol.
3, p. 422. The Knowledge Representation Hypothesis is from Brian Smith’s doctoral thesis
[175], the Prologue of which appears in [10]. Procedural representations of knowledge are
discussed in [186], and the criticism of AI by Hubert Dreyfus can be found in [36]. Zenon
Pylyshyn discusses cognitive penetrability in [156], making a strong case for propositional
representations to account for human-level competence. For Newell’s knowledge and sym-
bol levels, as well as the TELL and ASK functional interface, see the notes in Chapters 5
and 6. For general references on logic and entailment, see the notes in Chapter 2. Why
reasoning needs to diverge from logic is discussed in [19] and [115]. For a review of the
research in knowledge representation and reasoning in terms of this divergence, see [114].
For references on default (and logically unsound) reasoning, see the notes in Chapter 11.

1.6 Exercises

1. Consider a task requiring knowledge like baking a cake. Examine a recipe and state
what needs to be known to follow the recipe.

2. In considering the distinction between knowledge and belief in this book, we take
the view that belief is fundamental, and that knowledge is simply belief where the
outside world happens to be cooperating. Describe an interpretation of the terms where
knowledge is taken to be basic, and belief is understood in terms of it.

3. Explain in what sense reacting to a loud noise is and is not cognitively penetrable.
4. It has become fashionable to attempt to achieve intelligent behaviour in AI systems

without using propositional representations. Speculate on what such a system should
do when reading a book on South American geography.

5. Describe some ways in which the first-hand knowledge we have of some topic goes
beyond what we are able to write down in a language. What accounts for our inability
to express this knowledge?
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2 A First-Order Logical Language

In this chapter, we will examine the properties of a first-order logical language that is
suitable as a starting point at least for communicating with a KB about some application
domain. As discussed in the previous chapter, we assume some familiarity with classi-
cal logical languages, propositional and quantificational, as discussed in any number of
introductory logic texts (see the bibliographic notes). Here we concentrate mainly on the
differences between our dialect of first-order logic and a standard one.

2.1 Why first-order logic?

We said in the previous chapter that the only feature of an interaction language that really
mattered is that we had a clear and unambiguous account of what it meant for expressions
in the language to be true or false. So why use a dialect of first-order logic for knowledge
representation? It seems at first glance that this language is more suitable for expressing
facts about mathematical domains such as the domain of numbers, sets, groups, and so on.
This is why, after all, the language was invented by Frege at the turn of the last century,
and continues to be its main application in logical circles. These mathematical concepts,
it might be thought, have very little in common with the typically vague and imprecise
concepts underlying commonsense reasoning. Furthermore, quantification appears to be
necessary only for stating facts about infinite domains, whereas many of the applications
of knowledge representation concentrate on finite collections of objects.

The answer to these objections is best seen by considering how one might use a first-
order language to express commonsense knowledge.

Each of the expressions of a first-order language in Figure 2.1 is accompanied by a
gloss in English, interpreting the predicate, constant, and function symbols in the obvious
way. Following these in each case is a question about what is being said.

Even though the intended domain here involves only a small collection of very simple
objects, all of the facilities of full first-order logic with equality are being used. Consider
the quantification in Example 4, for instance. If we are willing to assume that there are
only finitely many blocks, can we not do without this universal quantifier? In one sense
the answer is yes: we could simply state of the blocks in the box that they are light, as in:

Light(block b) ∧ Light(block e).

The disjunction of Example 1 can be eliminated analogously by stating which of the two
disjuncts is true

In(block b, box),
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1. In(block a, box) ∨ In(block b, box)
Either block A or B is in the box.
But which one?

2. ¬In(block c, box)
Block C is not in the box.
But where is it?

3. ∃x .In(x, box)
Something is in the box.
But what is it?

4. ∀x .In(x, box) ⊃ Light(x)
Everything in the box is light (in weight).
But what are the things in the box?

5. heaviest block 6= block a
The heaviest block is not block A.
But which block is the heaviest block?

6. heaviest block = favourite(john)
The heaviest block is also John’s favourite.
But what block is this?

Figure 2.1: Expressing knowledge in first-order logic

and similar considerations apply to the other examples.
The problem with this approach is simply that it requires us to know more than we

may know in order to express what we want to express. We would need to know, for
example, what blocks are in the box before we could say that they are all light. In other
words, we would need to know (among other things) the answers to the questions listed
after each example in order to express what the example expresses. In some applications,
this knowledge will be available and it will be possible to list directly the properties of the
objects in question without appeal to much in the way of logical notation:

On(block a, table) Heavy(block a)
In(block b, box) Light(block b)
. . .
heaviest block = block d
favourite(john) = block d.

In this case, a simple language of something like

< object,attribute,value >

triples would be sufficient.
But in cases where knowledge arrives incrementally, first-order logic (or English, or

German for that matter) gives us much more: it allows us to say what we want to say
without having to say more than we know. That is, from the point of view of knowledge
representation, the expressiveness of first-order logic lies in what it allows us to leave
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unsaid.1 Stated differently, the logical facilities of first-order logic with equality allow
us to express knowledge that is incomplete in the sense that it does not completely pin
down the facts about the situation being represented.2 Thus what we are allowing by
using a first-order language as our interaction language, is a system that can have, from a
functional standpoint, incomplete knowledge of its application domain: it will be possible
for the system to know that one of a set things must hold without also knowing which.
This power is one of the hallmarks of knowledge representation formalisms and perhaps
the major source of their complexity (conceptual and computational).

2.2 Why standard names?

Given the desirability of using disjunction, negation, equality and the rest of the baggage
of first-order logic, the next question is: why not stop there? This is, after all, the place
where “classical” logic (as described in text books) ends. What is the point of what we will
call standard names?

Consider the expression

Teaches(cs 100, best friend(george)).

This can be interpreted as saying that the best friend of George teaches a course called
CS100. But if we asked “Who teaches CS100?” and were told only that it was the best
friend of George, we would probably feel cheated. This describes the individual, but not
necessarily in enough detail to identify him. The same could be said of an even more vague
description like “it’s a person with brown hair.”

Given that we have the capability using first-order logic of expressing knowledge about
the best friend of George without necessarily identifying him, a natural question we should
consider is what it would mean to identify him. An obvious place to look is at assertions
of equality. We might use something like

best friend(george) = father(bill),

but this doesn’t seem to say who he is unless we already know who the father of Bill is. If
we have

father(bill) = mister smith,

then again the question arises as to who is Mr. Smith.
So it seems that we have two options when it comes to knowing who somebody is.

The first is simply to say that we cannot identify individuals directly using expressions of

1 This is not strictly true, since there are cases in knowledge representation where we also want to deal with
mathematical or infinite domains. For example, we may want to state general facts that apply to all points in time,
or to all situations, all events, or whatever.
2 This notion of incompleteness will be defined precisely later.
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a first-order logic with equality. In this case, we would say that although we might know a
collection of sentences of the form

Teaches(cs 100, t), (ti = t j ), (t j 6= tk),

none of these terms would be considered “special” in any way. Whether or not the system
knows who any of the teachers are is something that cannot be determined by examining
the known sentences. In fact, if this (admittedly nebulous) property should exist at all,
it would be as a result of non-linguistic information that the system has acquired. From
the point of view of a purely linguistic functional interface, we would never talk about the
system knowing who or what (or when or where) something is, but only about the character
of the terms t such that the system knows something expressed using t.

The second option is to say that it is a very useful concept to be able to distinguish
between knowing that somebody or something must have a certain property and knowing
who that individual is, even for a system whose information is limited to a linguistic inter-
face. To do so, we need to introduce conventions into our language that go beyond those
of standard first-order logic.

Perhaps the simplest mechanism for doing this is to imagine the space of all terms
as partitioned into equivalence classes, where terms t1 and t2 are considered equivalent if
(t1 = t2) is true. Now imagine naming all potential equivalence classes using #1,#2,#3, and
so on. We call these terms standard names. Then, we can simply decide as a linguistic
convention that we will consider a term to be identified just in case we can name which
equivalence class it belongs to.

So, for example, if we know that best friend(george) = #27 then we will say that we
know who the best friend of George is. Similarly, if we do not know something of this form
for say mister smith, then regardless of what else we may know about him, and specifically
what other terms we know to be equal to it, we will say that we do not know who Mr. Smith
is.

By convention, the question of who #27 is does not arise. The term #27, unlike say
best friend(george) is intended to carry absolutely no useful domain-dependent informa-
tion except that it is distinct from #26, and all the others. So while the ordinary equalities
partition the terms into equivalence classes, the standard names anchor these classes and
distinguish them from each other. As such they play a role like the unique identifiers of
database formalisms (such as object identification numbers, like social security numbers).

If there is any doubt about the identity of an individual, we should not assign it a stan-
dard name. Fortunately, the language of first-order logic allows us to express knowledge
without committing ourselves to the identity of the individuals involved. In fact, we may
decide never to use standard names at all and stick to statements of equality and inequality
between ordinary terms. In general, however, a term can be assigned to a standard name
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when we wish to express that it is distinct from all other terms that have been assigned
standard names and when we do not wish to pursue further its identity.

2.3 The syntax of the language L

We are now ready to describe the dialect of first-order logic called L that we will be using
and the terminology and notation that goes with it.

The expressions of L are built up as sequences of symbols taken from the following
two distinct sets:

1. the logical symbols consist of the following distinct sets:

• a countably infinite supply of (individual) variables, written as x, y, or z, possibly
with subscripts or superscripts.

• a countably infinite supply of standard names, #1, #2, and so on, written schemat-
ically as n possibly with subscripts or superscripts.

• the equality symbol, written =.

• the usual logical connectives ∃,∨,¬ and punctuation (, ), ,.

2. the non-logical symbols consist of two distinct sets:

• the predicate symbols, written schematically as P, Q or R possibly with sub-
scripts or superscripts, and intended to be domain specific properties and relations
like Person, Heavy, Teaches.

• the function symbols, written schematically as f, g or h possibly with subscripts
or superscripts, and intended to denote mappings from individuals to individuals
like best friend or father. In case the mapping has no arguments, the function
symbol is called a constant and is written schematically as b or c possibly with
subscripts or superscripts; these are intended to denote individuals in the domain
like george, block a, or heaviest block.

Each predicate or function symbol is assumed to have an arity, that is, a number indi-
cating how many arguments it takes.

The logical symbols are the part of the alphabet of L that will have a fixed interpretation
and use; the non-logical symbols, on the other hand, are the domain-specific elements of
the vocabulary. Note that the equality symbol is taken to be domain-independent and is not
considered to be a predicate symbol.

We are now ready to describe the expressions of L. There are two types: terms, which
are used to describe individuals in the application domain, and well-formed formulas or
wffs which describe relations, properties or conditions in the application domain. We use



24 Chapter 2

schema variables t and u possibly with subscripts or superscripts to range over terms, and
use Greek schema variables like α, β or γ possibly with subscripts or superscripts to range
over wffs. We will use capitalized variables to range over sets of syntactic expressions. For
example, G would be a set of function symbols, and 0, a set of wffs.

Terms fall into three syntactic categories

1. variables,

2. standard names,

3. function applications, written as f (t1, . . . , tk) where the ti are terms, and k is the arity
of f. If the function symbol is a constant, it can be written without parentheses, as c
instead of c().

A term that contains no variables is called a ground term, and a ground term containing
only a single function symbol is called a primitive term. In other words, a primitive term
is of the form f (n1, . . . , nk), where k ≥ 0, that is, a function application all of whose
arguments are standard names.

The wffs of L are divided syntactically into atomic and non-atomic cases. The atomic
formulas or atoms of L are of the form P(t1, . . . , tk), where P is a predicate symbol, the
ti are terms, and k is the arity of P. As with function applications, a ground atom is one
without variables, and a primitive atom is a ground one where every ti is a standard name.
Thus, primitive expressions, both terms and atoms, contain a single non-logical symbol.

In general, a wff is one of the following:

1. an atom,

2. (t1 = t2),

3. ¬α,

4. (α ∨ β),

5. ∃xα.

As is the custom, we omit parentheses when the context is clear, use square parentheses or
periods to increase readability, and freely write the usual abbreviations:

∀xα, (α ∧ β), (α ⊃ β), (α ≡ β).

We also need the usual notion of a free or bound occurrence of a variable in a wff.
The rigorous specification of these notions can be found in logic books, but informally, an
occurrence of x in a wff is bound if it is located within a subwff of the form ∃x .α (in which
case we say that it is within the scope of that quantifier ∃), and free otherwise. We use the
notation αx

t to mean the wff that results from textually replacing all free occurrences of the
variable x in the wff α by the term t. Typically, the term t here will be a standard name. If
Ex and Et are sequences of variables and terms respectively and of the same size, by α Ex

Et we
mean the wff that results by simultaneously replacing each free xi by its corresponding ti .
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One last syntactic notion: a sentence of L is a wff with no free variables. This is
the most important syntactic category. Sentences and sentences alone will receive a truth
value, can be believed, and so represent knowledge. In fact, we can think of L just as its
set of sentences, with the rest of the syntactic machinery merely playing a supporting role.

2.4 Domain of quantification

Before discussing in detail how we will interpret the sentences of L, we need to discuss
an assumption that we make regarding the domain of quantification. This assumption,
although not necessary, greatly simplifies the semantic specification of L and the technical
analysis to follow.

The assumption is this: the application domain is considered to be isomorphic to the
set of standard names. In other words, we assume that there is always a distinct object
in the domain for each standard name (and so the domain must be infinite) and that each
object in the domain has a distinct name (and so the domain must be countable).

So what does this rule out? First of all, unlike classical logic, we rule out domains
with only finitely many individuals. This is not to say that predicates are required to be
infinite; every predicate will be allowed to have a finite extension. But the sum total of
all individuals in the domain must be infinite. If we wish to deal with finite domains, we
use predicates (like Object or some such) and relativize what needs to be said to instances
of these predicates. Another way of thinking about this is to say that the set of integers
(or strings or some such) is always included in the domain of discourse even in otherwise
“small” situations.

Conversely, we rule out domains where there are more objects than standard names.
We do not want inaccessible individuals, that is individuals that have properties according
to the predicate and function symbols, but cannot be referred to by name. If the domain is
countable, this is not a real problem since we could have assigned the names differently to
cover all the domain elements.

But if we had imagined a domain containing (say) the set of real numbers, this may
seem to present a more serious difficulty. It is somewhat illusory, however: it is a well
known result of ordinary classical logic that any satisfiable set of sentences is satisfiable
in a countable domain.3 What this means is that although we may be thinking of an un-
countable domain like the reals, any collection of sentences of ordinary first-order logic
that rules out the countable domains is guaranteed to be inconsistent! The real numbers
might indeed be compatible with what we are talking about, but countable domains must
always be too. So in the logic of L, we simply take this one step further and imagine the

3 This is true for first-order logic, but not for higher-order logics.
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domain as always being countable.
Note that although we assume the domain to be isomorphic to the set of standard

names, we do not make this assumption for constants. As in ordinary classical logic, two
constants may indeed refer to the same individual, and there may be individuals that are
not named by any constant.4 So, as we will see below, for the part of L that does not use
standard names or equality, everything will be the same as in ordinary classical logic.

The main consequences of this assumption are:

• although it is sometimes desirable to talk about what individual in the domain a term
refers to under some interpretation, it will never be necessary to do; instead we can talk
about finding a co-referring standard name, since every individual has a unique name.

• it will similarly be possible to understand quantification substitutionally. For example,
∃x .P(x) will be true just in case P(n) is true for some standard name n, since every
individual in the domain has a name.

It is these two assumptions that greatly simplify the semantic specification of L.

2.5 World state

In the classical interpretation of sentences of first-order logic due to Tarski, one specifies a
domain of discourse and appropriate functions and relations for the function and predicate
symbols. Using these, a set of rules specify the truth value of every sentence. This is done
by first considering the more general case where terms and wffs can have free variables,
and using an assignment of domain elements to these variables.

In our case, the rules are much simpler. All the variability in the interpretation of
sentences reduces to the understanding of the function and predicate symbols. We will
still want to know the truth value of every sentence, of course, but this will be completely
determined in a straightforward way, more like the way it is done in classical propositional
logic.

Recall that in propositional logic, one specifies an interpretation by fixing an assign-
ment to the atomic sentences, after which the truth value of the non-atomic sentences
(disjunctions and negations) is recursively defined. In our case, we require two things to
specify an interpretation: a truth value for each of the primitive atoms, and a standard
name for each of the primitive terms. We call such an assignment a world state (or world,
for short) and let W name the set of all world states. We use this term since it is these
assignments that tell us the way the world is, relative to the language L.

For example, suppose we only care about one function symbol best friend and one

4 In this sense, what has been called the domain closure and unique name assumptions do not apply.
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predicate symbol Person. What we need to completely describe the way things are (that
is, a world state) in this language is to say who the people are, and who is the best friend
of whom. To say who the people are, we need only specify which sentences of the form
Person(n) are true, since every individual is assumed to have a unique standard name. Sim-
ilarly, we can handle best friends by specifying for each term of the form best friend(n),
the standard name of the best friend of the individual named n.5 From this specification, as
we will see below, the truth value of every sentence will be determined.

So what we have is that for any w ∈ W,

• w[ f (n1, . . . , nk)] is a standard name, taken to be a specification of the primitive’s
unique co-referring standard name;

• w[P(n1, . . . , nk)] is either 0 or 1, taken to be a specification of the primitive’s truth
value, where 1 indicates truth.

In each case, we will say that w provides the value of the primitive expression.

2.6 Term and formula semantic evaluation

The generalization of term evaluation to non-primitive terms is straightforward. Suppose
we want the value of the term f (g(n), c) with respect to some w. If the value of the
primitive terms g(n) and c are n1 and n2 respectively, then the value of f (g(n), c) is the
value of the primitive term f (n1, n2). In other words, to determine a co-referring standard
name for a term, we recursively substitute co-referring standard names for the arguments,
stopping at primitives.

More formally, the value of a ground term t at world state w, which we write as w(t),
is defined by

1. w(n) = n;

2. w( f (t1, . . . , tk)) = w[ f (n1, . . . , nk)], where ni = w(ti ).

We will never need to evaluate terms with variables.
We are now ready to state precisely what it means for a sentence α be true in a world

statew,which we write asw |H α. Informally, we proceed as follows: for atomic sentences
and equalities, we evaluate the arguments and check the answers; for disjunctions and
negations, we proceed as with ordinary propositional logic; for existential quantification,
we use the fact that every individual has a name and consider each substitution instances
of the wff in question. More precisely, we have:

1. w |H P(t1, . . . , tk) iff w[P(n1, . . . , nk)] = 1, where ni = w(ti );

5 In case n happens not to be a person, we can assign it any other name that is also not a person, for example n
itself, since we only care about people.
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2. w |H (t1 = t2) iff w(t1) is the same name as w(t2);

3. w |H ¬α iff it is not the case that w |H α;

4. w |H α ∨ β iff w |H α or w |H β;

5. w |H ∃xα iff for some name n, w |H αx
n .

Again there is no need to talk about the truth or falsity of wffs with free variables, even to
deal with existential quantifiers.

2.7 Satisfiability, implication and validity

The semantic specification above completely determines which sentences of L are true
and which are false given values for the primitives. Clearly, it is the non-logical symbols
that carry the semantic burden here. The standard names, for example, are the fixed refer-
ence points in terms of which the predicate and function symbols are characterized. Each
primitive expression deals with a single non-logical symbol and specifies one independent
aspect of its meaning, namely its value for the given arguments. There is a world state for
each possible value for each possible sequence of arguments for each primitive expression.

Although many or most of these world states will not be of interest to us, they deter-
mine the complete range of what can be true according to L. We say that a set of sentences
0 is satisfiable just in case there is some world state w such that w |H α for every α in
0. In other words, 0 is satisfiable if there is some way the primitives could be assigned to
make the sentences in 0 true. In this case, we will say that w satisfies 0.

Although all primitives can be assigned freely and independently to their values, the
semantic rules make certain sets unsatisfiable, even simple ones such as,

{P(c), ¬P(n), (n = c)}.

The semantic rules of L are such that if any two elements of this set are true, then the last
one must be false.

To focus on what must hold according to the semantic rules of L, we say that a sentence
α is logically implied by a set of sentences 0, which we write 0 |H α just in case the set
0 ∪ {¬α} is unsatisfiable. Stated differently, 0 logically implies α if the truth of 0 forces
α to be true also.

To preview what is to come, the reason logical implication is so important is this. We
imagine a knowledge-based system acquiring information about some world state w in an
incremental fashion. At any given point, it will have at its disposal not w itself, but only
information about w in the form of a collection of sentences 0, corresponding to what it
has been told. If it now has to make a decision about what holds in w, for example to
answer a question, it must use 0 since this alone represents what it knows. The trouble
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is that although w will satisfy 0, in general many very different world states will as well.
However, if 0 |H α, then it is perfectly safe to conclude that α is also true in w since,
according to the definition of entailment, any world state satisfying 0 (such as w) also
satisfies α. So the information represented by 0 includes the fact that all of its implications
are true in the intended world state.

Of particular concern to us is when the information represented by 0 is finite, that is,
when 0 consists of the sentences {α1, . . . , αk}. In this case, we can capture the notion of
logical implication using a sentence of the language: it is easy to see that 0 |H α iff the
sentence

(¬α1 ∨ ¬α2 ∨ . . . ∨ ¬αk ∨ α)

comes out true at every world state. We call a sentence α valid, which we write as |H α,
if it is satisfied by every world state. With respect to finitely specifiable conditions, it is
therefore the valid sentences of a logical language that determine what is required by the
language. They also determine what is allowed by the language, since {α1, . . . , αk} is
satisfiable iff the sentence (¬α1 ∨ . . . ∨ ¬αk) is not valid. If the notion of a sentence is
the culmination of the syntax of a language, the notion of validity is the culmination of its
semantics. It is indeed often the case that a logic is simply identified with its set of valid
sentences.

2.8 Properties of logic L

We now examine some of the properties of the language L in preparation for the general-
ization to KL to follow. Mostly what we will do is to compare and contrast the properties
of validity and satisfiability in L with their counterparts in ordinary classical first-order
logic. As noted, we assume some familiarity with ordinary first-order logic, and use the
terms first-order valid, first-order satisfiable, and first-order implies to refer to validity, sat-
isfiablity, and implication there. When we consider a formula of L in classical first-order
terms, what we have in mind is to interpret standard names as ordinary constants and
equality as an ordinary binary predicate.

The first thing to show is that one direction of the correspondence is clear:

Theorem 2.8.1: Let 0 be any set of sentences. If 0 is satisfiable in L, then it is first-order
satisfiable.

Proof: Suppose w satisfies every sentence of 0. Construct a Tarskian interpretation
〈D,8〉 as follows: D is the set of standard names; 8(p) is the set of tuples 〈n1, . . . , nk〉

such that w[P(n1, . . . , nk)] = 1; 8(=) is the identity relation; 8( f )(n1, . . . , nk) is the
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name n such that w[ f (n1, . . . , nk)] = n; and 8(n) is n. It is not hard to show for any
sentence β that w |H β iff 〈D,8〉 satisfies β. (We leave the proof as an exercise.) So the
interpretation 〈D,8〉 satisfies 0.

All the complications come in for the other direction. For example, the sentence (#3 =
#5) is clearly first-order satisfiable, but is not satisfiable in L. However, for sentences
without standard names and equality, the correspondence is exact.

Theorem 2.8.2: Let 0 be any set of sentences without equality or standard names. If 0 is
first-order satisfiable, then it is satisfiable in L.

Proof: Suppose there is a Tarskian interpretation 〈D,8〉 that satisfies 0. By the Skolem-
Löwenheim theorem, we may assume without loss of generality that the domain D is
countably infinite. Let π be any bijection from standard names to D. Define a world state
w as follows:

• w[P(n1, . . . , nk)] = 1 iff the tuple 〈d1 . . . , dn〉 is in 8(p), where di is π(ni );

• w[ f (n1, . . . , nk] = n iff 8( f )(d1, . . . , dk) = d , where di is π(ni ) and n is the stan-
dard name such that that π(n) = d.

We leave it as an exercise to show for any sentence β without standard names or equality
that w |H β iff the interpretation 〈D,8〉 satisfies β. Consequently, 0 is satisfiable in L.

Corollary 2.8.3: Suppose α does not contain standard names or equality. Then |H α iff
α is first-order valid.

This shows that although the specification of L was much simpler than the traditional
Tarskian account, when it comes to sentences without equality or standard names, the two
accounts give exactly the same logic.

What can we say about equality in L, that is, how is it different from standard first-
order theories of equality (assuming we first restrict our attention to wffs without standard
names)? The main difference is that the following wffs are all valid in L:

1. ¬∃x1∀y(y = x1),

2. ¬∃x1∃x2∀y(y = x1) ∨ (y = x2),

3. ¬∃x1∃x2∃x3∀y(y = x1) ∨ (y = x2) ∨ (y = x3),

and so on. The i-th sentence in this enumeration says that there are not i individuals such
that every individual is one of them; in other words, there are more than i individuals. If
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we call this set of sentences1, then1 as a whole guarantees that there are infinitely many
individuals, since no (finite) i will be sufficient.

This is clearly not a property of ordinary first-order logic where finite domains are
allowed. It suggests that in L we should avoid talking about the domain as a whole, and
always restrict our attention to individuals of a certain type. In other words, we should
rarely write ∀x .α, since after all, very little of interest will be true of everything (including
numbers, people, bits of rock, events, and so on.) Instead, we should use a form of typed
quantification and write something like

∀x(P(x) ⊃ α),

relativizing what we want to say to some predicate P. In fact, sentences like those of 1
that do not contain function or predicate symbols have a special property:

Theorem 2.8.4: If α contains only logical symbols, then either it or its negation is valid.

Proof: Letw1 andw2 be any world states. Since the sentence α does not contain function
or predicate symbols, by induction, w1 |H α iff w2 |H α. Thus if α is satisfiable, it must be
valid, and the theorem follows.

If we think in terms of the information carried by a sentence, sentences with only logical
symbols do not really express information about the world at all; they are either logically
true or logically false.

To capture the precise relationship between our treatment of equality and its treatment
in classical first-order logic, we need to quickly review the latter. In ordinary first-order
logic, equality is treated as a regular binary predicate, but is specified to be an equivalence
relation that allows substitution in arguments. So let EQ be the following sentences:

• reflexivity: ∀x(x = x);
• symmetry: ∀x∀y(x = y) ⊃ (y = x);
• transitivity: ∀x∀y∀z((x = y) ∧ (y = z)) ⊃ (x = z);
• substitution of equals for functions: for any function symbol f,
∀x1 . . . ∀xk∀y1 . . . ∀yk((x1 = y1) ∧ . . . ∧ (xk = yk)) ⊃

f (x1, . . . , xk) = f (y1, . . . , yk);
• substitution of equals for predicates: for any predicate symbol P,
∀x1 . . . ∀xk∀y1 . . . ∀yk((x1 = y1) ∧ . . . ∧ (xk = yk)) ⊃

P(x1, . . . , xk) ≡ P(y1, . . . , yk).

Then, what we have is the following:

Theorem 2.8.5: A sentence α without standard names is valid iff 1 ∪ EQ first-order
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implies α.

Proof: Left as an exercise.

This theorem ensures that in L we get all the standard properties of equality, and moreover,
that what we get beyond the standard properties are the sentences of1,making the domain
of quantification infinite.

Finally, we turn our attention to standard names. What can we say about them? Clearly,
for each name n, the wff (n = n) is valid, as we would expect from any well-behaved
theory of equality. Less conventionally, perhaps, is that for any pair of distinct names n1

and n2, the wff (n1 6= n2) is also valid. So it is built into the logic that each standard name
is equal to exactly one name, itself.

We can see this by letting UNA be set of all sentences of the form (n 6= n′), where n
and n′ are distinct standard names. Then we have the following variant of Theorem 2.8.5
which now completely characterizes validity in L in classical first-order terms:

Theorem 2.8.6: A sentence α of L is valid iff UNA ∪ EQ first-order implies α.

Proof: Left as an exercise.

As it turns out, apart from equality, standard names behave just like constants in terms of
validity. In particular, we can strengthen Corollary 2.8.3 above:

Theorem 2.8.7: Suppose α does not mention equality. Then |H α iff α is first-order valid.

Proof: The if direction follows immediately from Theorem 2.8.1. For the only-if di-
rection, suppose |H α but there is a Tarskian interpretation 〈D,8〉 that satisfies ¬α. By
the Skolem-Löwenheim theorem, we may again assume without loss of generality that the
domain D is countably infinite. Now let Z be any infinite set of standard names that do not
appear in α, and let π be any bijection from Z to D. Define a world state w as follows:
• w[P(n1, . . . , nk)] = 1 iff the tuple 〈d1 . . . , dn〉 is in 8(p), where di is π(ni ) when

ni ∈ Z , and di is 8(ni ) otherwise;
• w[ f (n1, . . . , nk] = n iff 8( f )(d1, . . . , dk) = d, where di is π(ni ) when ni ∈ Z , and

di is 8(ni ) otherwise, and where n is the element of Z such that that π(n) = d.
Again, we leave it as an exercise to show for any sentence β that does not mention equality
or any element of Z that w |H β iff the interpretation 〈D,8〉 satisfies β. Consequently,
w |H ¬α, contradicting the assumption that |H α.
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There is one more interesting property of standard names and that is, roughly, that they
have no other special logical properties! In other words, the only feature that characterizes
standard names is that they are different from each other. As a first approximation, we
might want to say that if αx

#1 is valid, then so must be αx
#2, since there is nothing special

about #1. But this is not quite right: imagine α is the wff (x 6= #2); then αx
#1 is valid, but αx

#2
is not.

However, we can capture precisely what we want to say by talking about a consistent
renaming of all the standard names in a sentence. First some notation: let ∗ be a bijection
from standard names to standard names. For any term t or wff α, we let t∗ or α∗ indicate
the expression resulting from simultaneously replacing in t or α every name by its mapping
under ∗. Then we get the following:

Theorem 2.8.8: Let ∗ be a bijection from standard names to standard names. Then α is
valid iff α∗ is valid.

Proof: Here we prove the theorem only for the special case where α contains no function
symbols. The more general case is left as an exercise.

To begin, let us define for any world state w, w∗ to be the world state that is like w
except that for any primitive wff α, w∗[α] = w[α∗]. We now show that for any α without
function symbols, w∗ |H α iff w |H α∗. The proof is by induction over the depth of the
formation tree of α.6 The property clearly holds for atomic formulas P(n1, . . . , nk) by
definition of w∗. For equalities, we have that w∗ |H (n1 = n2) iff n1 and n2 are the same
iff (since ∗ is a bijection) n1

∗ and n2
∗ are the same iff w |H (n1

∗
= n2

∗). For negations,
we have that w∗ |H ¬α iff it is not the case that w∗ |H α iff (by induction) it is not the case
that w |H α∗ iff w |H ¬α∗. For disjunctions, we have that w∗ |H (α ∨ β) iff w∗ |H α or
w∗ |H β iff (by induction) w |H α∗ or w |H β∗ iff w |H (α ∨ β)∗. Finally, for existentials,
we have that w∗ |H ∃x .α iff for some name n, w∗ |H αx

n iff (by induction) for some name
n, w |H (αx

n )
∗ iff for some name n, w |H (α)∗x

n iff w |H (∃x .α)∗.
Now using this property, if for some w we have that w |H ¬α∗, then for w∗ we have

that w∗ |H ¬α, and if for some w we have that w |H ¬α, then for w∗ we have that
w∗ |H ¬α∗. So α must be valid iff α∗ is.

As a corollary to this we get:

Corollary 2.8.9: Let α be a formula with free variables x1, . . . , xk and let ∗ be a bijection

6 Since this type of induction proof is used so often throughout the book, we include this first one in full detail.
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that leaves the names in α unchanged. Then for any standard names n1, . . . , nk,

|H α
x1
n1 · · ·

xk
nk iff |H αx1

n1∗
· · ·

xk
nk∗
.

As a special case, we get:

Corollary 2.8.10: Let α have a single free variable x and let n1 and n2 be names not
appearing in α. Then, αx

n1
is valid iff αx

n2
is valid.

Proof: Consider the bijection that swaps names n1 and n2 and leaves all other names
unchanged. Then (αx

n1
)∗ is αx

n2
and the result follows from the theorem.

This establishes that names that do not appear in a wff can be used interchangeably. As a
consequence we get:

Corollary 2.8.11: Let α have a single free variable x and let n be a standard name not
appearing in α. Let n1, . . . , nk be the all the standard names appearing in α. If αx

n is valid
and all the αx

ni
are valid, then so is ∀xα.

Proof: To show a universal is valid, we need only show that all of its substitution in-
stances are valid. For standard names appearing in α, the validity is assumed; for names
not appearing in α, the same argument as the previous corollary can be used with the name
n.

Among other things, this shows under what conditions we are entitled to infer the validity
of a universal from the validity of a finite collection of substitution instances. This will
play a role in the axiomatization of L below.

To conclude this section on the logical properties of L, we mention one additional
minor difference between L and ordinary first-order logic. This difference would not be
apparent looking only at validity, since it concerns infinite sets of sentences. Ordinary
first-order logic is compact, that is, a set of sentences is satisfiable iff all of its finite subsets
are. But this is not true of L: there is a set of sentences of L that is unsatisfiable, but all of
whose proper subsets are satisfiable:

{∃x P(x), ¬P(#1), ¬P(#2), ¬P(#3), . . .}.

The reason for the difference is that in L we can name every domain element (using an
infinite collection of sentences). In ordinary logic, the set would be satisfiable since there
would be the possibility of domain elements that are not named by any term. This differ-
ence is indeed minor since it requires an infinite set of sentences to exhibit it; the finite case
is completely characterized by the above theorems.
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2.9 Why a proof theory for L?

We now turn to the development of a proof theory for L. Before doing so, however, it
is worth considering why we care about proof theories at all in this context, since the
motivation here is perhaps non-standard.

First of all, we do not use a proof theory because we care about the structure of sound
arguments, from premises to conclusions. Nor do we use a proof theory as the basis for
a computational procedure for knowledge representation purposes. In fact, there is abso-
lutely no reason to believe that the proof theory we will present is closer in any way to a
realistic computational realization of a decision procedure for L.

Rather, we examine a proof theory for one reason only: it gives us another revealing
look at the valid sentences of L, from a very different perspective. So far, we have defined
the valid sentences in terms of truth: the valid sentences are those that come out true in all
world states. With a proof theory, the picture we have is of a class of sentences defined by
a closure operation: we start with a basic set (the axioms), then apply operations (the rules
of inferences) on elements of the set until no new members are introduced.

A good analogy here is with the idea of a formal language, that is, a set of strings taken
from some alphabet. We might describe a language as being all strings of the form

{anb | n ≥ 0}.

We might also choose to describe the language as that which is produced by the following
grammar:

S → aS
S → b

The two descriptions of this simple language are complementary, and each has its utility in
certain contexts. The grammatical description is most like a proof theory since it describes
the language by a closure operation: the language is the least set of strings such that b is in
the language, and if S is in the language, then so is S with a prepended.

With this analogy we see clearly why this proof theory should not be understood pro-
cedurally. There is a clear separation between having a grammar for a language and having
a recognizer. In fact, an efficient recognizer may or may not use the grammar explicitly.
Similarly, having a proof theory is distinct from having a program that can prove (or even
recognize) theorems. Such a theorem-prover may or may not use the proof theory, since it
is the valid sentences that count, not the particular axioms and rules of inference.
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2.10 Universal generalization

Most of the proof theory described below is standard. The main difference involves stan-
dard names. This shows up clearly in the treatment of the rule of universal generalization

Universal generalization is the rule that allows universals to be concluded from argu-
ments involving “arbitrary values.” The standard way to phrase this rule is using open wffs,
as in

From α, infer ∀x .α.

The reason that this rule is sound, that is, that the conclusion is valid given that the premise
is valid, involves two cases: if α does not have x free, then clearly ∀x .α is valid; if it does
have x free, then α is talking about some particular value of x . So the argument goes: if α
is valid, then there is nothing special about x , and so the universal must be valid also.

In the case of L, we do not need to appeal to wffs with free variables since we can use
standard names. A first step might be to have a rule with an infinite set of premises like
this:

From αx
#1, α

x
#2, α

x
#3, . . . , infer ∀x .α.

According to our semantics, this rule is clearly sound: if α is valid for all standard names
replacing x , then the universal must be valid also.

However, there is a finitary version of this rule that does the trick because of Corol-
lary 2.8.11 discussed earlier: From αx

n1
, . . . , αx

nk
where the ni range over all the standard

names in α and at least one standard name not in α, infer ∀x .α. Thus, to infer a universal,
we need only look at a finite number of arguments, one for each name in the wff, and one
extra name. The soundness of this strategy is immediate from the corollary.

2.11 The proof theory

Except for the rule of universal generalization, the proof theory for L is not very surprising.
First, we have the following axioms, for any formula α, β, or γ, any variable x, and any
closed term t :

1. α ⊃ (β ⊃ α)

2. (α ⊃ (β ⊃ γ )) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ ))

3. (¬β ⊃ ¬α) ⊃ ((¬β ⊃ α) ⊃ β)

4. ∀x(α ⊃ β) ⊃ (α ⊃ ∀xβ), provided that x does not occur free in α

5. ∀xα ⊃ αx
t

6. (n = n) ∧ (n 6= m), for any distinct n,m



A First-Order Logical Language 37

The rules of inference are modus ponens and universal generalization, as discussed in the
previous section:

1. From α and (α ⊃ β), infer β.

2. From αx
n1
, . . . , αx

nk
, infer ∀xα, provided the ni range over all names in α and at least

one not in α.

As usual, we say that α is a theorem of L, which we write as `α, iff there is a sequence
of wffs α1, α2, . . . , αk, where αk = α and each αi in the sequence is either an instance of
an axiom, or follows from earlier sentences in the sequence by one of the two rules of
inference. If 0 is any set of sentences, we say that 0 derives α, written as 0 ` α iff 0
contains sentences γ1, . . . , γk, where k ≥ 0 and such that ` ((γ1∧ . . .∧γk) ⊃ α). Finally,
we say that 0 is inconsistent if it contains sentences γ1, γ2, . . . , γk, where k > 0 and such
that {γ1, γ2, . . . , γk−1} ` ¬γk .

The first three axioms above are typical ones that are used (with the rule of modus po-
nens) to characterize propositional logic. In fact, they could be replaced by any combina-
tion of axioms and rules that correctly captures ordinary propositional logic. We therefore
simply state the following without proof:

Theorem 2.11.1: A sentence α is a theorem of ordinary propositional logic iff it can be
derived using just the first three axioms and the rule of modus ponens.

The next two axioms (and the rule of universal generalization) are the typical way
quantifiers are formalized in a proof theory (although as noted above, universal generaliza-
tion is handled differently here). Finally, the last axiom is the one and only addition that
is necessary to handle equality; the usual formalization is much more complex. Note that
all that is needed to capture the properties of standard names (as distinct from other terms)
are the axiom of equality and the rule of generalization.

The most important property of this proof theory (following our discussion above of
its role) is that it correctly matches the semantic characterization given earlier:

Theorem 2.11.2: |H α iff ` α.

Proof: The proof has two parts: soundness involves establishing that everything deriv-
able is valid; completeness involves showing that any valid sentence is derivable.

The proof of the former is easy, and proceeds by induction on the length of the deriva-
tion of α: establish (case by case) that all instances of axioms are valid, and then show that
each rule of inference preserves validity (using Corollary 2.8.11). The details are left as an
exercise.
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The proof of the latter is more challenging. The usual way to show that a sentence
that is not derivable is not valid, is to show that any finite consistent set of sentences is
satisfiable. This is sufficient since if a sentence α is not derivable, then {¬α} must be
consistent, and so {¬α} would be satisfiable, in which case α would not be valid. We will
not prove here that finite consistent sets are indeed satisfiable, since the details of the proof
can be reconstructed from the proof for the more general language KL to follow. The basic
structure of the argument, however, is to show how the set can be extended to an infinite
superset that remains consistent and that contains for every sentence, either the sentence
or its negation. From this set (that also has other properties), a satisfying world state w is
constructed directly: for any primitive term t and primitive atom α, w[t] = n iff t = n is an
element of the set, and w[α] = 1 iff α is an element of the set. This style of completeness
proof is called a Henkin proof.

Thus the valid sentences are the same as those that are derivable. We obtain as an easy
corollary:

Corollary 2.11.3: If 0 is a finite set of sentences, then 0 |H α iff 0 ` α.

We leave it as an exercise to show that this corollary need not hold when 0 is infinite.

2.12 Example derivation

The whole point of introducing a proof theory is to provide a different perspective on
the working of the semantics of L. Consider, for example, the fact that equals can be
substituted for equals as in

∀y∀x .(x = y) ⊃ ( f (x) = f (y)).

We can prove this sentence valid as follows: Let w be any world state, and n and m be any
standard names. If w |H (n = m), then they must be the same standard name, and f (n)
and f (m) must be the same terms. Thus w |H ( f (n) = f (m)) also. Since this works for
any pair of names and any world state, the universal must be valid. Using the proof theory
of L, we will show that the above sentence is derivable, which gives a different argument
for its validity.

To show a derivation, we will list a sequence of sentences, one per line, followed by
a justification. If the justification is of the form Ax, this means that the current line is
an axiom; if it is of the form UG, this means that the current line is derivable from the
preceding line and perhaps some earlier ones by universal generalization; if it is of the
form MP, this means that the current line is some β and that there is a previous α such
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1. #1 = #1 Ax

2. ∀x(x = x) UG

3. f (#1) = f (#1) MP

4. (#1 = #1 ⊃ f (#1) = f (#1)) MP

5. #2 6= #1 Ax

6. (#2 = #1 ⊃ f (#2) = f (#1)) MP

7. ∀x(x = #1 ⊃ f (x) = f (#1)) UG

8. ∀y∀x(x = y ⊃ f (x) = f (y)) UG

Figure 2.2: A sample derivation in L

that (α ⊃ β) is either an axiom or on an earlier line. The derivation for the substitutivity
property is in Figure 2.2.

Note how at the end, universal generalization is used twice, once for each universally
quantified variable. The first application on line 7, has α being the formula

(x = #1) ⊃ ( f (x) = f (#1)).

This uses one standard name, #1, and so to apply generalization, we need to prove two
instances of α, αx

#1 and for some n not in α, αx
n . The former is line 4, and the latter is line

6, where n is #2.
The final application of universal generalization is on line 8 for the formula

∀x(x = y ⊃ f (x) = f (y)).

This uses no standard names, and so all we need is an instance with the variable y replaced
by any standard name. This occurs on line 7 with y replaced by #1.

A similar strategy would be used to prove a sentence of the form ∀x∀y∀z.β, where β
has no standard names. In this case, 3 new standard names would be used, call them #1,
#2, #3. Then, to conclude the universal for z, it would be necessary to prove 3 formulas:
βx

#1
y
#2

z
#1, βx

#1
y
#2

z
#2, and βx

#1
y
#2

z
#3. To conclude the universal for y, 2 previous formulas are

required: ∀z.βx
#1

y
#1 and ∀z.βx

#1
y
#2. To conclude the final sentence, only 1 previous sentence

is used: ∀y∀z.βx
#1. In general, to prove a sentence with no standard names but k universal

variables, k new standard names must be introduced, and a total of k! previous sentences
must be established.

As a final example, we show that a standard property of first-order logic holds for L:

Theorem 2.12.1:

` ∀x(α ⊃ β) ⊃ ((∀xα) ⊃ (∀xβ)).
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Proof: The proof proceeds by deriving a universal:

` ∀x[∀x(α ⊃ β) ⊃ ((∀xα) ⊃ β)].

To derive this universal we need to get,

`[∀x(α ⊃ β) ⊃ ((∀xα) ⊃ βx
n )],

for all the names n appearing in α or β, and an additional one. To derive this, we use the
fact that

` ∀x(α ⊃ β) ⊃ (αx
n ⊃ β

x
n )

and

` (∀xα ⊃ αx
n ),

which are axioms, and put these two together using ordinary properties of propositional
logic. Now with the above universal in hand, we get by modus ponens by distributing over
the universal:

` ∀x(α ⊃ β) ⊃ ∀x((∀xα) ⊃ β).

Then distributing once more over the universal, we get:

` ∀x(α ⊃ β) ⊃ ((∀xα) ⊃ (∀xβ)),

which completes the proof.

Thus the proof here again depends on the number of standard names in the sentence, unlike
the case in ordinary logics.

2.13 Bibliographic notes

There are many excellent introductions to classical first-order logic among which [144]
and [41]. The non-modal parts of [69] also offer a very clear and succinct presentation.
Our use of standard names was inspired by a similar construct in a textbook by Smullyan
[177]. There they were called “parameters,” and this was also the name used in the first
presentation of L in [111]. Standard names also owe much to the idea of unique identi-
fiers (sometimes called object identifiers) in database management, for which, see [3], for
example. The presentation of first-order logic here is non-standard in that it concentrates
on the truth of sentences, not on the denotation of terms. This approach has been called a
truth-value semantics by Leblanc [109]. Denotation and reference has been a major preoc-
cupation of logicians, especially in modal contexts, attempting to capture the meaning of
natural language noun phrases. See the references at the end of chapters 3 and 4 regard-
ing terms and their denotations. On the substitutional interpretation of quantification, see
Leblanc’s paper above as well as [110], and for a more critical discussion, [82]. Logic,
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and first-order logic especially, has acquired a position of prominence in Knowledge Rep-
resentation. For why all of first-order logic with equality is needed, see [146]; for why we
should stop there, see [140].

2.14 Exercises

1. Complete the proof of Theorem 2.8.1

2. Complete the proof of Theorem 2.8.2. (Hint: to prove the correspondence between
the world and the Tarskian model it will be necessary to deal with formulas with free
variables and variable substitutions. Prove by induction that for any formula β without
equality or standard names, β is satisfied by the model 〈D,8〉 and variable substitution
µ iffw satisfies βµ, where βµ is β but with any free variable x replaced by the standard
name n such that π(n) = µ(x).)

3. Prove Theorem 2.8.5. (Hint: Use the construction from the proof of Theorem 2.8.2.)

4. Prove Theorem 2.8.6. (Hint: Adapt the proof of Theorem 2.8.7.)

5. Complete the proof of Theorem 2.8.7. (Hint: adapt the hint for the proof of Theo-
rem 2.8.2 to the set Z .)

6. In discussing the failure of compactness for L, it was noted that there is a set of sen-
tences without equality that is first-order satisfiable but not satisfiable. Prove that if
0 is a set of sentences without equality but where there is an infinite set of standard
names that 0 does not mention, then 0 will be satisfiable iff it is first-order satiafiable.
(Hint: see the proof of Theorem 2.8.7.)

7. Let ∗ be a bijection from standard names to standard names as in Theorem 2.8.8. Sup-
pose that w1 and w2 are world states that satisfy (w1[t])∗ = w2[t∗] for every primitive
term t. Prove by induction that for every closed term t, (w1(t))∗ = w2(t∗).

8. Prove Theorem 2.8.8 for the case where α may contain function symbols. Hint: de-
fine w∗ so that on primitive terms t, w∗[t] equals (w[t∗])∗−1 (and therefore, that
(w∗[t])∗ = w[t∗]), and redo the induction using the result of the previous exercise.

9. Show that ` ∀x∀y(x = y ⊃ y = x).

10. Show that ` ∀x(α ∧ β) ≡ (∀xα) ∧ (∀xβ).

11. Show that ` ∃x(t = x). Hint: Use the fact that ∀x(#1 6= x) ⊃ (#1 6= #1) is an axiom.
Then apply contra-positives, generalization, and specialization.

12. Show that ` ∃x((∃xα) ⊃ α). Hint: Show that

` ∀x((∃xα) ∧ ¬α) ⊃ (∃xα) ∧ (∀x¬α),

then apply contrapositives.
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13. Prove that the logic of L is sound.
14. When discussing rules of inference, some logic textbooks use the term “truth-pre-

serving”: a rule is truth-preserving if whenever the premises of the rule are true, the
conclusion is also true. For example, modus ponens is truth-preserving. Show that our
version of universal generalization is not truth-preserving, but is “validity-preserving.”
Explain why truth-preserving rules are not needed for a logic to be sound.

15. Prove that Corollary 2.11.3 fails when 0 is infinite. Hint: consider what is implied by
the set of sentences {P(#1), P(#2), P(#3), . . .}. Show a consistent set of sentences that
is unsatisfiable.

16. In some logic textbooks, derivability is defined directly by something like: 0 ` α iff
there is a sequence of wffs α1, α2, . . . , αk,where αk = α and each αi in the sequence is
either an instance of a logical axiom, a member of 0, or follows from earlier sentences
in the sequence by one of the two rules of inference. (In this account, the theorems of
the language would then be defined as the sentences derivable from the empty set of
premises.) Give an example of a 0 and an α where this definition and ours diverge.
Comment on why our definition of derivability is more suitable for our semantics.

17. Extend the semantic description of the language to incorporate complex predicates:

(a) Every predicate symbol P is a predicate.

(b) If α is a wff then λ(x1, . . . , xk)α is also a predicate (of arity k).



3 An Epistemic Logical Language

In this chapter, we introduce a new logical language called KL that goes beyond the first-
order language considered in the previous chapter. Like L, KL is intended as a language
for communicating with a KB, but unlike L, in KL we can talk about what is or is not
known, in addition to what is or is not true in the world. We begin by considering why a
simple first-order language like L is insufficient by itself. It turns out that it is precisely
the incomplete knowledge expressible using L that compels us to go beyond L. We briefly
consider two other strategies for dealing with this incomplete knowledge, before settling
on KL as the cleanest and most general approach. We then discuss, first informally, and
then formally, the semantics of KL.

3.1 Why not just use L?

Given that we imagine a KB as representing knowledge about the world as expressed in a
language like L, why would we ever want to go beyond L? To see the reason most clearly,
we will put aside temporarily the idea of a functional interface and imagine that a KB
consists simply of a finite set of sentences from L. In our examples, we will mostly use a
single two-place predicate Teach, where the sentence Teach(t1, t2) is intended to be true if
the person referred to by t1 teaches the person referred to by t2 in some course. Instead of
writing standard names like #17 for arguments, we will adopt the following convention: for
this chapter, proper names starting with a “t” like tina or tom are to be understood not as
constants, but as standard names which will be used as the teacher argument; proper names
starting with an “s” like sara or sam are to be understood as standard names which will be
used as the student argument. This is only for readability.

So, for example, we could have a KB consisting of the two sentences

{Teach(ted, sue), (Teach(tina, sue) ∨ Teach(tara, sue))}.

Note that this KB has incomplete knowledge in that it knows that one of Tina or Tara
teaches Sue, but does not know which. We cannot simply ask the KB to produce a list of
Sue’s teachers, for instance, since it does not know who they all are. On the other hand,
the system should know that Sue has a teacher other than Ted. In addition, it should realize
that it does not know who this other teacher is. Consequently, we should be able to ask

Does Sue have a teacher who is not yet known to be her teacher?

and expect to get the answer yes. In other words, the system should realize that its list of
Sue’s teachers is currently incomplete. The reason we need to go beyond L is that there is
no way to express this question as a sentence of L.
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3.2 Known vs. potential instances

Before going into ways of dealing with this issue, let us be clear about what we mean by
saying that somebody is a known teacher. For a standard name n and a predicate P, we say
that n is a known instance of P if the sentence P(n) is known to be true; we say that n is a
potential instance of P if the sentence ¬P(n) is not known to be true. This can obviously
be generalized to predicates with additional arguments or even to arbitrary open formulas.

The main point is that saying that somebody is a known teacher is not just talking about
the way the world is, like saying that somebody is a teacher; it is a property of the KB in
that it says that a certain sentence is known to be true. Thus we can distinguish between
the following three sets of individuals: the known teachers, the actual teachers, and the
potential teachers, where the first and last category depend on the state of the KB, and the
middle category depends on the state of the world. For a KB whose knowledge is accurate,
we would expect

Known instances ⊆ Actual instances
Actual instances ⊆ Potential instances.

For a KB whose knowledge was also complete, we would expect the reverse as well, so
that all three sets would be the same.

Thus, the known and potential instances bound from below and above respectively the
actual instances of a predicate. As more knowledge is acquired using L, these bounds can
become tighter. For example, the sentence

∀x[Teacher(x) ⊃ (x = #1) ∨ (x = #7) ∨ (x = #9)]

serves to narrow the set of potential instances of the predicate to the three individuals
named. It does not provide any new known instances, but rules out all but the three
named. To tighten the bounds from below, the obvious way is to name an instance, as
in Teacher(#1). But more generally, we can describe the set of instances using wffs like

∃x[Teacher(x) ∧ x 6= #1], Teacher(#3) ∨ Teacher(#7), Teacher(best friend(#8)).

None of these directly result in more known instances, but they serve to augment what is
known about the actual ones.

3.3 Three approaches to incomplete knowledge

We said above that we needed to go beyond L because it was impossible to express in L
the question about whether there were any teachers that were not yet known teachers of
Sue. But perhaps we were too quick in making that assessment. What about

∃xTeach(x, sue) ∧ ¬Known teach(x, sue),
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that is, why not use Known teach as a predicate. In the above example, Ted would be both
a teacher and a known teacher of Sue, but although one of Tina and Tara is a teacher of
Sue, neither would be a known teacher.

The trouble with this approach concerns the relation between the two predicates Teach
and Known teach. The two predicates are clearly not independent. Observe that if we
found out that Tom was a teacher of Sue, we would immediately want to conclude that
Tom was a known teacher of Sue. Since this holds for any individual, it appears that the
sentence

∀x .Teach(x, sue) ⊃ Known teach(x, sue)

must be true. Unfortunately it is not, since we would then get that

Known teach(tina, sue) ∨ Known teach(tara, sue),

which is false since neither is a known teacher.
In a nutshell, the reason we should not have a predicate Known teach is that it is not

a property of the world of teachers, but of the knowledge about that world. To find out if
somebody is a known teacher, it is not sufficient to look carefully at the set of teachers in
the world; it depends crucially on everything else that is known.

A second approach to dealing with this issue involves using L but with a 3-valued logic
instead of the current 2-valued one. Instead of sentences being merely true or false, we
would allow them to take on the value unknown. For example, the sentence Teach(ted, sue)
would be true, but the sentence Teach(tina, sue) would be unknown.

The problem with this approach is how to specify the semantics of L. In particular,
the unknown truth value does not seem to behave like the other two. For example, in the
2-valued logic L, the truth value of a sentence (α ∨ β) is a direct function of the truth
values of α and β: if either is true then the disjunction is true, and otherwise it is false. But
what would the truth table be for a 3-valued logic? Suppose α and β are both unknown;
the only reasonable conclusion is that the disjunction (α ∨ β) should be unknown as well.
For example, if Teach(tom, sam) and Teach(tom, sara) are both unknown, then so must be
(Teach(tom, sam) ∨ Teach(tom, sara)).

Unfortunately, this does not work. In the above example, the truth value for both
Teach(tina, sue) and Teach(tara, sue) is unknown, yet their disjunction is clearly known
to be true (since it is one of the sentences in the KB). As with Known teach above, the
problem is that we cannot assign an appropriate truth value to a sentence without taking
into account the totality of what is known. Again, whether or not a sentence is considered
unknown is not a property of the world of teachers, but of what is known about that world.

In summary, to talk about the known teachers, it appears that we need to be able to use
sentences in two distinct ways: we need to be able to say that a sentence is true or false
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(in the world), and we need to be able to say that a sentence is known or unknown (by the
KB). To handle the former, we use a sentence of L directly; this then precludes using it for
the latter.

The third approach, and the one we will be using throughout, is to augment the lan-
guage L so that for every sentence α, there is another sentence that can be read as “α is
known.” Then, instead of saying that α is known to be true, we would say that the sen-
tence “α is known” is true; instead of saying α is not known to be true, we would say that
“α is known” is false. By extending the language in this way, we only have to talk about
which sentences are true or false as before, even though we care about which are known or
unknown. It is this extension to the language that constitutes KL.

3.4 The language KL

Syntactically, the language KL is the same as L except that it has one extra logical symbol,
K, and one extra formation rule for wffs:

If α is a formula, then Kα is a formula too.

Informally, Kα should be read as “α is currently known to be true.”
Before looking at the semantics of KL, it is worth examining these sentences infor-

mally. We can distinguish between two main types of sentences in KL. First, the objective
sentences of KL are those that are also sentences of L. These are sentences whose truth
value depends only on the state of the world; they say nothing about what is or is not
known. The second category of sentence are the subjective sentences, which are those
where every function or predicate symbol appears within the scope of a K operator. These
are sentences whose truth value depends only on what is known; they say nothing about
the state of the world.1 Of course, there are also mixed sentences that are neither purely
subjective nor objective, as in

P(#1) ∧ ¬KQ(#1).

The truth value here depends on both the state of the world and the epistemic state.
For example, the objective sentence ¬Teach(tina, sue) is true or false depending on

whether Tina teaches Sue; this fact may or may not be known. Similarly, the subjective
sentence ¬KTeach(tina, sue) says that it is not known that Tina teaches Sue. This says
nothing about the world of teachers, in that Tina may or may not actually teach Sue; it is
purely an assertion about the KB. Finally a mixed sentence like

Teach(tara, sue) ∧ ¬KTeach(tara, sue)

1 Recall that we do not assume that something known is necessarily true in the world.
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talks both about the world state and the epistemic state: it says that Tara actually teaches
Sue even though this is not currently known by the system.

It is worth noting that sentences of L that contain no predicate or function symbols
like ∀x .(x = x) are strictly speaking both objective and subjective, according to the above
definition. As shown in Theorem 2.8.4, these special sentences do not depend on either the
state of the world or on what is known, and so are either logically true (valid) or logically
false (unsatisfiable).

One very important distinction that can be made by KL and that will come up repeat-
edly is that between the following two subjective sentences:

K∃x .Teach(x, sam) and ∃x .KTeach(x, sam)

The first says of a particular sentence of L, that it is known to be true. The second sentence
says that for some value of x, a certain sentence involving x is known to be true. The first
says that it is known that Sam has a teacher; the second says that there is an x for which it
is known that x teaches Sam, that is, Sam has a known teacher.

The difference between the two would show up, for example, when all that was known
was the sentence (Teach(tom, sam) ∨ Teach(tara, sam)). In this epistemic state, the first
sentence would be true since it is known that somebody teaches Sam. But the second
sentence would be false since nobody is known to teach Sam. The first sentence merely
requires the existence of a teacher to be known, but the second requires the KB to know
who the teacher is. So, for example, if what was known was Teach(tom, sam), then both
sentences would be true.

A final feature of KL worth noting is that a K operator may appear within the scope of
other K operators. For example, the sentence K¬KTeach(tom, sam) says that it is known
that Tom is not known to teach Sam. The knowledge that is expressed here is not ob-
jective since it uses a K operator. This type of subjective knowledge is usually called
meta-knowledge. The most useful application of meta-knowledge is when the object of
belief is neither objective nor subjective. Consider, for example, the sentence

K[∃x .Teach(x, sue) ∧ KTeach(x, sam)].

This sentence expresses knowledge that is both about the world and the epistemic state:
what is known is that Sue has a teacher (world) who is among the known teachers of Sam
(knowledge). This is a much stronger claim than

K[∃x .Teach(x, sue) ∧ Teach(x, sam)],

where what is known is that Sue has a teacher among the teachers of Sam, since the known
teachers of Sam are usually a much smaller set than the teachers of Sam. One of the most
powerful and useful features of KL is that it allows us to express this variety of meta-
knowledge, knowledge about the relationship between the world and the epistemic state.
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3.5 Possible worlds

In the previous section, we saw informally that the truth value of sentences of KL depended
on both a world state and an epistemic state. Before defining the latter precisely in Sec-
tion 3.8, it is worth spending some time reviewing the general idea that will be used, which
is that of possible worlds.

The notion of a possible world goes back to the philosopher Leibniz in the 18th century,
but its technical development is mainly due to Kripke beginning in 1959. Its application to
knowledge is primarily due to Hintikka starting in 1962. The main idea is actually already
implicit in the way we have treated the semantics of L: although there is only one world
(about which we are interested in making assertions, having knowledge and so on), there
are many different ways the world can be, only one of which is the way it actually is. Each
of these different ways is what is called a possible world. So to say there are two possible
worlds is not to say that there are two realities (with two individuals corresponding to
Socrates and so on), but that the world can be two different ways. A possible world is
actual if that is the way the world really is.

To see why this notion is useful, consider the following two sentences:

1. If I put my hand into a fire, it will feel hot.

2. If I put my hand into a fire, it will feel cold.

Intuitively, we would like to claim that the first sentence is true and the second one is
false. But why should that be? Let us assume (for the sake of argument) that I will never
put my hand into a fire. In this case, the antecedent of the conditional is false, and so
both sentences would be equally true. So although these sentences use future tenses, they
cannot be understood as simple claims about the future.

The usual explanation for how we should understand these sentences and why the truth
values are different is that we have to consider a possible world where I do put my hand
into fire. In other words, we imagine a (so called counter-factual) possible world that is
exactly like the actual one except that at some point, I put my hand into a fire. The claim in
the first sentence is that in this possible world it feels hot (correct), and in the second, that
it feels cold (incorrect).

The difficulty in the previous example is being precise about what it means for a pos-
sible world to be exactly like reality except for a few changes. This is a partial description
of a new way things could be, and it is often not clear exactly what is being described. For
example, in the possible world where I put my hand into a fire, we may assume that the
laws of physics continue to apply (otherwise they would not be laws). But clearly there is
more to it than just a difference in hand motions. If I burn my hand, this will be a start of a
chain of consequences with potentially far-reaching implications. Moreover, in a possible
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world where I am willing to put my hand into a fire, I obviously am very different from the
way I really am. And what are the consequences of those differences? Would I live in the
same city, have the same job, friends, family, and so on?

For our purposes, rather than describing possible worlds as being minimal changes to
other possible worlds, we can describe them directly in terms of what sentences are true,
treating any two possible worlds that satisfy the same sentences as equivalent. For the part
of the world that is purely objective, we can think of a possible world as modeled by what
we have called a world state: a specification of the values for every primitive expression.2

3.6 Objective knowledge in possible worlds

The relationship between knowledge and possible worlds is this: We imagine that what a
knower cares about is the way the world is, that is, the possible world that is actual. At
any given point, the knower will not have determined this in full detail, but perhaps some
possibilities will have been ruled out. As more information is acquired, more and more
possible worlds can be eliminated. Eventually, the knower may have eliminated all but
a single possible world, which would then be taken to be the way things really are. But
this final state of complete knowledge may never be achieved, and in general, incomplete
knowledge will force the agent to deal with a set of possibilities.

An epistemic state, then, can be modeled by the set of possible worlds that have not
been ruled out by the knower as being the actual one. For purely objective knowledge, we
can think of an epistemic state as a set of world states. Consider Figure 3.1, for example.

This picture illustrates an epistemic state called e5 where all but three possible worlds
have been eliminated, w1, w2, and w3. We assume that these three worlds assign a truth
value to the primitive atoms as illustrated.3 So we are imagining in this case that the
knower has decided that the real world must be in one of the three world states illustrated.

What does the knower believe in this situation? The idea of the possible-world under-
standing of knowledge (due to Hintikka) is that what is known for sure is what would be
true regardless of which possible world turns out to be the correct one. That is, we take
a conservative view and say that what is known is exactly what is true in all the world
states that make up the epistemic state. This has the effect of guaranteeing that as long
as the real world is among these alternatives, what is known will be true in reality. In the
figure, Teach(ted, sue) would be known, since it comes out true in all three worlds. The

2 The situation will be complicated by the fact that we also want to treat knowledge as part of a possible world;
but for the moment, we limit ourselves to purely objective knowledge.
3 For concreteness, we may assume that they assign all other primitive atoms to false, and all primitive terms to
the standard name #1. Nothing hinges on this assumption.
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w1 : Teach(ted, sue),Teach(tina, sue),¬Teach(tara, sue), . . .

w2 : Teach(ted, sue),¬Teach(tina, sue),Teach(tara, sue), . . .

w3 : Teach(ted, sue),Teach(tina, sue),Teach(tara, sue), . . .

e5 -
�
�
�
�
�
�3

Q
Q
Q
Q
Q
Qs

Figure 3.1: An epistemic state modeled as three world states

disjunction

(Teach(tina, sue) ∨ Teach(tara, sue))

would also be known since at least one disjunct is true in each world state. On the other
hand, neither Teach(tina, sue) nor Teach(tara, sue) is known since in either case, there is a
world state where it comes out false.

With this possible-world understanding of knowledge, and unlike the 3-valued ap-
proach discussed earlier, we can see how two sentences can be unknown while their dis-
junction is known. Moreover, we can see what it would mean to have complete knowledge
of the world: this corresponds to a case where the epistemic state can be modeled by a
single world state. With complete knowledge, everything not known to be true is known to
be false.

It need not be the case that this knowledge is accurate, however. To show whether or
not the real world is among those in the epistemic state, we need to augment our diagrams
to show which world state is actual. Thus, we will introduce a new label for a world state
immediately beside the epistemic state as in Figure 3.2 as a way of indicating the real state
of the world. In this figure, the knowledge of the world is indeed accurate, so everything
known is true. When knowledge is both accurate and complete, the epistemic state would
be modeled by the set consisting of just the real world state.
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w1

w2

w3

e5, w3 -
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Figure 3.2: Including the actual world state

3.7 Meta-knowledge and some simplifications

So far, our possible-world account applies only to objective knowledge: each epistemic
state is characterized by the (objective) world states that have not been ruled out. But as
we said earlier, KL allows for the possibility of knowledge about the epistemic state as
well.

To handle this, the simplest way is to imagine that we must deal with an enlarged notion
of possible world, let us call it a possible universe, that consists of both a world state and
an epistemic state. At any given point, only one world state and only one epistemic state
will be actual. These correspond to the way the world really is and to what is really known
(which is the left side of the diagrams). However, there are other possible ways the universe
could be: other sentences could be true, and other sentences could be known (which is the
right side of the diagrams).

To handle meta-knowledge, we assume that the agent is interested in determining both
the real state of the world and the real state of knowledge. As before, at any point, only
some of these possible universes will have been ruled out. Thus we now imagine an epis-
temic state as involving a set of possible universes, each consisting of both a world state
and an epistemic state. Ignoring the circularity in this for a moment, the picture we have
is more like that of Figure 3.3. The difference is that on the right of the diagram, instead
of a list of world states, we have a list of pairs consisting of an epistemic state and a world
state.

The interpretation of this diagram is this: we imagine the actual universe as being in
epistemic state e5 and world state w3. Moreover, e5 is an epistemic state that rules out all
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e5, w1

e3, w2

e5, w3

e5, w3 -
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Figure 3.3: Knowledge about epistemic states

but three possibilities: in the first, the world is in w1 and the knower is in state e5; in the
second, the world is in state w2 and the knower in state e3; in the final, the world is in
state w3 and the knower is in state e5. We can already see that this knowledge is accurate
since the real universe is one of the three possibilities. This does not yet complete the
specification, however, since we have not yet described epistemic state e3. It could, for
example, introduce new world states and still further epistemic states requiring additional
elaboration.

But without this extra complication, we can already see how meta-knowledge will be
handled in simple cases. An objective sentence φ is considered known if it comes out true
in each alternative possible universe. So for epistemic state e5, this involves world states
w1, w2, and w3. Now a subjective sentence like Kψ is analogously considered known
in epistemic state e5 if it comes out true in each alternative possible universe. Thus, we
would require Kψ to be true in both epistemic state e5 and e3, since as far as the knower
is concerned, either could be the real epistemic state. So the principle is the same in both
cases: to find out if an arbitrary sentence α is known, test if α is true in all of the alterna-
tive possible universes, by using the world state for the objective parts, or recursively, the
epistemic state for the subjective part.

But what exactly is an epistemic state in this enlarged view? It cannot simply be a set
of possible universes since that would require in the above example epistemic state e5 to
contain itself, among other things.

A general and very elegant way of handling this circularity was first proposed by
Kripke. Instead of thinking of universes as pairs of world states and epistemic states,
we can think of them as atomic indices and use two additional relations:
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Figure 3.4: Epistemic state understood as an accessibility graph

• a relation that tells us for each index, the value of the primitive expressions at that
index; this is the world state part;

• a relation (called the accessibility relation) that tells us for each index, what other
indices are considered to be possible; this is the epistemic state part.

Ignoring the world state part, then, what we have is a set of points and a binary relation over
them, which can be most clearly illustrated using a graph as in Figure 3.4. In this graph,
we have three indices (corresponding to three possible universes). The arrows indicate
the accessibility relation. For example, from the leftmost universe (which corresponds to
〈e5, w3〉 from before), all three universes are possible; from the topmost universe (which
corresponds to 〈e5, w1〉 from before), again all three are possible, so the epistemic state is
the same; in the bottom one, (which corresponds to 〈e3, w2〉 from before), the epistemic
state is different, and only a single universe is considered possible. Thus, to find out what
is known with respect to any of these indices, we need only find out what is true at all the
accessible indices.

While this mechanism of accessibility relations is powerful and elegant, it is too gen-
eral for our needs. This is because we are willing to make a simplifying assumption about
subjective knowledge:

Assumption Purely subjective meta-knowledge is both complete and accurate.

One way of thinking about this is that we assume that a knower, by introspection, can
determine his/her true internal subjective state. To say that this subjective knowledge is
complete is to say that there is no doubt in the knower about what is or is not known; to
say that this subjective knowledge is accurate is to say that what the knower believes about
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Figure 3.5: Complete and accurate meta-knowledge

this internal state is always correct.4

We can represent this diagrammatically as in Figure 3.5. The key observation about
this picture is that while there is uncertainty about the real world state in e5, there is no
uncertainty about the epistemic state: there is a single epistemic state in the list of alterna-
tives (this is the completeness part of the assumption) and it is indeed the correct epistemic
state e5 (this is the accuracy part).

While this simplification is not necessary and we could have continued under the more
general setting of accessibility relations, it does allow us to avoid much of the complex-
ity since there is always exactly one epistemic state accessible from another. Thus, we
can treat an epistemic state simply as a set of world states as before, keeping the fixed
epistemic part in the background. As we will see, this still leaves room for interesting
meta-knowledge that is not purely subjective, and certainly sufficient richness to keep us
occupied.

3.8 The semantics of KL

With the preliminaries out of the way, we now turn to formally specifying the conditions
under which sentences of KL are considered to be true or false (and thus, indirectly, known
or unknown). As discussed above, a sentence is considered to be true or false in a universe

4 Actually, the assumption as stated here is not quite right. As discussed in the next chapter, we assume that
subjective meta-knowledge is accurate only as long as the epistemic state is consistent. But this is a detail that
need not concern us yet.
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consisting of both a world state and an epistemic state. World states are modeled exactly
as they were in L, namely as functions from primitive expressions to their values, and
epistemic states are modeled as sets of world states. We write e, w |H α to indicate that α
is true in world state w and epistemic state e. We proceed recursively as follows: all cases
except sentences dominated by K operators are handled as in L, and Kα is true if α is true
at every universe whose epistemic state is e and whose world state is a member of e. In
detail, we have

1. e, w |H P(t1, . . . , tk) iff w[P(n1, ...nk)] = 1, where ni = w(ti );

2. e, w |H (t1 = t2) iff w(t1) is the same name as w(t2);

3. e, w |H ¬α iff it is not the case that e, w |H α;

4. e, w |H α ∨ β iff e, w |H α or e, w |H β;

5. e, w |H ∃x .α iff for some name n, e, w |H αx
n ;

6. e, w |H Kα iff for every w′ ∈ e, e, w′ |H α.

Except for the last clause, the definition is the same as it was with L, with an extra param-
eter e carried around. In the last clause, we consider the truth of α at a range of alternative
world states w′, but in keeping with our assumption, the epistemic state in all these alter-
natives remains fixed at e.

As before, we say that a set of sentences 0 is satisfiable just in case there is some world
state w and an epistemic state e such that e, w |H α for every α in 0, in which case we say
that w and e satisfy 0. We say that α is valid if it is satisfied by every world and epistemic
state. Finally, we say that a sentence α is logically implied by a set of sentences 0, which
we write 0 |H α, iff the set 0 ∪ {¬α} is unsatisfiable.

As a notational matter, we will use the Greek letters σ and τ to range only over sub-
jective sentences, and φ and ψ to range only over objective sentences. We will often write
e |H σ and w |H φ for subjective and objective sentences respectively.

In a sense we are done. The rest of the book can be thought of as an exploration of the
properties of this semantic definition.

3.9 Bibliographic notes

The original idea of possible worlds goes back to Leibniz (see [38]), although the first sat-
isfactory mathematical treatment is due to Kripke [81]. For the use of possible worlds in
interpreting counterfactual conditionals, see [122] and [179]. The first to apply Kripke’s
possible-world model to the formalization of knowledge was Hintikka [65]. Excellent gen-
eral textbooks on modal logic and possible-world semantics are [69] and [16]. The modal
system we are using in this book would be called weak-S5 in the terminology of [69] or
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K45 in the terminology of [16]. Much of the research effort in the area of modal logic
concerns variant modal systems for different applications. The book by Fagin, Halpern,
Moses and Vardi [42] offers a modern treatment of modal logic for knowledge. The authors
present and discuss in depth a number of variant modal systems, many of them consider-
ably more complex than KL, although they restrict their attention to purely propositional
languages. See [69] to get a glimpse of why general first-order modal logic is so trouble-
some. Much of the difficulty is caused by wanting to allow different domains of discourse
in different possible worlds, corresponding to the intuition that what does or does not ex-
ist may vary from world to world. But this intuition seems to be fraught with difficulty
[157, 71]. The approach we take here is that properties of objects may indeed change from
world to world, including perhaps having a physical presence of some sort, but that there is
only one fixed universal set of objects (possibly without physical presence) to begin with.
See [67] and the references therein for a discussion of such existence assumptions.

3.10 Exercises

1. Prove that if an epistemic state contains more than one world state, then the knowledge
is incomplete (that is, some sentence is neither known to be true nor known to be false).

2. Show that the truth value of a sentence where no predicate or function symbol appears
within the scope of a K does not depend on the epistemic state. Similarly, show that
the truth value of a sentence where no predicate or function symbol appears outside
the scope of a K does not depend on the world state.



4 Logical Properties of Knowledge

In this chapter, we will undertake an analysis of the logical properties of knowledge. Since
it is the semantics of the language KL that determines for us what it means for something
to be known, we will undertake this analysis by examining closely the logical properties of
KL itself.

We begin by showing how knowledge and truth behave similarly and differently, for
objective and subjective knowledge. We then do the same for knowledge and validity.
Next, we consider the issue of known individuals and how this relates to knowledge of
universals. Then, we show that we have circumscribed the basic characteristics of knowl-
edge by building an axiom system for KL and proving it sound and complete. Finally,
given the simplifying assumption we have made about meta-knowledge, we consider the
question as to whether the language itself can be simplified by eliminating all expressions
of meta-knowledge.

This chapter contains two non-trivial theorems: Theorem 4.5.1 and Theorem 4.6.2.
We have included the proofs of these inline as we feel that it is important to master the
mathematical techniques involved in the analysis of knowledge. These techniques are
further developed in exercises at the end of the chapter. Theorems or lemmas that do not
contain proofs should also be thought of as exercises, with only those of special interest
listed explicitly at the end.

4.1 Knowledge and truth

There are many parallels between the notions of knowledge and truth as they appear in KL.
First, it is worth noting that they are distinct notions, that is, that something can be true and
not known and vice versa:

Theorem 4.1.1: There are sentences α such that

1. {α ∧ ¬Kα} is satisfiable;

2. {¬α ∧ Kα} is satisfiable.

Proof: Let α be any primitive sentence, and choose w and w′ so that w |H α and
w′ |H ¬α. Then the first sentence above is satisfied when the world state is w and the
epistemic state is {w,w′}; the second sentence above is satisfied when the world state is
w′ and the epistemic state is {w}.
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Thus, we have that for some α, |6= (α ⊃ Kα) and |6= (Kα ⊃ α). In particular, there is no
requirement that what is known be true, and so, as we have noted before, the term “belief”
may be more appropriate.

There is, however, a class of sentences for which there is a correspondence between
knowledge and truth: the subjective sentences. In all cases, the truth of a subjective sen-
tence implies that the sentence is also known to be true. This is shown by induction over
subjective sentences, where the base case consists of equalities between standard names,
sentences of the form Kα, and their negations. So we begin with:

Lemma 4.1.2: |H (n1 = n2) ⊃ K(n1 = n2) and |H (n1 6= n2) ⊃ K(n1 6= n2).

Proof: The truth value of (n1 = n2) does not depend on the choice of world or epistemic
state, but only on whether the two names are the same or not. Consequently, if it is true (or
false), it will be true (or false) for every world state in the epistemic state. Thus it will be
known to be true.

Lemma 4.1.3: |H Kα ⊃ KKα and |H ¬Kα ⊃ K¬Kα.

Proof: The truth value of Kα does not depend on the world state in question but only on
the epistemic state. Thus, if it is true (or false) for some pair w and e, it will also be true
for w′ and e for every w′ ∈ e. Thus it will be known to be true.

Combining these two and using induction, we obtain:

Theorem 4.1.4: For any subjective sentence σ, |H (σ ⊃ Kσ).

Thus any true sentence about what is or is not known is known to be true. Another way of
putting this is to say that the concept of knowledge we are dealing with is such that there
is never any reason to tell a knowledge base a fact about itself; it already has complete
knowledge about such matters.

But what about the converse? Is it the case that any subjective sentence that is known
to be true is indeed true? In the previous chapter, we assumed informally that meta-
knowledge was accurate, that is, that subjective meta-knowledge was indeed true. Here,
however, we must be more precise and admit that this is not exactly right.

The complication involves the epistemic state where the knowledge is inconsistent.
This state is modeled by the empty set of world states, meaning that all possibilities have
been ruled out. In this state all sentences are known, and so it cannot be the case that the
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known subjective sentences are all true. For example, for any primitive sentence φ, the
sentence ¬Kφ will be false, but believed to be true. In other words, the set of sentences
{K¬Kφ, Kφ} is satisfiable.

However, for consistent epistemic states, we do have that any subjective meta-knowl-
edge is true. Since a consistent epistemic state can be thought of as one where at least one
sentence is not believed, we get:

Theorem 4.1.5: For any α and any subjective σ, |H (¬Kα ⊃ (Kσ ⊃ σ)).

The proof of this is similar to the proof of the previous theorem.

4.2 Knowledge and validity

There is, as it turns out, also a parallel between knowledge and validity (or provability).
Consider the case of an objective sentence: an objective sentence is known iff it comes out
true in all world states contained in the epistemic state; it is valid, on the other hand, if it
comes out true in all states. Thus for objective sentences, validity coincides with a special
case of knowledge, namely where the epistemic state contains all world states. But more
importantly, generalizing from this observation, we have:

Theorem 4.2.1: If |H α then |H Kα.

Thus, as we saw above, although true sentences need not be known in general, valid sen-
tences will always be known. Thus, it is important to distinguish in KL between the fol-
lowing two claims:

1. |H (α ⊃ Kα);
2. If |H α then |H Kα.

Only the second one is correct.
We will consider the converse of the above theorem in a moment. First, let us consider

another property of validity: closure under rules of inference. Knowledge has this property
as well, for exactly the same reason:

Theorem 4.2.2: |H Kα ∧ K(α ⊃ β) ⊃ Kβ.

This says that knowledge is closed under modus ponens. For universal generalization, we
will take the infinitary version of the rule and say that if all (infinitely many) instances of a
formula are known, then so is the universal version of the formula:
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Theorem 4.2.3: |H ∀x Kα ⊃ K∀xα.

The finitary version of this principle will be discussed later.
Taken together, the previous three theorems allow us to consider knowledge as some

sort of provability operation. That is, recalling the derivability operation in L, one possible
characterization is the following:

1. All of the axioms are derivable.

2. If α and (α ⊃ β) are derivable, then so is β.

3. If αx
n is derivable for every name n, then so is ∀xα.

The three theorems above allow us to replace “derivable” in the above by “known to be
true”, as well as moving from L to KL.

But a better way to look at these theorems is that they are special cases of the principle
that knowledge is closed under logical consequence:

Theorem 4.2.4: Let e be any epistemic state. Let 0 be any set of sentences such that for
every γ ∈ 0, e |H Kγ. Further, suppose that 0 |H α. Then e |H Kα.

In other words, if (some of) what is known logically implies α, then α must be known
as well. This property is sometimes referred to as logical omniscience since it says that
a knowledge base is always “aware” of all of the logical consequences of what it knows.
It is as if the knowledge base were always able to instantly do logical reasoning over
everything that it knows, and therefore believe that these sentences must be true also.1

We will collectively refer to these four theorems by the name of the most general one,
Theorem 4.2.4.

Finally, let us return to the converse of Theorem 4.2.1. Is it the case, that sentences
that are always believed must be logically valid? The answer is no. For example, although
we do not require a knowledge base to be accurate, it turns out that a knowledge base will
always believe that it is accurate, in the following sense:

Theorem 4.2.5: |H K(Kα ⊃ α)

Proof: There are two cases. Suppose Kα is true for some e. Then K(Kα ⊃ α) must be
true by Theorem 4.2.4, since {α} logically implies (β ⊃ α) for any β. On the other hand,
if ¬Kα is true, then K¬Kα must be true by Theorem 4.1.4, and so K(Kα ⊃ α) is again

1 This is not a very realistic assumption for real agents (with finite resources), but it is one that makes the
characterization of knowledge much simpler. We will take up the topic of relaxing this assumption later in
Chapters 12 and 13.
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true by Theorem 4.2.4. So for any e, K(Kα ⊃ α) must be true, and the theorem follows.

Thus a knowledge base always believes that if it believes something, then it must be true,
even though this principle is not valid. We can think of this as saying that a knowledge base
is always confident of what it knows. It does not allow for the possibility that something it
believes is false. Or put another way, this says that all the knowledge base has to go on are
its beliefs, all of which are equally reliable, and so it has no reason (that is, no belief) to
doubt anything that it believes.

If “know” is not the appropriate term here (since what is known in our sense is not
required to be true), neither is “believe,” at least in the sense of allowing for the fact that
you might be mistaken. Perhaps a more accurate term would be “is absolutely sure of”
which would not require truth, but would preclude doubts.2

4.3 Known individuals

As we observed before, there is more to understanding what is known than simply identi-
fying the sentences known to be true. We also want to be able to distinguish between epis-
temic states where it is known that Sue has a teacher and epistemic states where the identity
of that teacher is known. We can adapt the standard philosophical jargon of de dicto and
de re knowledge to describe the situation. If Sue is known to have a teacher de dicto, this
means that the sentence saying that Sue has a teacher (that is, the simple existential) is
known to be true. If Sue is known to have a teacher de re, this means that there is some
individual who is known to be a teacher of Sue. Formally, the two conditions would be
expressed as follows:

de dicto: K∃xTeach(x, sue) is true at e iff for every w ∈ e, there is a name n such that
w |H Teach(n, sue).

de re: ∃x KTeach(x, sue) is true at e iff there is a name n such that for every w ∈ e,
w |H Teach(n, sue).

Much of the richness and complexity of KL is a direct result of this difference, which
semantically, reduces to an order of quantifiers.

The first property to observe about this distinction is that de re knowledge implies
de dicto, but not vice versa.

Theorem 4.3.1: |H (∃x Kα ⊃ K∃xα) but |6= (K∃xα ⊃ ∃x Kα)

2 This is still not right because of logical omniscience. A more accurate gloss for Kα would be “α follows
logically from what the system is absolutely sure of,” although even this is not quite right because of introspection
and meta-knowledge.
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This follows immediately from the semantic characterization given above. What does
imply de re knowledge, however, is knowledge involving particular standard names:

Theorem 4.3.2: |H KP(n) ⊃ ∃x KP(x).

But this does not work if there is uncertainty about the identity of the individual:

Theorem 4.3.3: Let n1 and n2 be distinct. Then

|6= K(P(n1) ∨ P(n2)) ⊃ ∃x KP(x).

Proof: Let w be such that w |H P(n) iff n = n1, and w′ be such that w |H P(n) iff
n = n2. Let e = {w,w′}. Then e satisfies the left hand side, but not the right hand side.

Of course, by Theorem 4.2.4, we would still have de dicto knowledge here, since an exis-
tential follows from the disjunction.

Similarly, there will be no de re knowledge if the uncertainty about the identity of the
individual is because of a non-standard name:

Theorem 4.3.4: Suppose t is a primitive term. Then, |6= (KP(t) ⊃ ∃x KP(x)).

Proof: Let w and w′ be as above except that w[t] = n1 and w′[t] = n2. Then again e
satisfies the left hand side, but not the right hand side.

In all of the above cases, what is at issue is the existence of a fixed individual for each
of the world states making up the epistemic state. The language L allows us to express
properties of individuals without fixing the identity of the individual in question. The fact
that (KP(t) ⊃ ∃x KP(x)) is not valid in KL means that the sentence

∀x .KP(x) ⊃ KP(t)

is not valid either. This, in turn, is an instance of (∀xα ⊃ αx
t ) which in general cannot

be valid either. This is very different from the situation in the logic of L, since this last
sentence was in fact an axiom in the proof theory of L, often called the axiom of special-
ization.

So why exactly does the axiom of specialization fail in KL? Consider this example.
Suppose the following sentence is true:

∀x .KTeacher(x) ∨ K¬Teacher(x).

That is, for every individual x, either x is known to be a teacher or known not to be a
teacher. In other words, the knowledge base has an opinion about every individual, one
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way or another. This can happen, for instance, when it is known that #3 is the one and only
teacher. Now consider the sentence

KTeacher(t) ∨ K¬Teacher(t),

where t is the term best friend(mother(sam)). Clearly the first sentence can be true without
the second one being true, when the identity of the best friend of the mother of Sam is
unknown. In particular, even if we know that #3 is the one and only teacher, it does not
follow that we know whether or not t is a teacher, since we may not know if (t = #3) is
true or not.

This is an example of the failure of the axiom of specialization and it is due to the
fact that the identity of non-standard terms may be unknown. In fact, we can show that
the axiom of specialization does hold provided that the replacement for the variable never
places a function symbol within the scope of a K. First we need this lemma:

Lemma 4.3.5: Let t be any term, w any world state, e any epistemic state. Suppose that
α is a formula with at most a single free variable x, and that none of the free occurrences
of x in α are within the scope of a K. Assume that w(t) is n. Then

e, w |H αx
n iff e, w |H αx

t .

Proof: The proof is by induction on the length of α. If α is an atomic sentence, this
clearly holds. If α is an equality, it also holds by induction on the structure of the terms
in the equality. For negations and conjunctions, the lemma holds by induction. If α is
of the form ∀yβ, then there are two cases: if y is the same as x, then the lemma holds
trivially since x does not appear free in α; if y is distinct from x, then e, w |H (∀yβ)xn
iff e, w |H ∀y(βx

n ) iff e, w |H (βx
n )

y
n′ for every n′, iff e, w |H (β

y
n′)

x
n for every n′, iff (by

induction) e, w |H (β y
n′)

x
t for every n′, iff e, w |H (βx

t )
y
n′ for every n′, iff e, w |H ∀y(βx

t )

iff e, w |H (∀yβ)xt . Finally, if α is of the form Kβ, then the lemma holds trivially since x
does not occur freely within the scope of a K.

With this lemma, we then get:

Theorem 4.3.6: |H (∀xα ⊃ αx
t ), provided that when replacing x by t, no function symbol

is introduced within the scope of a K.

Proof: If the term t is a standard name, this follows immediately from the semantics of
universal quantification. Otherwise, it must be the case that no free occurrence of x in α is
within the scope of a K. Suppose that for some w and e, e, w |H ∀xα. Then we must have,
e, w |H αx

n for every n. In particular, consider the n which is w(t). By the above lemma,
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we must have e, w |H αx
t .

Thus, specialization holds as long as the term t is a standard name or x does not appear
free in α within the scope of a K. Other sound restrictions of the axiom of specialization
are also considered in the exercises.

As a simple consequence of this theorem we get that equals can be substituted for
equals provided that this does not involve placing a non-standard term within the scope of
a K:

Theorem 4.3.7: Suppose that t and t ′ are terms, and that α has at most a single free
variable x . Further assume that neither αx

t nor αx
t ′ introduces a function symbol within the

scope of a K. Then,

|H (t = t ′ ⊃ αx
t ≡ α

x
t ′).

Proof: First observe that for any pair of names, n and n′, we have

|H (n = n′ ⊃ αx
n ≡ α

n
n′).

since equality between names holds iff the names are the same. Thus we get that

|H ∀y∀y′(y = y′ ⊃ αx
y ≡ α

x
y′).

The theorem then follows immediately from Theorem 4.3.6.

4.4 An axiom system for KL

Having examined various properties of KL, we are now ready to turn to an axiomatization
of the logic. As in the case of L, the principal reason for doing this is to provide a simple but
very different picture of the valid sentences, phrased in term of an initial set (the axioms)
and closure conditions (the rules of inference). As it turns out, the rules of inference we
need for KL are just those of L: modus ponens and universal generalization. So we need
only list the axioms, which are in Figure 4.1. The definition of theorem, derivability,
consistency, and inconsistency, are the same as they were in L. Again we use the notation
` α to say that α is a theorem, and 0 ` α to say that 0 derives α.

As in L, it is fairly easy to establish soundness:

Theorem 4.4.1: If a sentence of KL is derivable, then it is valid.

The proof of soundness, as usual, is by induction on the length of the derivation. The
basis of the induction proof depends on the validity of the above axioms, all of which
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1. Axioms of L:
All instances of the axioms of L, but with the proviso on the axiom of specialization that no function
symbol is introduced within the scope of a K.

2. Knowledge of axioms:
Kα, where α is an instance of an axiom of L, again with the proviso on specialization;

3. Knowledge closed under modus ponens:
K(α ⊃ β) ⊃ (Kα ⊃ Kβ);

4. Knowledge closed under universal generalization:
∀x Kα ⊃ K∀xα;

5. Complete knowledge of subjective truths:
(σ ⊃ Kσ), where σ is subjective.

Figure 4.1: Axioms for KL

were established in the previous section. Note, for example, that without the proviso on
the axiom of specialization, the system would be unsound, in that it would be possible to
derive non-valid sentences. The rule of modus ponens clearly preserves validity. So all we
need to establish is that the finitary version of universal generalization works, that is, that
if αx

n is valid for every name in α and at least one not in α, then ∀xα is valid too. In the
case of L, this was Corollary 2.8.11 of Theorem 2.8.8; here we need a similar corollary for
a generalized theorem:

Theorem 4.4.2: Let ∗ be a bijection from names to names. For any term t or wff α, let t∗

or α∗ be the result of simultaneously replacing in t or α every name by its mapping under
∗. Then α is valid iff α∗ is valid.

Proof: Similar to the proof of Theorem 2.8.8. We need to define w∗ as before, and here
we also need to define e∗ as {w∗ | w ∈ e}.

Corollary 4.4.3: Let α have a single free variable x and let n be a standard name not
appearing in α. Let n1, . . . , nk be the all the standard names appearing in α. If αx

n is valid
and all the αx

ni
are valid, then so is ∀xα.

Proof: The same argument as that of Corollary 2.8.11.

Establishing the completeness of this axiom system, that is, that the above axioms
are sufficient to generate all the valid sentences is much more challenging, as it requires
examining the properties of KL in fine detail. Before doing so, it is worth looking at some
simple derivations.
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To help in the presentation of derivations, we will use the following property of the
proof theory of KL:

Theorem 4.4.4: If ` α, then ` Kα.

Proof: The proof is by induction on the length of the derivation of α. First suppose that
α is an axiom of KL. There are two cases: if it is an instance of an axiom of L (with
proviso), then Kα is also an axiom of KL and so is derivable; all other axioms of KL are
subjective, and so if σ is any other axiom, (σ ⊃ Kσ) is also an axiom, in which case
Kσ is again derivable by modus ponens. If, on the other hand, α follows from some earlier
derivable β and (β ⊃ α), then by induction, Kβ and K(β ⊃ α)must also be derivable, and
so Kα is derivable by modus ponens and the axiom of closure of knowledge under modus
ponens. Finally, if α is of the form ∀xβ, and is derivable from βx

n1
to βx

nk
by universal

generalization, then by induction, Kβx
n1

to Kβx
nk

are also derivable, in which case, ∀x Kβ
follows from universal generalization, and then K∀xβ, by modus ponens and the axiom of
closure of knowledge under universal generalization.

So although as an axiom we only state that the axioms of L are known, this theorem shows
that any derivable sentence of KL is also known. This means that the proof theory behaves
as if there was an additional rule of inference (sometimes called knowledge generalization)
which says: from α, infer Kα.

We will use the same notation for derivations as we did with L, with two additions.
First, a justification marked L means that the current line is derivable from the previous
one (and perhaps earlier ones too), as a theorem of L alone. In other words, we will not
go into any detail involving sub-derivations that use only the axioms of L. Second, a
justification KG means that the current line is formed by putting a K in front of an earlier
line (appealing to the above theorem).

Figure 4.2 contains a derivation of K(Kα ⊃ α), whose validity was proven directly in
the previous section. The last step is derived using properties of L, from steps 3 and 8: if
(β ⊃ γ ) and (¬β ⊃ γ ) are both derivable, then so is γ.

As a second example, consider the fact that subjective knowledge must be accurate
when knowledge is consistent, that is, that

` ¬Kα ⊃ (Kσ ⊃ σ).
This is easily shown (and left as an exercise) given the following:

Theorem 4.4.5: ` ¬Kα ⊃ (Kβ ⊃ ¬K¬β).

Proof: See Figure 4.3.
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1. α ⊃ (Kα ⊃ α) L
2. K(α ⊃ (Kα ⊃ α)) KG

3. Kα ⊃ K(Kα ⊃ α) MP

4. ¬Kα ⊃ (Kα ⊃ α) L
5. K(¬Kα ⊃ (Kα ⊃ α)) KG

6. K¬Kα ⊃ K(Kα ⊃ α) MP

7. ¬Kα ⊃ K¬Kα Ax

8. ¬Kα ⊃ K(Kα ⊃ α) MP

9. K(Kα ⊃ α) L

Figure 4.2: A derivation in KL

1. β ⊃ (¬β ⊃ α) L
2. K(β ⊃ (¬β ⊃ α)) KG

3. Kβ ⊃ (K¬β ⊃ Kα) MP

4. ¬Kα ⊃ (Kβ ⊃ ¬K¬β) L

Figure 4.3: Derivation of not knowing a wff and its negation

So, as long as there is a single sentence α that is not known, there is no sentence β such
that both it and its negation are known. The proviso is necessary since it is possible for
every sentence to be known.

As a third example, we derive (∀x∀y(x = y) ⊃ K(x = y)) in Figure 4.4. This shows
that all equalities (among standard names) are known. A similar derivation can be used to
show that inequalities are also known. Note that the first two lines here use the fact that
equality sentences that do not use function symbols are subjective, and hence known. So
this does not permit the derivation of ((t1 = t2) ⊃ K(t1 = t2)) for non-standard terms
ti , since the axiom of specialization with proviso cannot put a function symbol within the
scope of a K.

4.5 A Completeness proof

We now turn our attention to the completeness of the axiomatization of KL:

Theorem 4.5.1: If a sentence of KL is valid, then it is derivable.
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1. (#1 = #1) ⊃ K(#1 = #1) Ax

2. (#1 = #2) ⊃ K(#1 = #2) Ax

3. ∀y(#1 = y) ⊃ K(#1 = y) UG

4. ∀x∀y(x = y) ⊃ K(x = y) UG

Figure 4.4: Derivation of knowing equality of names

As we discussed in the case of L, we can prove this by showing that any consistent sentence
is satisfiable. This is sufficient since if a sentence α is valid, ¬α is unsatisfiable, and so,
¬α would be inconsistent, and therefore, ¬¬α derivable, and consequently α derivable as
well, since (as it is easy to show) (¬¬α ⊃ α) is derivable in KL (and L).

To show that every consistent sentence is satisfiable, we proceed in two stages: first
we show that every finite consistent set of sentences can be extended to what we will call
a T-set; then we show that every T-set can be satisfied.

To define a T-set, we start with the notion of a maximally consistent set: a set of sen-
tences is maximally consistent iff it is consistent and any proper superset is inconsistent.
The following are properties of maximally consistent sets that derive directly from proper-
ties of ordinary first-order logic and we will not prove here:

Lemma 4.5.2:

1. Every consistent set can be extended to a maximally consistent set. That is, for every
consistent 0, there is a maximally consistent 0′ such that 0 ⊆ 0′.

2. If 0 is maximally consistent then ¬α ∈ 0 iff α 6∈ 0.

3. If 0 is maximally consistent then (α ∧ β) ∈ 0 iff α ∈ 0 and β ∈ 0.

4. If 0 is maximally consistent and 0 ` α, then α ∈ 0.

Note that we are not claiming for a maximally consistent 0 that if ∃xα ∈ 0, that for some
n, αx

n ∈ 0. In fact, the set

{∃x P(x), ¬P(#1), ¬P(#2), . . .}

is consistent (and can be extended to a maximally consistent set) since there is no contra-
diction for any finite subset of the set. Similarly, the infinite set

{¬K∀x P(x), KP(#1), KP(#2), . . .}

is consistent as is

{(t 6= #1), (t 6= #2), (t 6= #3), . . .}.
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However, none of these sets are satisfiable, and so a T-set must go beyond maximal con-
sistency if it is to be satisfiable.

To handle these cases, we first define the concept of an E-form: the E-forms with
respect to a variable x are the least set of wffs with only x free such that:

1. If α is a formula with just a free variable x, then (∃xα ⊃ α) is an E-form with respect
to x;

2. If t is a closed term, then (t = x) is an E-form with respect to x;

3. If α is any sentence and β is an E-form with respect to x, then so is the formula
(¬Kα ⊃ ¬K(β ⊃ α)).

A substitution αx
n , where α is an E-form with respect to x and n is any standard name is

called an instance of the E-form. Now we define a T-set to be a maximally consistent set
that contains at least one instance of every E-form.

Notice how T-sets rule out cases like the above: for example, if a T-set contains
∃x P(x), then for some n it must also contain (∃x P(x) ⊃ P(n)), and thus, it must also
contain P(n) by Lemma 4.5.2. That is, if a T-set contains ∃xα, it must also contain a
witness to this existential.

4.5.1 Part 1

In this subsection, we prove

Theorem 4.5.3: Every finite consistent set can be extended to a T-set.

We begin by showing that the existential closure of every E-form is derivable in KL:

Lemma 4.5.4: If α is an E-form wrt x, then ` ∃xα.

Proof: The proof is by induction on the composition of the E-form. If the E-form is one
of the two base cases, then the lemma holds by virtue of properties of L, and were given as
exercises in Chapter 2. Otherwise assume that α is any sentence, β is an E-form wrt x, and
that by induction, ∃xβ is derivable. It is easy to show that (∀x Kγ ⊃ K∃xγ ) is derivable
for any γ, and in particular,

∀x K(β ⊃ α) ⊃ K∃x(β ⊃ α)

is derivable. By properties of L,

K∃x(β ⊃ α) ⊃ K((∃xβ) ⊃ α)

is also derivable, since x does not appear free in α. However, ` K∃xβ since ` ∃xβ, by
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Theorem 4.4.4. So putting all these together, we get that

` ∀x K(β ⊃ α) ⊃ Kα,

and so

` ¬Kα ⊃ ∃x¬K(β ⊃ α).
Finally, using properties of L, we can move the existential to the front, and get that

` ∃x .¬Kα ⊃ ¬K(β ⊃ α),
since x does not occur free in α.

Next we have that

Lemma 4.5.5: If 0 is a finite consistent set of sentences, and β is an E-form, then there is
a name n such that 0 ∪ {βx

n } is consistent.

Proof: Suppose not. Let γ be the conjunction of sentences in 0. Then,

` (βx
n ⊃ ¬γ ),

for every n, and so,

` ∀x(β ⊃ ¬γ ).

But, by the previous lemma, ` ∃xβ. Therefore, since x does not occur free in γ, we get
` ¬γ, contradicting the consistency of 0.

We can now prove the theorem of this subsection:

Proof: Suppose all sentences of KL are enumerated by α1, α2, α3, . . . and that all E-
forms are enumerated by β1, β2, β3, . . . . We will first define a sequence of finite sets of
sentences, 00, 01, 02, . . . and show that each must be consistent. First, let 00 be the given
finite consistent set of sentences. Now assume that 0i has been defined and is consistent.
Let α be αi if 0i ∪{αi } is consistent, and ¬αi , otherwise; then 0i ∪{α} is consistent. Let β
be the instance of the E-form βi that is consistent with 0i ∪ {α}, promised by the previous
lemma, and let 0i+1 be 0i ∪ {α, β}. This set must be consistent also. Finally, let 0 be
the union of all 0i . This set is maximally consistent and also contains an instance of every
E-form.

This shows that any finite consistent set can be extended to a T-set.

4.5.2 Part 2

What remains to be shown is this:

Theorem 4.5.6: Every T-set can be satisfied.
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In fact, what we will show is that a T-set completely determines an epistemic and world
state, that is, that for each T-set 0, there is an e and w such that

0 = {γ | e, w |H γ }.

As we will show, from the fact that a T-set is maximally consistent, negations and conjunc-
tions are handled properly; because a T-set also has an instance of every E-form, existen-
tials are also accounted for. So all we really need to do is establish that the K operator is
treated properly.

In what follows, we let<(0) be the set of all T-sets 0′ such that for every α, if Kα ∈ 0,
then α ∈ 0′.

First we define a mapping from T-sets to world states: for any 0 that is a T-set, w0

is the world state w such that for any primitive, w[φ] = 1 iff φ ∈ 0, and w[t] = n iff
(t = n) ∈ 0. From the properties of T-sets, we get by induction:

Lemma 4.5.7: If 0 is a T-set, then for any objective φ, φ ∈ 0 iff w0 |H φ.

Note that this handles the completeness for the objective part of L. To handle the rest of
KL, first we show:

Lemma 4.5.8: If 0 is a T-set, and ¬Kα ∈ 0, then for some 0′ ∈ <(0), ¬α ∈ 0.

Proof: We will show that there must be a 0′ that has these properties: it contains ¬α,
it contains an instance of every E-form, it contains every γ such that Kγ ∈ 0, and it is
consistent. It is then immediate that this 0′ can be extended to a maximally consistent set,
which is therefore a member of <(0).

First observe, that since ¬Kα ∈ 0, and 0 is a T-set, every E-form β has an instance βx
n

such that ¬K(βx
n ⊃ α) ∈ 0. Let β1, β2, . . . and so on, be all such instances, and let 0′ be

this set, together with ¬α and all γ such that Kγ ∈ 0. What remains is to show that this
0′ is consistent.

Observe that for any finite subset {β1, . . . , βk} of the instances of E-forms in 0′, we
have the sentence

¬K(β1 ⊃ (β2 ⊃ . . . ⊃ α) . . .)

in 0. This is by induction on the size of the subset, using the closure property of T-sets.
Now suppose to the contrary that 0′ is inconsistent. Then for some γ such that Kγ ∈ 0,
and some finite set of βi as above, we have that

` (γ ⊃ (β1 ⊃ (β2 ⊃ . . . ⊃ α) . . .)),

and thus,
` (Kγ ⊃ K(β1 ⊃ (β2 ⊃ . . . ⊃ α) . . .)).
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Since Kγ ∈ 0, this would imply that

K(β1 ⊃ (β2 ⊃ . . . ⊃ α) . . .)

was in 0 too, contradicting the consistency of 0 itself.

Next, we associate an epistemic state to each T-set as follows: for any 0 that is a T-set, let
e0 be defined as

{w0′ | 0
′
∈ <(0)}.

Now we are ready to prove the theorem of this subsection. Specifically, we prove that if
0 is a T-set, and w = w0 and e = e0 then α ∈ 0 iff e, w |H α, and consequently 0 is
satisfied by this w and e.

Proof: The proof is by induction on the length of α. If α is a atomic sentence or an equal-
ity, the theorem holds by Lemma 4.5.7. The theorem holds for negations and conjunctions
by induction, and for existential quantification by induction and the properties of T-sets.
Finally, consider the case of Kα. If Kα ∈ 0, then for every every 0′ ∈ <(0), α ∈ 0′; thus,
by induction, for every w′ ∈ e, e, w′ |H α, and so e |H Kα. Conversely, if Kα 6∈ 0, then
¬Kα ∈ 0, and so by Lemma 4.5.8, for some 0′ ∈ <(0), α 6∈ 0′; thus, by induction, for
some w′ ∈ e, e, w′ |H ¬α, and so e |H ¬Kα.

This ends the completeness proof.

4.5.3 Variant systems

It is appropriate at this stage to consider some simple variants of KL and see how the
axiomatization and the proof of completeness would have to be modified to deal with
them.

Perhaps the simplest variant would be one where knowledge was required to be con-
sistent. Currently, the set consisting of all sentences of the form Kα is satisfiable, but only
by the epistemic state that is the empty set of world states. Semantically, to make sure
that knowledge is consistent, we need only require an epistemic state to be non-empty. To
capture this property axiomatically, we simply change the axiom stating that subjective
knowledge is complete to one stating that it is both complete and accurate:

subjective knowledge is complete and accurate: (σ ≡ Kσ).

This is clearly sound for the new semantics. To show that it is complete, we need only
show that for any T-set 0, the set <(0) is non-empty. To see why it must be, observe that
0 cannot contain every Kγ since it would have to contain K¬Kα, and then ¬Kα by the
above axiom, violating consistency. Thus it must contain, ¬Kγ for some γ, and then by
Lemma 4.5.8, <(0) is non-empty.



Logical Properties of Knowledge 73

Another simple variant of KL would require all knowledge to be accurate: we only
look at pairs 〈e, w〉 such that w ∈ e. In terms of the proof theory, this can be handled by
adding the axiom
knowledge is accurate: (Kα ⊃ α)
To see why this is sufficient, we need only show that for any T-set 0 we have that w0 ∈ e0.
In fact, we get a stronger property, namely that 0 ∈ <(0), as a direct consequence of the
above axiom and T-set closure.

A final variant that is less plausible in general is that the knowledge is complete. As
we said earlier, this is modeled semantically by having an epistemic state consisting of a
single world state. In the proof theory, we would add the following axiom
knowledge is complete: (¬Kα ⊃ K¬α.)
To see why this is sufficient, we need only show that for any T-set 0, <(0) consists of a
singleton set, which we leave as an exercise.

4.6 Reducibility

Having looked at a proof theory for KL and a few simple variants, we now turn our attention
to a very different logical property of knowledge having to do with meta-knowledge. This
will also constitute the first time there is clear difference between the quantifier-free subset
of KL and the full version. We will use the term propositional subset to mean the subset of
KL without quantifiers.

If we look at the semantic and axiomatic accounts of KL, it might appear that the sim-
plifying assumption made regarding meta-knowledge makes the whole notion dispensable.
Assuming that knowledge is consistent, for example, we have that both KKα ≡ Kα and
K¬Kα ≡ ¬Kα are valid. This means that we can always reduce strings of K operators
and negations down to at most a single K operator. So the question we wish to address in
this section is this: can we generalize this idea and eliminate all nesting of K operators,
without losing expressive power? In other words, is it possible to take any sentence and
find an equivalent one where the K operator only dominates objective sentences? If we can,
this would mean that meta-knowledge offers essentially nothing over objective knowledge.

As it turns out, the answer to the question is yes for the propositional subset of KL, and
no for the full language. First the propositional case:

Theorem 4.6.1: For any α in the propositional part of KL, there is an α′, where α′ has no
nesting of K operators and |H (α ≡ α′).

Proof: The proof is based on induction on the depth of nesting of K operators in α, but
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here we will merely present it in outline. Assume that α has a subformula Kβ where β uses
K operators. First, we observe that because of the usual properties of the propositional part
of L, we can put β into a logically equivalent conjunctive normal form (CNF) β ′, where β ′

is a conjunction of disjunctions of extended literals, where an extended literal is a (possibly
negated) sentence that is either objective or the form Kγ. So we have that Kβ is equivalent
to Kβ ′. Next, we use the fact that both of these are valid:

K(β1 ∧ β2) ≡ (Kβ1 ∧ Kβ2)

and

K(φ ∨ Kγ1 ∨ ¬Kγ2) ≡ (Kφ ∨ Kγ1 ∨ ¬Kγ2).

(See the exercises.) By applying this repeatedly, we get that Kβ ′ is equivalent to Kβ ′′

where the latter has reduced the level of nesting by one. By applying this repeatedly to α,
we eliminate all nesting of K operators.

So this theorem shows that talk of meta-knowledge in the propositional part of KL can
be replaced by completely equivalent talk about objective knowledge. If there is anything
new to meta-knowledge, it is in its interaction with the quantifiers. Note that the above
proof fails for the full version of KL because there is no way to distribute the K over some
version of a CNF: although we can move K operators inwards when we have something
like K∀xα, we cannot do so for sentences like K∃xα.

In the full quantified version of KL, we will show that there are indeed sentences with
nested K operators that cannot be rephrased in terms of objective knowledge. In particular,
the sentence

K∃x[P(x) ∧ ¬KP(x)],

which we will call λ, cannot be so reduced:

Theorem 4.6.2: For any α, if |H (α ≡ λ), then α has nested K operators.

The proof proceeds by constructing two epistemic states e1 and e2 that agree on all objec-
tive knowledge but disagree on λ. This is sufficient, since any proposed α without nested
K operators cannot be equivalent to λ, since although e1 and e2 will assign the same truth
value to α, they will assign different truth values to λ.

We construct e1 and e2 as follows. Let � be some infinite set of standard names
containing #1 whose complement is also infinite.3 Let 8 be the set of objective sentences
consisting of {(t = #1)} for every primitive term t, {¬φ} for every primitive sentence φ
whose predicate letter is not P, and finally {P(n)} for every n ∈ �. Let e1 be {w | w |H 8}.

3 An example is: {#1, #3, #5, . . .}.
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Let w be the (unique) element of e1 such that for every n 6∈ �, w |H ¬P(n). Finally, let
e2 be e1 \ {w}. This gives us that for all w ∈ e1 and for all n ∈ �, w |H P(n); worlds in e2

have this property also, and in addition, because w 6∈ e2, they also each have w |H P(n)
for some n 6∈ �.

The first thing to observe is that e1 and e2 disagree on λ. Specifically,

e1 |H ¬K∃x[P(x) ∧ ¬KP(x)]

but

e2 |H K∃x[P(x) ∧ ¬KP(x)].

This is because they do agree on the known instances of P, in that

e1 |H KP(n) iff e2 |H KP(n) iff n ∈ �,

and so the presence of w in e1 makes λ false, since w satisfies P(n) only for the known
instances of P.

To complete the proof, we need only show that e1 and e2 agree on all objective knowl-
edge and hence on all sentences without nested K operators. Showing that if e1 |H Kφ
then e2 |H Kφ is trivial, since e2 ⊂ e1; the converse will take some work.

First we prove the following:

Lemma 4.6.3: Let n1 and n2 be distinct names that are not members of �. Then for any
φ, w |H φ iff w |H φ∗, where φ∗ is φ with n1 and n2 interchanged.

Proof: By induction on the structure of φ, given that w is defined in a way that treats the
two names exactly the same.

Next, assume that the names that are not in � are enumerated as m1,m2,m3, . . . , and
define a corresponding sequence of worlds w1, w2, w3, . . . , as follows: wi is the unique
element of e2 such that wi |H P(n) iff n ∈ � or n = mi . Then we get the following:

Lemma 4.6.4: Let n be any name in � other than #1. Then for any φ, wi |H φ iff
wi |H φ

∗, where φ∗ is the result of interchanging n and mi in φ.

Proof: By induction on the structure of φ, given that wi is defined in a way that treats
the two names exactly the same. (The proviso regarding #1 is necessary because we have
made it be the value of all primitive terms.)

Using these two lemmas, we obtain:
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Lemma 4.6.5: Suppose mi 6∈ �. Then for any φ which does not mention mi , w |H φ iff
wi |H φ.

Proof: The proof is by induction on φ. The only tricky case is for existentials.
In one direction, if w |H ∃xφ, then w |H φx

n for some n. There are two cases: if n 6= mi ,

we get that wi |H φ
x
n by induction, and so wi |H ∃xφ; however, if n = mi , then by the first

lemma above, if we let n′ be some distinct name that does not appear in φ, and such that
n′ 6∈ �, we get that w |H φx

n′ . Then by induction, wi |H φ
x
n′ , and so wi |H ∃xφ.

In the other direction, if wi |H ∃xφ, then wi |H φ
x
n for some n. Again, there are two cases:

if n 6= mi , we get that w |H ∃xφ as above; however, if n = mi , then by the second lemma
above, if we choose any n′ not mentioned in φ such that n′ ∈ � and n′ 6= #1, we get that
wi |H φ

x
n′ . Then by induction, we get that w |H φx

n′ , and so w |H ∃xφ.

Now we can finish the proof of the theorem. If e1 |H ¬Kφ, then for some w ∈ e1 we have
w |H ¬φ. If w ∈ e2, we are done; otherwise, w = w, and so choose some mi 6∈ � that
does not appear in φ. By the lemma above, wi |H ¬φ, wherewi ∈ e2. Either way, for some
w ∈ e2 we have w |H ¬φ, and so e2 |H ¬Kφ.

In the end, what this theorem shows is that the knowledge expressed by λ cannot
be expressed in terms of objective knowledge, even allowing that subjective knowledge
is complete and accurate. What the sentence λ expresses is that the KB knows that it has
incomplete knowledge about P: there is an individual with property P not currently known
to have that property. The above theorem shows that this is a form of knowledge that goes
beyond mere objective knowledge.

This completes our purely logical analysis of KL. In the chapters to follow, we will
apply KL to the task of interacting with a knowledge base.

4.7 Bibliographic notes

The properties of KL were first presented in [111], and then in [113]. Many of the prop-
erties discussed here will come up again in later chapters. Logical omniscience was first
discussed by Hintikka [65] and, because it appears to have direct bearing on computational
issues, has received considerable attention since then. See Chapters 12 and 13 and the
references there for a more thorough discussion of this issue and a model of knowledge
without logical omniscience. Other properties of the propositional subset of KL and nu-
merous variants can be found in [42]. Turning to the quantificational aspects, the de dicto
/ de re distinction is a major one in quantified modal logics. See [69] for an introduction to
the issue. A more philosophical discussion can be found in [127]. The philosopher Quine,
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among others, has maintained that quantifying into a modal context is fundamentally in-
coherent [157], although his arguments (concerning, for instance, confusion of identity)
require de re belief without using standard names. In this context, our standard names
are often called “rigid designators” in that that they designate the same individual in every
possible world. Note that we use these as logical names [167], that is, as terms in our
logical language, without claiming them to be anything like proper names found in natural
languages. See [128, 83] for a discussion of these issues. The Henkin-style completeness
proof presented here (including the use of E-forms) is adapted from [69].

4.8 Exercises

1. State whether or not each of the following properties of knowledge holds in general,
and if not, whether it holds when the sentence α is subjective and when knowledge is
consistent:

(a) |H (α ⊃ Kα);

(b) |H (Kα ⊃ α);

(c) if |H α then |H Kα;

(d) if |H Kα then |H α;

(e) |H K(α ⊃ Kα);

(f) |H K(Kα ⊃ α).

2. Show that |H Kα ∧ K(α ⊃ β) ⊃ Kβ and |H ∀x Kα ⊃ K∀xα.
3. Divide the set of subjective sentences into three categories: positive, negative, and

mixed. Show for the positive case, we have that (σ ≡ Kσ), even when the knowledge
is inconsistent.

4. Use Theorem 4.2.5 to show that a knowledge base will always believe that either it
does not believe α or it does not believe ¬α. Thus, a knowledge base always believes
it is consistent.

5. Show that ` Kα ⊃ K(α ∨ β).
6. Use Theorem 4.4.5 to show ` ¬Kα ⊃ (Kσ ⊃ σ).
7. Show that {(t1 = t2), K(t1 6= t2)} is satisfiable.

8. Show that Theorem 4.3.7 is false without the proviso on introducing a function symbol
within the scope of a K.

9. Show a derivation of a non-valid sentence that could happen if there were no proviso
on the axiom of specialization.
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10. Show that the axiom of specialization is valid without proviso when the value of the
term t being substituted is correctly known. That is, show that

|H ∃y(y = t) ∧ K(y = t)) ⊃ (∀xα ⊃ αx
t ).

Show that this does not hold when the value of the term t is known but need not be
correct. That is, show that

|6= ∃y K(y = t) ⊃ (∀xα ⊃ αx
t ).

11. Show that (¬Kα ⊃ K¬α) is sufficient to characterize complete knowledge. That is,
show that the given axiomatization of KL with this axiom added is complete for a
semantics where an epistemic state is required to be a singleton set.

12. Show that |H [K(α ∨ σ) ≡ Kα ∨ σ ], when σ is subjective. This is a generalization
of the property used in the proof of Theorem 4.6.1.

13. Show that the axiom ∀x Kα ⊃ K∀xα can be replaced by K∀x(Kα ⊃ α), in the sense
that one is derivable from the other, given the other axioms.



5 The TELL and ASK Operations

In the previous chapter, we examined the properties of the language KL in detail to develop
a clear understanding of when sentences in this language were true or false. In this chapter,
we will use the language as a way of communicating with a knowledge base or KB. We
will use KL both to find out what is known and to provide new knowledge. We begin by
defining these interaction operations, and examining a few immediate properties. We then
illustrate the use of these operations on a larger example KB, emphasizing the power of
KL as an interaction language. In the next chapter, we will examine some of the deeper
properties and implications of the definitions presented here.

5.1 Overview

After our somewhat lengthy excursion into the logical properties of KL, it is perhaps worth-
while to briefly review where we stand. What we have, so far, is a logical language KL
together with a precise specification of what it means for sentences in this language to be
true or false, and what it means for sentences to be known or unknown, as a function of a
given world and epistemic state. A world state here is modeled as a function from primitive
expressions to their values, and an epistemic state is modeled as a set of world states.

What we intend to do with this language is use it as a way of interacting with the KB
of a knowledge-based system. Roughly, we will find out if something is known by the KB
by asking it a question formulated as a sentence in KL. Similarly, we will make something
known to the KB by telling it that some sentence of KL is true. Thus, we envision for now
two operations to be performed on a KB:

1. ASK[α, e] ∈ {yes, no}
In an epistemic state e, we determine if α is known, by using an ASK operation. The
result we expect is a simple answer, yes or no.

2. TELL[α, e] = e′

In an epistemic state e,we add information to the KB by performing a TELL operation.
The result is a new epistemic state, e′.

Note that while the first argument to these operations is a symbolic structure (that is, a sen-
tence of KL), the second argument is an epistemic state, not some symbolic representation
of one. For now at least, our approach to these operations will not depend on how what is
known is actually represented in a KB.

If we think of a KB as an abstract data type, accessible only in terms of the operations
it provides, we need one more operation to give us an initial epistemic state:
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3. INITIAL[ ] = e0

The epistemic state before any TELL operations.

The idea is that we imagine the full lifetime of a KB as proceeding through a number
of states e0, e1, e2, . . . in sequence, where e0 is as above, and for every i > 0, there
are sentences αi , such that ei = TELL[αi , ei−1]. In any such state, we can use ASK to
determine what is known.

These three operations together constitute a full functional interface to a KR system
as described in Chapter 1. The user of the system has access to the KB only through this
fairly narrow interface. The KR system builder’s job is to implement these three operations
somehow using whatever representational means are appropriate.

In the rest of this chapter, we examine the three operations in more detail.

5.2 The ASK operation

The purpose of the ASK operation is clear: ultimately, we want to find out from a knowl-
edge base if a sentence α is true or not. The complication is that a KB will not always
be able to answer this, since all it has to go on is what it knows. There are, in fact, four
possible outcomes:

1. it might believe that α is true;
2. it might believe that α is false;
3. it might not know whether α is true or false;
4. it might be inconsistent, and believe both that α is true and that it is false.

This is not a result of anything like a multi-valued logic, but simply the result of the differ-
ent possible epistemic states that can arise. In effect, for various α, each of the following
sets of sentences are satisfiable (corresponding to the cases above):

1. {Kα, ¬K¬α};
2. {¬Kα, K¬α};
3. {¬Kα, ¬K¬α};
4. {Kα, K¬α};

At best then, ASK can do no more than tell us which of the four mutually exclusive alter-
natives holds for the current epistemic state.

There is, however, a slightly simpler interaction we can use. Instead of asking whether
or not α is true, we could ask the KB whether or not α is known. In the first and fourth
cases above, the KB would answer affirmatively, and in the second and third cases, it would
answer negatively. If we then ask if ¬α is known, in the second and fourth case, it would
answer affirmatively, and in the first and third, negatively. The net effect of this shift is
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that we can still determine which of the four cases holds if we so desire, but by asking two
questions: one for α and one for ¬α.

Since this decoupling of the positive and negative cases leads to a simpler definition
for ASK, we will use this convention. The translation to the other form of question is
straightforward. With this in mind, we define ASK as follows:

Definition 5.2.1: For any sentence α of KL and any epistemic state e,

ASK[α, e] =
{

yes if e |H Kα
no otherwise

So at a given epistemic state e, ASK returns yes not if α is true (which would require a
world state), but if Kα is true at e. Thus the semantics of KL, which tells us what it means
for a sentence like Kα to be true, does all the work in the definition.

5.3 The initial epistemic state: e0

As discussed in Chapter 3 and will become clearer when we look at TELL, an epistemic
state is a set of world states that is progressively narrowed as information is acquired. In
finding out that φ is true, we eliminate from the epistemic state the world states where φ is
false. So the smaller the set of world states, the more complete the knowledge.

It is worth considering the properties of the most uninformed epistemic state, which
we will call e0. This state consists of all world states, in that nothing is known that could
eliminate any possible world. Of course, all of the valid sentences will be known in e0.

Furthermore, these are the only objective sentences that are known:

Theorem 5.3.1: If φ is objective, then ASK[φ, e0] = yes iff |H φ.

So nothing is known about the world in e0, in that any objective sentence that is false in
some world state is not known to be true.

What other knowledge does e0 have? Like any other epistemic state, it will know
about its own subjective state. So for example, if ¬φ is satisfiable, then e0 |H ¬Kφ, and
so e0 |H K¬Kφ, which means that ASK[¬Kφ, e0] is yes.

So like every other epistemic state, e0 knows all the valid sentences as well as all the
true subjective ones. Somewhat surprisingly, perhaps, still more is known:

Theorem 5.3.2: If α is [∃x P(x) ⊃ ∃x .P(x) ∧ ¬KP(x)], then ASK[α, e0] = yes.
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Proof: First observe that e0 |H ¬KP(n), for every n. Thus, for every w ∈ e, if w |H
∃x P(x), then e0, w |H ∃x[P(x) ∧ ¬KP(x)]. From this it follows that e0 |H Kα.

Note that this α is neither a valid sentence nor a true subjective one. What α says is that
if there is a P, then it must be an unknown P. Intuitively, this sentence is known in e0

because although it is not known in e0 whether or not there are any instances of P, it is
known that there no known instances, and consequently, any instance of P must be an
unknown one.

So although e0 has no purely objective knowledge, it does have non-trivial knowledge,
something perhaps not immediately obvious given the logical analysis of KL in the previ-
ous chapter. In fact, we have:

Theorem 5.3.3: The set {α | ASK[α, e0] = yes} is not recursively enumerable.

Proof: It is a property of ordinary first-order logic (and consequently, of L) that the
set of all objective satisfiable sentences is not recursively enumerable. But observe that
ASK[¬K¬φ, e0] = yes iff φ is satisfiable.

This shows the considerable power assumed under our concept of knowledge, and is yet
another reason for wanting to look at more limited versions in Chapters 12 and 13.

5.4 The monotonicity of knowledge

As described above, acquiring knowledge means moving from an epistemic state modeled
by a set of world states to a subset of those world states. It follows that objective knowledge
is preserved by this acquisition of knowledge:

Theorem 5.4.1: If φ is objective and ASK[φ, e] = yes, then for any epistemic state
e′ ⊆ e, ASK[φ, e′] = yes.

So as information is acquired, anything objective that was believed will continue to be
believed. We refer to this property of knowledge as objective monotonicity.1

However, this monotonicity does not hold in general for arbitrary sentences of KL.
That is to say, there is no guarantee that once a sentence is believed it will continue to be
believed as further information is acquired:

1 The idea of acquiring knowledge to revise existing objective knowledge is much more complex and is discussed
in the bibliographic notes.
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Theorem 5.4.2: Knowledge is nonmonotonic: there is a sentence α and an epistemic state
e such that ASK[α, e] = yes, but ASK[α, e′] = no, for some e′ ⊂ e.

Proof: Let α be the sentence ¬KP(n), for some standard name n. Since e0 |H α, we
have that ASK[α, e0] = yes. In other words, the initial epistemic state e0 knows that it does
not believe that P(n). Now suppose we eliminate all world states where P(n) is false: let
e′ be the set of all worlds states w such that w |H P(n). Clearly, e′ |H KP(n), and in
particular, e′ |H ¬Kα, and so ASK[α, e′] = no.

So a knowledge base may know that it does not believe some sentence, but if it later comes
to believe that sentence, it needs to revise its original subjective belief. Thus, a knowl-
edge base will change its mind about certain things even though it is acquiring objective
knowledge purely monotonically.

5.5 The TELL operation

It is the TELL operation that defines how knowledge is acquired. What we are after with
TELL is perhaps the simplest form of information acquisition, where there is no revision
of objective knowledge, no retraction, and no forgetting. We assert using TELL that a
sentence is true; if this assertion is inconsistent with what is already known, we simply
move into the inconsistent epistemic state, and leave it at that.

After some objective φ has been asserted, we would expect that in the resulting state,
φ should be believed, as should anything previously known about the world. Moreover,
we want to be in a state where this is all that is known. That is, we should not get new
objective beliefs that are independent of φ and what was known before. Consequently, on
being told φ in some state e, we want the largest (that is the least informed) epistemic
state where φ is believed and which is a subset of e. When φ is objective, there is a unique
epistemic state that has these properties:

TELL[φ, e] = e ∩ {w | w |H φ.}

Thus, as we have been assuming, asserting φ simply means eliminating the world states
where φ is false.

Consider now a non-objective sentence, α, which is ∃x[P(x) ∧ ¬KP(x)]. This sen-
tence says that there is an unknown P, and would be true (at w and e) if the instances
of P in w contained some individual that was not among the known instances in e. What
could it mean for a KB to be told that this sentence is true? There are at least two possible
interpretations:

• one might interpret this is as asserting that there is a forever unknown P. In other
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words, there is a P that is not known to be P and will continue to be unknown, no
matter what further knowledge is acquired.

• one might interpret this as asserting that there is a currently unknown P. In other
words, there is a P that is not among the known P, in the current epistemic state. But
as this state changes, this P may become known.

Clearly both readings have their uses: if we want to state properties about this and future
states of knowledge, the first reading is more appropriate; if we want to state properties
about the world, but in terms of the current epistemic state, the second reading is preferred.
Our focus here is clearly on objective knowledge, and so we will take the second read-
ing, although the issue of constraining (future) states of knowledge more generally will
reappear in Chapter 8.

The impact of this decision is that on being told a sentence that contains K operators,
we can interpret references to what is known to be about the current epistemic state. We
do not have to worry about the epistemic state that will result after the update, or any other
future state. Consequently, we can do what we did for objective assertions, except we now
use the current epistemic state to deal with the non-objective parts. Thus, we define TELL
as follows:

Definition 5.5.1: For any sentence α of KL and any epistemic state e,

TELL[α, e] = e ∩ {w | e, w |H α}.

By interpreting K operators in α in terms of the given epistemic state (the e argument), we
do not need a complex fixed-point construction, and we are guaranteed that the resulting
epistemic state is always uniquely defined, as it was in the objective case.

For example, consider TELL[∃x .P(x) ∧ KQ(x), e]. As an assertion this tells the sys-
tem that there exists something that has property P. Moreover, this something is also
known to have property Q. But known when? The answer we take here is that the in-
dividual is known to have property Q in the epistemic state e just before the assertion. In
other words, we are asserting that there is an individual n such that P(n) holds and such
that e |H KQ(n).

The reason we need to be careful about what epistemic state we use is that as a result
of the assertion, we may be changing whether or not an individual is known to have some
property. Its status before and after the assertion can be different. Because of this, it can
happen that a sentence α is not believed after it has been asserted:

Theorem 5.5.2: There is a sentence α and an epistemic state e such that

ASK[α,TELL[α, e]] = no.
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Proof: Let e be e0 and let α be [P(n) ∧ ∃x .P(x) ∧ ¬KP(x)], for some standard name
n. If we let e′ = TELL[α, e0], then e′ = {w | w |H P(n)}. But e′ has no reason to believe
that there is another P apart from n, and so e′ |H ¬K∃x .P(x) ∧ ¬KP(x), from which it
follows that ASK[α, e′] = no.

So by the above definition, a knowledge base can be told something and yet end up not
believing it. This means that a TELL operation cannot be interpreted as an instruction
to believe its sentence argument. Rather, it needs to be understood as an assertion that
this argument is true (or more precisely, that it was true at the time of the assertion), and
an instruction to draw conclusions about the world from this fact. Because of this, an
assertion of a purely subjective sentence (which carries no information about the world) is
either redundant or contradictory:

Theorem 5.5.3: If σ is subjective, then TELL[σ, e] = e or TELL[σ, e] = {}.

It is not too surprising that we cannot tell the knowledge base anything about what it knows,
since we have assumed that it already has complete knowledge of its own subjective state.
In fact, this last result generalizes to any sentence whose truth value is known:

Theorem 5.5.4: If ASK[α, e] = yes, then TELL[α, e] = e; if ASK[¬α, e] = yes, then
TELL[α, e] = {}.

So, for example, if we start in e0, we get that TELL[KP(c) ∨ KQ(c), e0] = {}. That is, if
we tell the system that it either knows P(c) or it knows Q(c), this is inconsistent because
it already knows that it does not know either. On the other hand, a similar assertion,
TELL[P(c) ∨ Q(c), e0] is fine, since the objective sentence here is unknown.

5.6 Closed world assertions

What is the purpose of non-objective assertions? The answer is that they allow us to
express facts about the world that could otherwise not be made without knowing the
contents of the knowledge base. A simple example of this is what has been called the
closed world assumption. The idea, roughly, is to be able to tell a knowledge base in a
certain epistemic state that its information about some part of the world is complete. In its
simplest form, we would like to be able tell the system that it already knows every instance
of a predicate P. For this, we use a sentence of KL like

∀x[P(x) ⊃ KP(x)],
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which we will call γ.2 This sentence can be read as saying that every P is currently known,
or equivalently, anything not currently known to be a P is not one. So telling the system γ

is like telling it ¬P(n), for every n such that e |H ¬KP(n).
For example, suppose that

e = {w | w |H P(#1) and w |H P(#2)}.
For this epistemic state, we have that e |H K[P(#1)∧ P(#2)]. That is, in e, it is known that
P(#1) and P(#2) are both true. But it is not known in e whether or not there are any other
n such that P(n) is true. In other words, there are world states in e where #1 and #2 are the
only instances of P, and there are world states in e where there are others. So we have:

e |H ¬K∀x[P(x) ≡ (x = #1) ∨ (x = #2)]
and

e |H ¬K¬∀x[P(x) ≡ (x = #1) ∨ (x = #2)].
However, if we now assert γ and get e′ = TELL[γ, e], then we have

e′ |H K∀x[P(x) ≡ (x = #1) ∨ (x = #2)].
We have told the system that #1 and #2 are the only instances of P. The important point is
that using γ we told it this without having to list the instances of P. We were able to do
this because in e, we have the following:

e |H K∀x[KP(x) ≡ (x = #1) ∨ (x = #2)].
In other words, although the system does not know if there are any additional instances
of P, it does know what all the known instances are. So by telling it γ, it is then able to
determine that these known instances are the complete list.

As a second example, suppose that we have

e = {w | w |H P(n), for every n 6= #1}.
In this epistemic state, P(n) is known to be true for every n apart from #1. However, P(#1)
is undecided since there are world states in e where P(#1) is true and others where it is
false. If we now assign e′ = TELL[γ, e], we settle the issue:

e′ |H K∀x[P(x) ≡ x 6= #1].
In this case, we could not have listed explicitly all of the instances of P even if we had
wanted to since there are infinitely many. But γ works as intended here as well.

As a final example, suppose we have

e = {w | w |H P(#1) or w |H P(#2)}.
In this state, we have all world states that satisfy either P(#1) or P(#2). So an instance of P
is known to exist, e |H K∃x P(x), although there are no known instances, since for every
n, there is a world state in e satisfying ¬P(n). If we now define e′ = TELL[γ, e], we get

2 Note that the formula λ introduced on Page 74 is actually K¬γ.
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the result that e′ is empty, the inconsistent epistemic state. The reason for this is that in
e, γ is already known to be false. In other words, e |H K∃x[P(x) ∧ ¬KP(x)], because
e |H K¬KP(#1) and e |H K¬KP(#2), but e |H K[P(#1)∨ P(#2)]. Thus, in this example, it
is already known that there is an instance of P apart from the known ones, and any attempt
to assert otherwise leads to an inconsistency.

So although we can express the closed world assumption as a sentence of KL, we must
be careful in how it is used. In certain states, the knowledge base will already know that
it is missing an instance of the predicate in question and should not be told otherwise.
However, we can prove that in all other cases, TELL will behave properly and result in a
consistent epistemic state where the closed world assumption is known to be true. To show
this, we need the following lemma:

Lemma 5.6.1: Suppose e is an epistemic state where e |H ¬K¬γ. Let e′ = TELL[γ, e].
Then for any w, e, w |H γ iff e′, w |H γ .

Proof: We will show that for any n, e |H KP(n) iff e′ |H KP(n), from which the
conclusion follows. If e |H KP(n), then e′ |H KP(n), since e′ ⊆ e. Conversely, if
e |H ¬KP(n), then since e |H ¬K¬γ, there is a w ∈ e such that e, w |H γ , and thus for
which, w |H ¬P(n). Since e, w |H γ , we have that w ∈ e′, and so, e′ |H ¬KP(n).

Then we get:

Theorem 5.6.2: Suppose e is an epistemic state where e |H ¬K¬γ. Then

ASK[γ,TELL[γ, e]] = yes.

Proof: Let e′ = TELL[γ, e]. Suppose that w ∈ e′, and so e, w |H γ . From the lemma
above, it follows that e′, w |H γ . Since this applies to any w ∈ e′, we have that e′ |H Kγ ,
and hence ASK[γ, e′] = yes.

So this shows that as long as the closed world assumption γ is not known to be false, we
can always assert that it is true, and end up in a consistent epistemic state where it is known
to be true (quite unlike the example in Theorem 5.5.2). Moreover, we will see in Chapter 8
that the resulting epistemic state also has the desirable property that nothing else is known:
in a precise sense, all that is known in this state is γ together with what was known before.
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• Teach(tom, sam)
• Teach(tina, sue) ∧ [Teach(tom, sue) ∨ Teach(ted, sue)]
• ∃xTeach(x, sara)
• ∀x[Teach(x, sandy) ≡ (x = ted)]
• ∀x∀y[Teach(x, y) ⊃ (y = sam) ∨ (y = sue) ∨ (y = sara) ∨ (y = sandy)]

Figure 5.1: The Example KB

5.7 A detailed example

In this final section, we will consider a larger example of the use of TELL and ASK. This
will allow us to explore how these operations can be used to probe what is known and add
to it in a way that would be impossible if we only used L. In the first subsection below,
we will start with an initial epistemic state and ask a series of questions. In the second
subsection, we will consider the effect of various assertions.

To keep the discussion as intuitive as possible, we will define the initial epistemic state
as the set of all worlds satisfying a finite collection of sentences which can be thought of
as a KB, a representation of what is known. As in earlier chapters, we will use a single
predicate, Teach, and again use proper names that begin with a “t” for the first argument,
the teacher, and proper names that begin with an “s” for the second argument, the student.
As before, these should be understood as standard names. We will not use either function
or constant symbols in any of the examples unless explicitly indicated.

The knowledge base we begin with appears in Figure 5.1. Notice that the first four
sentences tell us what we know about each of the four students. The last sentence says
that as far as the teaching relation is concerned, there are only four students. The starting
epistemic state e is defined as the set of all world states satisfying this KB. Equivalently,
e = TELL[KB, e0]. Thus we have that e |H Kφ (where φ is objective) iff (KB ⊃ φ) is
valid.

5.7.1 Examples of ASK

To illustrate the operation of ASK, we consider various arguments of the form ASK[α, e],
where e is the epistemic state above and α is one of the sentences below. For clarity, we
will use three possible answers: TRUE means that α is answered yes (and ¬α, no), FALSE
means that ¬α is answered yes (and α, no), and UNKNOWN, otherwise.
1. Teach(tom, sam) TRUE

This is the simplest type of question, and is clearly known to be true.
2. Teach(tom, sandy) FALSE

The sentence Teach(tom, sandy) is known to be false, since Ted is the only teacher of
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Sandy, and because these are assumed to be standard names, they are distinct.

3. Teach(tom, sue) UNKNOWN
Neither this question nor its negation are known to be true. Tom may or may not teach
Sue, according to what is known in e.

4. KTeach(tom, sue) FALSE
In contrast to the previous question, here we are asking a subjective question about
what is known. Such questions are always known to be true or to be false. In this case,
it is known in e that Tom is not known to teach Sue. That is, the system realizes that
the previous question was not known.

5. ∃xTeach(x, sara) TRUE
Again this is a simple objective question that can be answered directly. It is known that
Sara has at least one teacher, although no teacher has been named.

6. ∃x KTeach(x, sara) FALSE
Here the question is whether Sara has any known teachers. The system knows that al-
though Sara has a teacher, none are as yet known. With this question and the preceding,
we can distinguish between knowledge of the existence of a teacher and knowledge of
the identity of that teacher.

7. ∃x KTeach(x, sue) TRUE
Unlike Sara, Sue does have a known teacher, namely Tina. Thus in her case, we know
of both the existence and the identity of a teacher. Note that this question and the one
before it is subjective and so would always be answered TRUE or FALSE.

8. ∃x[Teach(x, sue) ∧ ¬KTeach(x, sue)] TRUE
Having established in the previous question that Sue has a known teacher, here we are
asking if she has a teacher apart from the known ones. In other words, is the list of
teachers known for Sue incomplete? The answer is yes. There is only a single known
teacher for Sue, Tina; but it is also known that one of Tom or Ted teaches her, and
neither is a known teacher of Sue.

9. ∃x[Teach(x, sandy) ∧ ¬KTeach(x, sandy)] FALSE
If we ask the same question of Sandy, the answer is no. It is known that Ted is her
teacher and her only one. Thus, Sandy has no teachers other than her single known
teacher.

10. ∃x[Teach(x, sam) ∧ ¬KTeach(x, sam)] UNKNOWN
If we ask the same question about Sam, the answer is unknown. We know that Tom
teaches Sam, but we have no other information. So Sam may or may not have a teacher
apart from this known one. Note that this question (like the two preceding ones) is not
a subjective sentence, and consequently can be believed to be true, believed to be false,
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or here, neither.

11. ∃y K∀x[Teach(x, y) ⊃ KTeach(x, y)] TRUE
This is a generalized version of the preceding question posed subjectively. Do you
know someone whose teachers are all known? That is, can we name somebody whose
list of teachers is complete? The answer is yes: Sandy. Note that to verify this, we
need to establish that the question is known to be true, which involves checking the
truth of a sentence with K operators nested to depth three.

12. ∃y(y 6= sam) ∧ ¬Kif [∀xTeach(x, y) ⊃ KTeach(x, y)] FALSE
where Kifα is an abbreviation for Kα ∨ K¬α.
We established in an earlier question that Sam may or may not have teachers other
than the known ones. This question asks if there is an individual other than Sam for
which this is true. In other words, is there anyone other than Sam for which you don’t
know if you are missing any teachers? The answer is no because we know that there
are only three cases to consider apart from Sam: for Sandy, we know that we have all
the teachers, and for Sue and Sara, we know that we are missing one.

13. ∃y K∃x[Teach(x, y) ∧ ∃z[(y 6= z) ∧ KTeach(x, z)]] TRUE
This question asks if there is an individual y known to have the property that one of
her teachers x is known to teach somebody else z. For this to be true, we need to know
who y is, we need not know who the x is, but for each such x, we must know who the
z is.
The answer here is yes because of Sue. For every w ∈ e, we either have

e, w |H Teach(tom, sue) ∧ (sue 6= sam) ∧ KTeach(tom, sam)

or

e, w |H Teach(ted, sue) ∧ (sue 6= sandy) ∧ KTeach(ted, sandy).

So no matter if Tom or Ted teaches Sue, both of them are known to teach someone
other than Sue. Consequently, Sue is known to have a teacher x who is known to teach
somebody else, even though we do not know who that x is:

e |H K∃x .Teach(x, sue) ∧ ∃z[(sue 6= z) ∧ KTeach(x, z)].

Note that by using nested K operators and quantifiers, we can insist on the individual
z being known as a function of some other unknown individual x . This would fail,
for example, if instead of knowing that Tom teaches Sam, all we knew was that Tom
teaches someone other than Sue.

5.7.2 Examples of TELL

To illustrate the operation of TELL, we will consider some example assertions. In each
case, we present a sentence α followed by notation [e → e′], where e is either the initial
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epistemic state above or the result of a previous assertion, and where e′ = TELL[α, e].

1. ∀x[Teach(x, sue) ⊃ Teach(x, sara)] [e→ e1]

This is an assertion of a sentence without K operators, and so the resulting state is
simply the set of world states w that are in e and satisfy the assertion. In all such world
states, we have that Tina teaches Sara, as does one of Tom or Ted. Consequently, these
facts would be known in e1.

2. ∀x[KTeach(x, sue) ⊃ Teach(x, sara)] [e→ e2]

In this assertion, we do not say that every teacher of Sue teaches Sara, but only the
currently known ones. In the initial state e, Tina is the only known teacher of Sue, so
this assertion says nothing about either Tom or Ted. In both e1 and e2 we would have
a single known teacher for Sara, namely Tina, but only in e1 would we also know that
there was an additional teacher apart from Tina. So if β is the sentence

∃x[Teach(x, sara) ∧ ¬KTeach(x, sara)]

then ASK[β, e] is yes, and ASK[β, e1] is yes, but since e2 |H ¬Kβ ∧ ¬K¬β, both
ASK[β, e2] and ASK[¬β, e2] would be no. In other words, we started out by knowing
we were missing some of Sara’s teachers, but after finding out that Tina is one of them,
we no longer know whether or not we are still missing any.

3. ∀x[Teach(x, sara) ⊃ ∃y KTeach(x, y)] [e2 → e3]

This starts in the state e2 where all that is known about Sara is that Tina teaches her, and
we assert that all of her teachers have a currently known student. This means that all of
her teachers must be one of Tom, Tina, or Ted, since these are the only individuals with
known students (for Sam, Sue and Sara, and Sandy, respectively) in e2. The assertion,
however, does not identify any new teachers for Sara so that the known teachers in e3

are the same as the known teachers in e2: just Tina.
This is a good example of how a set can be bounded from below by the known instances
and from above by the potential instances (that is, the individuals not known to be non-
instances). In this case, Sara’s teachers are bounded from below by {tina}, and from
above by {tom, tina, ted}. To have complete knowledge of Sara’s teachers, all that is
needed is to settle the case of Tom and Ted.

4. ∀x[Teach(x, sara) ⊃ ¬∃y K[Teach(x, sue) ∨ Teach(y, sue)]] [e→ e4]

The assertion starts from e again and says that anyone who teaches Sara cannot be
one of two individuals such that it is known that one of them teaches Sue. After this
assertion we have the same set of known teachers for Sara, but the assertion addresses
the potential teachers. It clearly rules out Tina as a teacher (since for this x there is
such a y, namely Tina herself). Taking the case of Tom, although he is not known to
teach Sue in e, it is known that either Tom or Ted teaches Sue, so Tom is an x such that
there is a y for which it is known that either x or y teaches Sue. Thus Tom cannot be a
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teacher of Sara. A similar argument rules out Ted. Thus, we have ruled out as potential
teachers Tina, Tom and Ted.

The last assertion above is a good example of using a set of potential instances as candidates
or suspects in an assertion. Consider an individual, Terry, about which absolutely nothing
is known in e. Neither Tom nor Terry are known teachers of Sue, and both Terry and Tom
are potential teachers of Sue. However, there is a difference between the two: Tom is a
candidate teacher in the sense that it is known that one of Tom or Ted teaches Sue; nothing
comparable is known about Terry. More generally, we might say that x is a candidate
instance of P if x is not a known instance, but is a member of a candidate set for P, where
a candidate set is a minimal set of individuals such that it is known that one of them is an
instance of P. In the case of Sue’s teachers, the set {Tom, Ted} is a candidate set, and so
both are candidates. We know that one of Tom, Ted, and Terry must also be a teacher of
Sue, but this is not a minimal set, and so Terry is not a candidate.

This notion of a candidate is useful to help form intuitions about default reasoning,
which we explore in Chapters 10 and 11. It is often useful to be able to assume of certain
individuals that they have a certain property unless they are known not to have it. For
example, a person might be assumed to be innocent of a crime unless proven guilty. In
some cases, however, there may be a set of suspects, where there is good reason to believe
that one of them is guilty, although none of them are known to be guilty. Although any
suspect might be innocent, they cannot all be assumed to be innocent. Although we may
wish to assume innocence as broadly as possible, we may have to temporarily withhold
that assumption for the candidate set.

5.8 Other operations

Having examined definitions for the knowledge-level operations of TELL and ASK, it is
worth remembering that these are only two of many possible interaction operations we
might consider. In this section, we briefly investigate two others: one involving definitions,
and one involving wh-questions.

5.8.1 Definitions

The idea behind introducing definitions in a KB is this: we want to extend our vocabulary
of predicate or function symbols in terms of the existing ones. For example, we might
want to have a predicate symbol FlyingBird, which instead of being independent of all
other predicate symbols, simply means the conjunction of Bird and Fly.

We could, of course, simply assert a universally quantified biconditional such as

∀x(FlyingBird(x) ≡ Bird(x) ∧ Fly(x)).
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The trouble with this is that it looks exactly like any other fact we might know about the
predicate. For example, in some application we might know that all and only the birds in
my cage fly:

∀x(FlyingBird(x) ≡ Bird(x) ∧ InCage(x)).

Logically, the two facts are indistinguishable, but clearly the second one is not intended to
say what the predicate means.

One simple way of handling definitional information is to imagine an epistemic state as
having two components: e = 〈ea, ed〉, where ea is the assertional epistemic state resulting
from TELL operations as before, and ed is the definitional epistemic state resulting from
new DEFINE operations. So TELL[α, 〈ea, ed〉] would be defined to change ea only, as
specified earlier. Similarly, DEFINE[P(Ex), φ[Ex], 〈ea, ed〉] would be defined to change ed

only. The P here is an n-ary predicate symbol, and φ is a formula with n free variables, its
definition.3 For example, we could have

DEFINE[FlyingBird(x), (Bird(x) ∧ Fly(x)), e]

Having separated ea and ed , we can now define the DEFINE operation to be that of assert-
ing the universally quantified biconditional over ed (with no danger of confusion).4

With the epistemic state broken into two parts, we can consider asking questions about
the definitions only. For example, we can define

ASK-DEF[α, 〈ea, ed〉] =

{
yes if ed |H Kα
no otherwise

This is just like ordinary ASK except that it only uses ed : it determines whether or not
α is known to be true by definition. For ASK itself, we want to use both definitions and
assertions to determine what is known. Thus, we would redefine it as

ASK[α, 〈ea, ed〉] =

{
yes if (ea ∩ ed) |H Kα
no otherwise

So for example, if we DEFINE the predicate FlyingBird as above, then assert using TELL
that FlyingBird(tweety) is true, then ASK will correctly confirm that Fly(tweety) is true.

5.8.2 Wh-questions

In addition to yes/no questions, any knowledge representation system will need to an-
swer wh-questions, that is, questions beginning with words like “who,” “what,” “when,”
“where,” and “how.” For example, we might want to find out: who are the teachers of

3 There may be good reasons to restrict the language of φ as is often done in description logics, or even to extend
it to allow, for example, recursive definitions.
4 We may also want to consider other forms of definitions that do not lead to biconditionals. For example, while
it may not be possible to define a “natural kind” term like Bird, we may still wish to express necessary definitional
properties, such as its being an animal.
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Sara? In an epistemic state with incomplete knowledge about teachers, however, it is not
clear what form of answer would be appropriate. The simplest solution is to take an oper-
ator like WH-ASK[Teacher(x, sara), e] to be a question about the known teachers of Sara.
While this would mean that the question Teacher(x, sara) and KTeacher(x, sara) would
get the same answer, the question ¬K¬Teacher(x, sara) could still be used to find out
about potential teachers of Sara. The actual teachers of Sara, of course, lie between these
two sets.

This suggests the following definition:

WH-ASK[α[Ex], e] = {En | e |H Kα[En]}.
The main problem with this definition is that the answer could be an infinite set of standard
names, for example, when α is (x 6= #1). We will see in Chapter 7 how even an infinite
answer to a WH-ASK question can be finitely represented at the symbol level.

Simply returning a set of standard names for a wh-question may not be very illumi-
nating, however. What we would ultimately like is an answer in descriptive terms, using
meaningful constants and function symbols. This is not to suggest that we would be better
off with

{Et | e |H Kα[Et]}
as the answer to a wh-question, since we would then have no way of knowing how many
answers there were (because many of the terms t could be co-referential). A better idea is
to define a new operator, DESCRIBE[n, e] which takes a standard name as argument and
returns the set of terms known to be co-referential with n:

DESCRIBE[n, e] = {t | e |H K(t = n)}.

We will see again in Chapter 7 how this potentially infinite set of terms can be represented
finitely.

5.9 Bibliographic notes

The idea of characterizing a knowledge representation and reasoning service in terms of
tell and ask operations first appeared in [111] and [113]. It appeared subsequently in a vari-
ety of publications, most notably in a general AI textbook [168]. The idea was inspired by
similar operations defining abstract data types like stacks and queues [129]. The TELL op-
eration itself presents the simplest possible model of how an epistemic state changes, where
contradicting information leads to an inconsistent state. For a more delicate approach,
which may involve giving up some past beliefs to preserve consistency, see [49, 72], or
any of the many papers in the area of belief revision. The closed world assumption first
appeared in [158], and was one of the motivations for the earliest forms of nonmonotonic
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reasoning, further discussed in Chapter 9. The distinction between assertions and defini-
tions is discussed in [9] and appeared in the KRYPTON knowledge representation system
[8]. The idea of using a limited language for defining predicates (or concepts) derives from
early work on semantic networks (see [45], for example), and especially the KL-ONE sys-
tem [12]. Some of this research then evolved into the subarea of description logics (see [4],
for instance). See [23] for a treatment of natural-kind concepts that do not admit necessary
and sufficient definitions. As to wh-questions, returning more than just yes/no answers is
of course the mainstay of database systems. A comparable story can be told for simple
forms of knowledge bases, as in logic programming [133]. For a more general KB, per-
haps the clearest account is that of Green’s answer extraction [56, 152], although this still
only applies when the KB is in a restricted syntactic form.

5.10 Exercises

1. Show that subjective knowledge is complete, in that if σ is subjective, then either
ASK[σ, e] = yes or ASK[¬σ, e] = yes.

2. Show that ASK[∀x .P(x) ⊃ ¬KP(x), e0] = yes.

3. Prove that if φ and ψ are objective, the order in which they are asserted is unimportant:
TELL[φ,TELL[ψ, e]] = TELL[ψ,TELL[φ, e]].

4. Give an example epistemic state where an individual is known to have some property,
but after an assertion, it not known to have that property.

5. Present a non-subjective sentence for which knowledge is nonmonotonic.

6. Consider the positive and negative subjective sentences of Exercise 3 of Chapter 4.
Show that knowledge is monotonic for the positive ones.

7. Construct an example epistemic state (as a set of world states satisfying some property)
where the assertion of γ is redundant because it is already known to be true.

8. Construct a variant of the example KB such that unlike Question 11,

∃y K∀x[Teach(x, y) ⊃ KTeach(x, y)]

comes out FALSE, but

K∃y∀x[Teach(x, y) ⊃ KTeach(x, y)]

comes out TRUE.

9. Describe or construct an epistemic state where the candidate instances of P are the
same as the potential instances.

10. Consider the following generalization of candidate instances. Define an objective sen-
tence φ to be explainable in state e iff there is some objective ψ such that ¬K¬ψ
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and K(ψ ⊃ φ) are both true. If also |H (ψ ⊃ φ), we say that φ is trivially explain-
able. Show that if n is a candidate instance of P then P(n) is non-trivially explainable,
but that the converse is not true. Show that n is a potential instance of P iff P(n) is
explainable.

11. What is ASK[∃x[¬∃y(KTeach(x, y)) ∧ Teach(x, sue)], e]?
12. In ASK Number 13, show that we cannot move any other quantifiers outside the K

operator without changing the meaning of the question.
13. Show that

e3 |H ∃y1 y2 y3 K∀x[Teach(x, sara) ⊃ (x = y1) ∨ (x = y2) ∨ (x = y3)].
14. Describe the result of TELL[∀x[Teach(x, n) ⊃ KTeach(x, n)], e], for n = sue, sam,

sandy, sara.
15. Define a new interaction operator HOW-MANY which tells us how many instances of

a formula are known to be true. In particular, it should take a formula with one free
variable as argument, and return a pair of numbers 〈i, j〉, such that it is known that
there are at least i and at most j true instances of the formula. Describe a KB where
this operator would provide useful information, but WH-ASK would not.



6 Knowledge Bases as Representations of Epistemic States

In what we have seen so far, we have been thinking about knowledge in two very different
ways:
• as characterized by a symbolic knowledge base or KB, that is, a collection of sentences

about the world, where what is known is what can be inferred from the sentences;
• as characterized by an epistemic state, that is, a set of world states, where what is

known is what is true in all of the world states.
While these two notions are clearly related, it turns out that there are also interesting dif-
ferences between them. In this chapter we will explore in detail their relationship.

In the first section, we observe that many epistemic states are equivalent, in the sense
that they satisfy exactly the same set of sentences. Choosing representatives for these
equivalence classes of epistemic states simplifies the results to follow. In Section 6.2,
we define what it means for an objective KB to represent what is known in an epistemic
state. An epistemic state is defined to be representable if such a KB exists. In Section 6.3
we prove that there are epistemic states that are not representable in this sense, but in
Section 6.4, we show that we can usually ignore these states, in the sense that any satisfiable
sentence of KL is satisfied in a representable epistemic state. The KB in question may need
to be infinite, however, and we prove in Section 6.5 that finitely representable epistemic
states are not sufficient: there is a satisfiable sentence of KL that is false at every finitely
representable epistemic state. Finally, in Section 6.6 we discuss the implications of these
results for TELL and ASK.

6.1 Equivalent epistemic states

The easiest way to see that there is a difference between the two views of knowledge
mentioned above is to consider a simple cardinality argument. If we take knowledge to be
characterized by the set of all sentences known, then because there are only ℵ0 sentences
in KL, there can be at most 2ℵ0 distinct states of knowledge. But if we take knowledge
to be characterized by a set of world states, then because there are 2ℵ0 world states, there
would be 22ℵ0 distinguishable states of knowledge.

It follows from this observation that many epistemic states know exactly the same set
of sentences. We call two epistemic states e and e′ equivalent (which we write e ≈ e′) iff
for every α ∈ KL, e |H Kα iff e′ |H Kα. This clearly defines an equivalence relation over
epistemic states.

For example, consider e0, the set of all world states. We will show that e0 and the
epistemic state formed by removing a single world state from e0 are equivalent. Observe
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that for any α, w, and e, if e, w |H α, and if w′ is the same as w except for the truth
value it gives to some primitive sentence whose predicate symbol does not appear in α,
then e, w′ |H α (by induction on α). Thus, if α is true for all elements of (e0 −w),

1 it will
be true for w too. Consequently, e0 |H Kα iff (e0 − w) |H Kα. In other words removing
a single world state from e0 does not affect the sentences believed, and so results in an
equivalent state.

Because we want to think of knowledge functionally, in terms of the operations a
knowledge-based system can perform, and because these operations are mediated by lin-
guistic arguments, the difference between e0 and e0 − w is not something we really care
about. The ASK operation would not be able to tell the difference between them, which can
be thought of as an artifact of the modeling process. This suggests that we should restrict
our attention to equivalence classes of epistemic states. We can do this by finding suitable
representatives for each equivalence class.

To do so, first observe that a world state can be added to an epistemic state if it satisfies
everything that is known:

Theorem 6.1.1: For any e and w,

e ≈ (e + w) iff for every α such that e |H Kα, e, w |H α.

Proof: Let e′ be e + w. First we assume that e ≈ e′ and show that if e |H Kα, then
e, w |H α. Observe that in general, for any β and any w′, e, w′ |H β iff e′, w′ |H β, by a
simple induction argument. So suppose e |H Kα. Then e′ |H Kα since e ≈ e′, in which
case, e′, w |H α, and so e, w |H α.

For the converse, assume that for every α such that e |H Kα, e, w |H α. We will show
e ≈ e′ by showing that for any β and any w′, e, w′ |H β iff e′, w′ |H β. The proof is
by induction. It clearly holds for atomic sentences and equalities, and by induction for
negations, conjunctions, and quantifications. Also if e′ |H Kβ, then e |H Kβ, since e′ is
a superset of e. So finally, suppose that e′ |H ¬Kβ. Then, for some w′ ∈ e′, we have
e′, w′ |H ¬β, and so e, w′ |H ¬β by induction. Now there are two cases: if w′ ∈ e,
then e |H ¬Kβ directly; if w′ = w, then again e |H ¬Kβ, by assumption about w. This
completes the proof.

So under certain conditions, we can add world states to an epistemic state and preserve
equivalence. Let us say that an epistemic state e is maximal iff for every w, if e ≈ e + w
then w ∈ e. So a maximal epistemic state is one where the addition of any world state
would involve a change in belief for some sentence. Clearly e0 is maximal and e0 − w is

1 When X is a set, we use the notation X − x to mean X \ {x}. Similarly, X + x means X ∪ {x}.
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not. We can show that every equivalence class has a unique maximal element, which can
serve as the representative for the class:

Theorem 6.1.2: For any epistemic state e, there is a unique maximal state e+ that is
equivalent to it.

Proof: For any e, let e+ = {w | e ≈ e+w}. We will first show that e ≈ e+ by showing
that for any w and α, e, w |H α iff e+, w |H α, again by induction. As in the previous
theorem, the only difficult case is when e+ |H ¬Kα. Then, for some w ∈ e+, we have
e+, w |H ¬α, and so e, w |H ¬α by the induction hypothesis. But since w ∈ e+, we
know that e ≈ e + w. Therefore, (e + w),w |H ¬α also, and so (e + w) |H ¬Kα and
consequently, e |H ¬Kα. This establishes that e ≈ e+.

To show that e+ is the unique maximal set, we show that for any e′, if e ≈ e′ then
e′ ⊆ e+. That is, we need to show that if e ≈ e′ then for any w ∈ e′, e ≈ e + w, and so
w ∈ e+. To show this, we simply observe that if w ∈ e′, then w satisfies everything that is
known in e as well as in e′, and so by the previous theorem, we have that e ≈ e + w.

Thus maximal states can be used as representatives of the equivalence classes. Moreover,
by Theorem 6.1.1 we have that

Corollary 6.1.3: A state e is maximal iff there is a set 0 such that

e = {w | e, w |H α, for every α ∈ 0}.

In much of what follows, we will restrict our attention to maximal epistemic states, since
these cover all of the possibilities admitted by the logic KL:

Corollary 6.1.4: For any (possibly infinite) set of sentences 0, if 0 is satisfiable, then it is
satisfied by a maximal epistemic state.

So in terms of the logic KL, maximal sets are fully sufficient; in Section 6.3, we will
consider the converse question: are all maximal epistemic states required, or can we get
by with a subset of them?

6.2 Representing knowledge symbolically

As Corollary 6.1.3 shows, maximal epistemic states can be completely characterized by
the sentences that are known. Let us call a set of sentences 0 a belief set iff there is an
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epistemic state e such that 0 = {α | e |H Kα}. So 0 is a belief set for e if it is everything
believed in e. Then we have the following:

Theorem 6.2.1: There is a bijection between belief sets and maximal epistemic states.

It follows then that there are only as many maximal states as there are belief sets.
On the other hand, when we think of knowledge linguistically, at least informally,

we usually do not think in terms of all sentences known. Rather we think in terms of a
symbolic representation of what is known, that is, a collection of sentences (or perhaps
some other symbolic data structures), typically finite, that is sufficient to characterize the
complete belief set.

For example, if we use a sentence α of KL as part of our representation, then not only
is α known, but so are all of its logical consequences. Moreover, by introspection, Kα
and K¬K¬α are also known. In fact, any β such that (Kα ⊃ Kβ) is valid should also be
known.

But this is still not the full belief set. To see why, suppose that φ is objective, and the
epistemic state we are trying to represent is e = {w | w |H φ}. The belief set associated
with e clearly starts with a belief in φ, and contains all sentences β as above. But now,
assuming that φ is satisfiable, let ψ be any objective sentence such that (φ ⊃ ψ) is not
valid. Then, there is a w ∈ e such that w |H ¬ψ , and so e |H ¬Kψ , and thus, e |H K¬Kψ .
Therefore, ¬Kψ is part of the belief set too. Notice that (Kφ ⊃ K¬Kψ) is not valid: just
because you believe φ, it does not follow that you do not believe ψ.

So if we are to extract a belief set (and an epistemic state) from a representation like φ,
we have to consider not only what follows from believing φ, but also what follows from
not believing other sentences. In other words, a representation of an epistemic state must
capture what is believed and the fact that what is represented is all that is believed. This is
of course how we understand a knowledge base: it represents what is known and all that is
known.

Can we use any collection of sentences of KL to represent an epistemic state? This is
a difficult question in general, and we will defer it to Chapter 8. But one special case is
much simpler: the objective sentences. Clearly our emphasis has been on objective knowl-
edge about the world, and it ought to be possible to use objective sentences to represent
knowledge.

So imagine that we start with KB, an arbitrary set (not necessarily finite) of objective
sentences of KL. The epistemic state represented by KB, which we write <[[KB]], is the
one where all the sentences in the KB are known, and nothing else. Formally,

<[[KB]] = {w | w |H φ, for every φ ∈ KB}.
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Note that according to this definition,<[[KB]] is always maximal. When the KB in question
is a finite set {φ1, . . . , φk}, we have that <[[KB]] is the same as

TELL[(φ1 ∧ . . . ∧ φk), e0],
so that the epistemic state represented by KB is the state that results from being told in the
initial state that everything in the KB is true. Let us call an epistemic state e representable
if for some set KB of objective sentences, e = <[[KB]], and we call it finitely representable
if there is a finite KB such that e = <[[KB]].

We can now distinguish (conceptually, at least) among three varieties of epistemic
states. Given an epistemic state e, if there is a set 0 such that

e = {w | for every α ∈ 0, e, w |H α},

then e is maximal; if there is an objective 0 satisfying the above, then e is representable;
finally, if there is a 0 that is both finite and objective, then e is finitely representable.

One very important and immediate property of representable epistemic states is that
they are completely determined by the objective knowledge they contain.

Theorem 6.2.2: If e1 and e2 are representable states, then

e1 = e2 iff for every objective φ, e1 |H Kφ iff e2 |H Kφ.

So any two representable states that agree on the objective facts agree on everything else.
This is not true in general for maximal epistemic states, as can be seen from the two states
e1 and e2 used in Theorem 4.6.2 of Chapter 4.

Clearly every finitely representable state is representable, and every representable state
is maximal. But what about the converses? In the next sections, we will examine these
questions in detail.

6.3 Some epistemic states are not representable

In the previous section we showed that we could limit our attention to maximal epistemic
states without any loss of generality whatsoever. For representable states, however, this is
not the case:

Theorem 6.3.1: There is an infinite satisfiable set of sentences of KL that is not satisfied
by any representable epistemic state.

The proof uses details from the proof of Theorem 4.6.2 from Chapter 4. To recap, let �
be the set {#1, #3, #5, . . .}, let 8 be the set of objective sentences consisting of {(t = #1)}
for every primitive term t, {¬φ} for every primitive sentence φ whose predicate letter is
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not P, and finally {P(n)} for every n ∈ �. Let e1 be {w | w |H 8}. Let w be the (unique)
element of e1 such that for every n 6∈ �, w |H ¬P(n), and let e2 be e1−w. Finally, define
01 and 02 by

01 = {Kφ | e2 |H Kφ} ∪ {¬Kφ | e2 |H ¬Kφ}
02 = {σ | e2 |H σ }.

The set 02 is the one that we will show is not satisfied by any representable state.
First observe that 02 is indeed satisfiable, since e2 satisfies it. Also, 01 is a subset

of 02, so that anything claiming to satisfy the latter must also satisfy the former. Next,
e1 is a representable state, represented by 8. Finally note that from the proof of Theo-
rem 4.6.2, although e1 satisfies 01, it does not satisfy 02 since it fails to satisfy the sentence
K∃x[P(x) ∧ ¬KP(x)].

So to prove the theorem: let e be any representable state that satisfies 01. By Theo-
rem 6.2.2, e = e1, and so e does not satisfy 02. Thus, no representable state satisfies 02.

6.4 Representable states are sufficient

In the previous section, we showed that in terms of satisfiability in KL, we needed to allow
for epistemic states that were not representable. To prove this, we had to consider an
infinite set of sentences in KL. In any realistic application, however, we will only be using
finite sets of sentences. The question we now ask is whether the above theorem would
continue to hold.

Fortunately, the answer here is no:

Theorem 6.4.1: Any sentence (or finite set of sentences) of KL that is satisfiable is satisfied
by some representable epistemic state. Equivalently, a sentence of KL is valid iff it is true
at all world states and all representable epistemic states.

This is an important result since it shows that as far as the logic of KL is concerned,
representable states are sufficient: validity in the logic is exactly the same as truth in all
representable states.

The proof, however, is not trivial, and proceeds as follows: starting with some satisfi-
able sentence γ, we will construct an infinite satisfiable set 0 that includes γ and that is
satisfied by a representable state. The construction is similar to that used in the complete-
ness proof of Chapter 4, in that we construct the set iteratively, adding sentences while
preserving the set’s satisfiability. To allow the set to be satisfied by a representable state,
we must ensure that all required knowledge in that state can be reduced to objective terms.
To do so, we will use new predicates not appearing in the set to capture any non-objective
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knowledge required by γ. That is, we use new predicate letters to convert non-objective
knowledge into objective knowledge.

First some notation: suppose φ[x1, . . . , xk] is an objective formula with free variables
x1, . . . , xk, and P is a predicate letter. We will let P•φ be the sentence

∀x1 . . . ∀xk K[P(x1, . . . , xk) ≡ Kφ].

Thus the subjective sentence P•φ expresses the property that it is known that instances of
P correspond exactly to the known instances of φ.

Now we need the following lemma:

Lemma 6.4.2: Suppose predicate P does not appear in formula φ or sentence α, and that
(P•φ ⊃ α) is valid. Then so is α.

Proof: Assume to the contrary that the given α is not valid, and so e, w |H ¬α. For any
w, let w• be exactly like w except that w•[P(n1, . . . , nk)] = 1 iff e |H Kφ[n1, . . . , nk],
and let e• be the set of w• for all w ∈ e. Then we have that e |H Kφ[n1, . . . , nk] iff
e• |H Kφ[n1, . . . , nk], since φ does not use P, and so, e• |H P •φ. However, because
e, w |H ¬α, we have that e•, w |H ¬α, since α does not use P either. This contradicts the
assumption that (P•φ ⊃ α) is valid.

From this, we get:

Corollary 6.4.3: If 0 is finite and satisfiable, then for any objective formula φ, there is a
predicate P such that 0 ∪ {P•φ} is satisfiable.

and then:

Corollary 6.4.4: If γ is satisfiable, then there is a satisfiable set 0 containing γ and such
that for every objective formula φ, there is a predicate P such that P•φ is in 0.

The claim here is that this set 0 is not only satisfiable, but is satisfied by a representable
state. Let e be a maximal state that satisfies 0, and let8 be the set of all objective sentences
φ such that e |H Kφ. We will show that 8 represents e.

First some terminology: for any formula α, define α• to be the following formula:

if α is objective, then α• = α;
(¬α)• = ¬α•;

(α ∧ β)• = (α• ∧ β•);
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(∀xα)• = ∀xα•;
(Kα)• = P(x1, . . . , xk), where x1, . . . , xk are
the free variables in α and P•α• ∈ 0.

Note that α• is always objective. Then we have the following:

Lemma 6.4.5: For the given e above, for any w such that w |H 8, for every formula α,
and for all names n1, . . . , nk

e, w |H α[n1, . . . , nk] iff w |H α•[n1, . . . , nk].

Proof: The proof is by induction on α. The lemma clearly holds for atomic sentences,
equalities, and by induction, for negations, conjunctions, and quantifications (given that α
can be an open formula with any number of free variables).

Finally consider Kα[n1, . . . , nk]. First observe that e |H Kα[n1, . . . , nk] iff e |H
Kα•[n1, . . . , nk]: the former holds iff for every w′ ∈ e, e, w′ |H α[n1, . . . , nk] iff for
every w′ ∈ e, w′ |H α•[n1, . . . , nk] (by the induction hypothesis, since w′ |H 8 when
w′ ∈ e) iff the latter holds.

Now suppose that P •α• is the element of 0 guaranteed for α• in the construction.
So e |H P •α•. There are two cases to consider: if e |H Kα[n1, . . . , nk], then by the
above, e |H Kα•[n1, . . . , nk], and therefore e |H KP(n1, . . . , nk), which means that
P(n1, . . . , nk) ∈ 8, and thus, w |H P(n1, . . . , nk); similarly, if e |H ¬Kα[n1, . . . , nk],
then e |H ¬Kα•[n1, . . . , nk], and so e |H K¬P(n1, . . . , nk) and w |H ¬P(n1, . . . , nk), by
the same argument. Either way, e |H Kα[n1, . . . , nk] iff w |H (Kα)•[n1, . . . , nk], which
completes the proof.

When α has no free variables, we get as an obvious corollary:

Corollary 6.4.6: Let w ∈ e. Then e, w |H α iff w |H α•, and so e |H Kα iff e |H Kα•.

Finally, to show that e is represented by 8, we need to show that e = {w | w |H 8}.

Clearly, if w ∈ e, then w |H 8. For the converse, we assume that w |H 8, and show
that w ∈ e. Since e is maximal, by Theorem 6.1.1, we need only show that w satisfies
everything known in e, that is, that for any α such that e |H Kα, we have that e, w |H α.
So suppose that e |H Kα. By the above corollary, we have that e |H Kα•, and so w |H α•,
since α• ∈ 8. Then by the lemma above, we get that e, w |H α, which completes the proof
of the theorem.

So what this theorem shows is that when we are talking about a state of knowledge
using only a finite set of sentences of KL, we are justified in interpreting this as pertaining
to a representable state of knowledge. We saw in the previous section that it is possible to
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1. ∀xyz[R(x, y) ∧ R(y, z) ⊃ R(x, z)]
R is transitive.

2. ∀x¬R(x, x)
R is irreflexive.

3. ∀x[KP(x) ⊃ ∃y.R(x, y) ∧ KP(y)]
For every known instance of P, there is another one that is R related to it.

4. ∀x[K¬P(x) ⊃ ∃y.R(x, y) ∧ K¬P(y)]
For every known non-instance of P, there is another one that is R related to it.

5. ∃x KP(x) ∧ ∃x K¬P(x)
There is at least one known instance and known non-instance of P.

6. ∃x¬KP(x)
There is something that is not known to be an instance of P.

Figure 6.1: A sentence unsatisfiable in finite states

force the state of knowledge to be non-representable, but to do so requires an infinite set of
sentences.

6.5 Finite representations are not sufficient

When we think of a representation of knowledge, we usually have in mind a finite one, that
is, a finite collection of symbolic structures that can be stored and manipulated computa-
tionally. It would be nice if the characterization of knowledge offered by KL conformed
to this view. So the question here is whether the theorem of the previous section can be
strengthened: is validity in KL the same as truth in all finitely representable epistemic
states?

Unfortunately, this is not the case. As we will show, if we were to limit ourselves
to finitely representable epistemic states, we would have to change the logic KL, in the
sense that new sentences would be valid. We will discuss the implications of this later in
Section 6.6. First, we state the fact formally:

Theorem 6.5.1: There is a satisfiable sentence π such that π is false at every finitely
representable epistemic state. Equivalently, there is a sentence that is not valid in KL, but
that is true at every finitely representable epistemic state.

The proof involves a sentence π that states that there is an infinite set of known instances of
a predicate P and an infinite set of known non-instances of P.We then show that although
π is satisfiable, it cannot be satisfied by any finitely representable state.

The π in question is the conjunction of the sentences appearing in Figure 6.1. First,
observe that π is satisfiable. Choose an ordering of the standard names, n1, and n2, and
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so on. Let w be any world state such that R(m, n) is true exactly when m appears earlier
than n in the ordering. Let e be the set of all world states that satisfy all of the following
objective sentences:

{P(n1),¬P(n2), P(n3),¬P(n4), . . . .}

Then it is easy to verify that e, w |H π .
Notice what π is doing here: by making R be transitive and irreflexive, we are forcing

it to behave like less than, and so we are forcing every known instance of P to have a
“greater” one, and similarly, for the known non-instances. The second to last conjunct
makes sure that these sets are not empty, so that they must be infinite, That is, we must
have an infinite chain of known instances, and an infinite one of known non-instances.
The very last conjunct makes sure that the epistemic state is consistent, so that not every
sentence is known.

To complete the proof, we first need the following easy to prove property of repre-
sentable states:

Theorem 6.5.2: Suppose KB is objective and e = <[[KB]]. Then for any objective sentence
φ, e |H Kφ iff KB ∪ {¬φ} is unsatisfiable.

We also need the following property of objective sentences:

Lemma 6.5.3: Suppose φ is a satisfiable objective sentence. Let

A = {n | (φ ⊃ P(n)) is valid} B = {n | (φ ⊃ ¬P(n)) is valid}.

Then either A or B is finite.

Proof: Consider all the names appearing in φ. If A only contains these names, then
clearly A is finite, and we are done. Otherwise, there must be an n such that (φ ⊃ P(n)) is
valid, but such that n does not appear in φ. Let m be any other name that does not appear
in φ. By Theorem 4.4.2 of Chapter 4, (φ ⊃ P(m)) must be valid too. Consequently, A
contains all the names that do not appear in φ. Since φ is satisfiable, A and B must be
disjoint, and so B can only contain names that do appear in φ, and so must be finite.

Now suppose to the contrary that π is satisfied by some finitely representable state. That is,
for some e and w, we have that e, w |H π , where e = <[[φ]]. Because of the last conjunct
in π, e must be non-empty, and so φ must be satisfiable. By the theorem above, the known
instances of P will be the set A in the above lemma, and the known non-instances of P
will be the set B. Moreover, by the lemma, one of A or B must be finite. Thus, if e is
finitely representable and consistent, it cannot have an infinite set of known instances and
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known non-instances of P, which contradicts π. This completes the proof of the theorem.
What we have shown is that it is possible using a single sentence of KL to assert that

there is knowledge that cannot be represented finitely. If we were to restrict our attention
to finite states alone, we would have to arrange the semantics so that the negations of
sentences like π somehow came out valid, an unlikely prospect.

6.6 Representability and TELL

After such a tortuous route, we should summarize where we stand in terms of the types of
epistemic states we have considered:

1. maximal states are fully general in that any satisfiable set of sentences is satisfied by a
maximal state.

2. representable states, that is, those that can be represented by a set of objective sen-
tences, are also sufficient in that a sentence of KL is satisfiable iff it is true at some
representable state. However, this generality does not extend to infinite sets of sen-
tences, as it did with maximal states.

3. finitely representable states, that is, those that can be represented by a finite set of
objective sentences, are not adequate for the semantics of KL in that there are satisfiable
sentences that are false at every finitely representable state.

Thus the three categories of epistemic states are semantically distinct.
So where does this leave us in terms of providing a specification for knowledge-based

systems via the TELL and ASK operations. Intuitively, it would be nice to say that finitely
representable epistemic states (that is, those resulting from finite symbolic KBs) are our
only concern. But the results above show that these are overly restrictive as far as KL is
concerned. We need to allow for all representable states, including those resulting from an
infinite KB, although it is far from clear how we are supposed to “implement” them.

But there is another problem. Consider the definition of the TELL operation from
Chapter 5, and the states e1 and e2 used in the proof in Section 6.3. As we showed, e1 is
representable, but e2, defined as e1 − w, is not. The problem is that e2 is the result of a
TELL operation:

e2 = TELL[∃x(P(x) ∧ ¬KP(x)), e1].

Thus we have the following unfortunate result:

Theorem 6.6.1: Representable states are not closed under TELL.

In other words, given a representable state as argument, the result of TELL need not be
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representable. This is a problem since in allowing for infinitely representable states, we
can move to a non-representable one by applying a TELL operation.

How can we resolve these difficulties? As it turns out, there is a simple and elegant an-
swer. First of all, we need a certain property of KL which will be demonstrated in the next
chapter: although representable states are not closed under TELL, finitely representable
states are. That is, the main result of the next chapter is that given a finitely represented
epistemic state as argument, the result of a TELL operation can always be represented
finitely. This is encouraging since we are clearly more interested in finite representations
of knowledge than in the (non-physically realizable) infinite ones.

On the other hand, we have already cautioned against limiting our attention to finitely
representable states. As we showed, the logic of KL must allow for the infinite ones. The
solution is that, while we have to allow for these non-finite states, we do not need to ever
implement them.

Imagine, epistemic states coming to exist as a result of a sequence of TELL operations.
We start with e0, the least informed state, and as a result of being told sentences α1, α2,

and so on, we move through states e1, e2, and so on. Because e0 is finitely representable,
by the theorem of the next chapter, each of the ei will also be finitely representable. The
infinitely represented states, then can be thought of as limit points in this process, where an
infinite number of sentences have been asserted. This means that we never actually arrive
at an infinite state, but that we can get arbitrarily close. And since we never get there, we
never get to go beyond them either with additional TELL operations. Thus we never have
to consider a non-finitely representable state as an argument to TELL. This picture fully
resolves the problem since the full range of states to consider are all those that result from
a sequence of TELL operations including the limit points even though the limit points are
themselves never further arguments to TELL.

In the next chapter, we supply the remaining piece, showing that finitely representable
states are indeed closed under TELL operations, and hence that a specification of knowl-
edge-based systems can be meaningfully limited to representable epistemic states.

6.7 Bibliographic notes

This chapter deals with the relationship between representations of knowledge and abstract
epistemic states. Somewhat surprisingly, although the idea of representing knowledge
symbolically is a familiar one within AI, to our knowledge, very little has been written
about the correspondence between representations and states of knowledge. One reason
is that there appear to be two somewhat separate communities involved: the knowledge
representation community, as seen, for example in the Conference on Principles of Knowl-
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edge Representation and Reasoning,2 and the logics of knowledge community, as seen, for
example, in the Conference on Theoretical Aspects of Rationality and Knowledge.3 Early
version of the results reported here appeared in [111] and [113]. These results depend on
our view of a KB as encoding objective knowledge about the world. The idea that facts
about what is or is not known could also be part of a KB and thus contribute to what is
known is a much more complex notion, and the basis of autoepistemic logic, discussed in
Chapter 10.

6.8 Exercises

1. Show that maximal states satisfy e = {w | e, w |H Kα ⊃ α}.
2. Prove Theorem 6.2.1.
3. Prove Theorem 6.2.2.
4. Prove Theorem 6.5.2.
5. Show that Theorem 6.2.2 can be strengthened for the quantifier-free subset of KL: any

two epistemic states that have the same objective knowledge are equivalent.
6. Show that Theorem 6.5.1 is false for the quantifier-free subset of KL: any quantifier-

free sentence that is true at all finitely representable states is valid.

2 See https://kr.org.
3 See http://www.tark.org.
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7 The Representation Theorem

In our analysis of what it would mean for a system to have knowledge, we started with
an informal picture of a knowledge-based system, that is, one containing a knowledge
base: a collection of symbolic structures representing what is known to be true about the
world. As we developed the logic KL, we gradually replaced this symbolic understanding
of knowledge with a more abstract one where we talked about an epistemic state: a set of
world states any of which could be, according to what is known, the correct specification
of what is true in the world.

In Chapter 5, we showed how we could define TELL and ASK operations in terms
of these abstract epistemic states without appealing to any notion of symbolic representa-
tion, except as part of the interface language for assertions and questions. In the previous
chapter, we showed that even though there were far more epistemic states than possible
symbolic knowledge bases, as far as the logic KL was concerned, we could restrict our
attention to those epistemic states that were representable by knowledge bases.

The question to be addressed in this chapter is the impact of this representational view
of epistemic states on the TELL and ASK operations. What we will show here is how TELL
and ASK can be realized or implemented using ordinary first-order knowledge bases. In
particular, we will show that is possible to reduce the use of KL in these operations to that
of L in the following way:

• Given a finite KB representing an epistemic state and any sentence of KL used as an
argument to ASK, we can eliminate the K operators from the question, reducing the
question to an objective one, and answer it using ordinary (first-order) theorem-proving
operations.

• Given a finite KB representing an epistemic state and any sentence of KL used as an
argument to TELL, we can eliminate the K operators from the assertion, reducing the
assertion to an objective one, and represent the new epistemic state by conjoining this
objective assertion and the original KB.

So starting with a finitely representable epistemic state, it will always be possible to find
a finite representation of the result of a TELL operation, even if the assertion uses K op-
erators. Moreover, the operation is monotonic in the sense that it involves adding a new
objective sentence conjunctively to the previous representation. This result also establishes
the fact that finitely representable states are closed under TELL. Perhaps more importantly,
it provides a clear link between the abstract knowledge level view of knowledge and the
more concrete symbol level view where symbolic representations are manipulated.

Since this representation theorem involves several steps that are interesting in their own
right, before presenting the proof, we begin by discussing the argument informally.
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7.1 The method

To see how the representation theorem will work, it is useful to consider a very simple
example. Suppose that we have a state e represented by a KB consisting of two sentences:
P(#1), and P(#2). What we want to consider is how to represent the result of asserting a
sentence containing K operators. For example, consider the result of

TELL[∃x(P(x) ∧ ¬KP(x)), <[[KB]]].

The intent of this assertion is to say that there is an instance of P apart from the known
ones. Since in this case the known ones are #1 and #2, the resulting state can be represented
by

{P(#1), P(#2), ∃x[P(x) ∧ ¬((x = #1) ∨ (x = #2))]}.

So we add the assertion to the KB except that the subwff KP(x) is replaced by the wff

((x = #1) ∨ (x = #2)).

In general this is the tactic we will follow: replace subwffs containing a K by objective
wffs that carry the same information, and then conjoin the result with the original KB.

But what does it mean to carry the same information? It is certainly not true that the
two wffs above are logically equivalent. What we do have, however, is that for the initial
state, e = <[[KB]], the known instances of P are precisely #1 and #2. Thus, we get for any
n that

e |H KP(n) iff n ∈ {#1, #2} iff |H ((n = #1) ∨ (n = #2)).

If our initial KB had also contained P(#3), we would have wanted the formula

((x = #1) ∨ (x = #2) ∨ (x = #3)).

Clearly the objective formula we need to replace KP(x) is a function of the initial epis-
temic state, <[[KB]].

Consider a more difficult case. Suppose KB had been the sentence

∀x[(x 6= #3) ⊃ P(x)].

In this case, there are an infinite number of known instances of P so we cannot disjoin
them as above. However, we can still represent the set finitely using the wff (x 6= #3),
since

e |H KP(n) iff n /∈ {#3} iff |H (n 6= #3).

The result of the same assertion can be represented in this case by

{∀x[(x 6= #3) ⊃ P(x)], ∃x[P(x) ∧ ¬(x 6= #3)]},

which is logically equivalent to

{∀x .P(x)}.
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In other words, if we start with all but #3 as the known instances of P, and then we are told
that there is another P apart from the known ones, we end up knowing that everything is
an instance of P.

So the procedure we will follow in general is this: Given a KB and a subwff Kφ
appearing in an assertion, we find an objective formula with the same free variables as φ,
which we call RES[[φ,KB]], and use it to replace Kφ. Once all such subwffs have been
replaced, the resulting objective sentence is added to the KB. For this to work, we need
RES[[φ,KB]] to satisfy the property that for any n

e |H Kφx
n iff |H RES[[φ,KB]]xn,

for e = <[[KB]], (and suitably generalized for additional free variables). In other words,
we need the formula RES[[φ,KB]] to correctly capture the known instances of φ for the
epistemic state <[[KB]].

7.2 Representing the known instances of a formula

The definition of RES is a recursive one, based on the number of free variables in the wff φ.
For the base case, we need to consider what to do if φ has no free variables. For example,
if we were to assert

P(#1) ∧ (P(#2) ∨ KP(#3)),

then since the subwff KP(#3) is subjective, it is either known to be true or known to be
false. In the former case, the assertion overall should reduce to

P(#1),

and in the latter case, to

P(#1) ∧ P(#2).

The simplest way of achieving this is to let RES return an always-true objective sentence
in the former case and an always-false objective sentence in the latter. It will be important
not to introduce any new standard names in the process so we will use ∀z(z = z) and its
negation as the two sentences. We will call the former TRUE and the latter FALSE.

So for example, if KB is {P(#1), P(#2)}, then we have that

RES[[P(#1),KB]] = TRUE,

RES[[(P(#2) ∨ P(#6)),KB]] = TRUE,

RES[[(P(#3) ∨ P(#6)),KB]] = FALSE.

The decision to return the true or the false sentence is based on whether the φ in question
is known. Because φ is objective, by Theorem 6.5.2, this is the same as whether or not the
objective sentence (KB ⊃ φ) is valid.
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Now consider the case of φ(x) containing a single free variable x . The idea here is to
construct a wff that carries the same information as an infinite disjunction that runs through
all the standard names, and for each name n, considers whether or not φ(n) is known. If it
is, we keep (x = n) as part of the disjunction; if it is not, we discard it. For example, for
the above KB, we want something like

RES[[P(x),KB]] = ((x = #1) ∨ (x = #2)),

since for every other n, we have that P(n) is not known to be true. The test for φ(n) being
known is actually a recursive call to RES with one fewer free variable, so we will really
get something more like this:

((x = #1) ∧ RES[[P(#1),KB]]) ∨
((x = #2) ∧ RES[[P(#2),KB]]) ∨
((x = #3) ∧ RES[[P(#3),KB]]) ∨
((x = #4) ∧ RES[[P(#4),KB]]) ∨ . . . ,

which simplifies to the same thing, since only the first two return TRUE.
The only thing left to do is to convert this infinite disjunction to a finite formula. To

do so, we focus on the names appearing in either the KB or φ. Since the KB is assumed to
be finite, there are only a finite number of these. Assuming for the moment that φ(x) only
uses the name #3, for the above KB, this gives us the first three terms of the disjunction:

((x = #1) ∧ RES[[φ(#1),KB]]),
((x = #2) ∧ RES[[φ(#2),KB]]),
((x = #3) ∧ RES[[φ(#3),KB]]).

For all the remaining n, that is, for the infinite set of names not appearing in either KB or
φ,we use Theorem 2.8.8 and its corollaries to establish that we need only consider a single
name, since all such names will behave the same. In other words, instead of asking if φ(n)
is known for an infinite set of names, we choose a single new name n′, and ask if φ(n′) is
known. However, we cannot simply use the disjunct

((x = n′) ∧ RES[[φ(n′),KB]]),

since this is what we do when n′ appears normally in the KB or φ (like #1). Rather, we
construct the final disjunct so that it does not mention n′ directly: instead of (x = n′) we
use

((x 6= #1) ∧ (x 6= #2) ∧ (x 6= #3)),

and instead of RES[[φ(n′),KB]], which might end up containing n′, we use

RES[[φ(n′),KB]]n
′

x

which (abusing notation somewhat) means replacing any n′ that occurs by the free variable
x . Putting all this together, then, for a KB that uses just #1 and #2 and a φ that uses just #3,
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we get
RES[[φ(x),KB]] =

((x = #1) ∧ RES[[φ(#1),KB]]) ∨
((x = #2) ∧ RES[[φ(#2),KB]]) ∨
((x = #3) ∧ RES[[φ(#3),KB]]) ∨
((x 6= #1) ∧ (x 6= #2) ∧ (x 6= #3) ∧ RES[[φ(n′),KB]]n

′

x ),

where n′ is some name other than #1, #2, or #3. For example, for the above KB, we have
that

RES[[P(x),KB]] =

((x = #1) ∧ TRUE) ∨

((x = #2) ∧ TRUE) ∨

((x 6= #1) ∧ (x 6= #2) ∧ FALSE),

which correctly simplifies to ((x = #1)∨ (x = #2)). If instead the KB had been of the form
∀x[(x 6= #3) ⊃ P(x)], then we would have had

RES[[P(x),KB]] =

((x = #3) ∧ FALSE) ∨ ((x 6= #3) ∧ TRUE),

which simplifies to (x 6= #3), as desired. Further examples are in the exercises.
We now provide the definition of RES in its full generality:

Definition 7.2.1: Let φ be an objective formula and KB be a finite set of objective sen-
tences. Suppose that n1, . . . , nk, are all the names in φ or in KB, and that n′ is some name
that does not appear in φ or in KB. Then RES[[φ,KB]] is defined by:
1. If φ has no free variables, then RES[[φ,KB]] is

TRUE, if KB |H φ, and FALSE, otherwise.
2. If x is a free variable in φ, then RES[[φ,KB]] is

((x = n1) ∧ RES[[φx
n1
,KB]]) ∨ . . .

((x = nk) ∧ RES[[φx
nk
,KB]]) ∨

((x 6= n1) ∧ . . . ∧ (x 6= nk) ∧ RES[[φx
n′ ,KB]]n

′

x ).

To make this definition completely determinate, we can choose n′ and x to be the first (in
lexicographic order) standard name and variable that satisfy their respective criterion.

The main property of this definition that we require is:

Lemma 7.2.2: For any finite KB with e = <[[KB]], any objective formula φ with
free variables x1, . . . , xk, and any standard names n1, . . . , nk,

e |H Kφx1
n1 · · ·

xk
nk iff |H RES[[φ,KB]]x1

n1 · · ·
xk
nk .
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Proof: Since e |H Kφx1
n1 · · ·

xk
nk iff |H (KB ⊃ φ

x1
n1 · · ·

xk
nk ) by Theorem 6.5.2, it suffices to

show that

|H RES[[φ,KB]]x1
n1 · · ·

xk
nk iff |H (KB ⊃ φ)x1

n1 · · ·
xk
nk .

The proof is by induction on the number of free variables in φ.
If φ has no free variables, the lemma clearly holds since RES[[φ,KB]] will be valid iff

it is equal to TRUE, which happens iff (KB ⊃ φ) is valid.
Now suppose that φ has k free variables, and that by induction, for any n we have

that φx1
n satisfies the lemma. Now consider RES[[φ,KB]]x1

n1
x2
n2 · · ·

xk
nk , and call this sentence

ψ. Looking at the name n1, there are two cases to consider, depending on whether or
not n1 appears in KB or φ. If it does appear, all disjuncts in ψ but the one naming n1

simplify to false, and so |H ψ iff |H RES[[φx1
n1 ,KB]]x2

n2 · · ·
xk
nk , which by induction happens

iff |H (KB ⊃ φx1
n1 )

x2
n2 · · ·

xk
nk , and so the lemma is satisfied.

If on the other hand, n1 does not appear in KB or φ, then all but the last disjunct in ψ
simplifies to false, and so |H ψ iff |H RES[[φx1

n′ ,KB]]n
′

x1
x1
n1

x2
n2 · · ·

xk
nk , where n′ is some name

that also does not appear in either KB or φ. Now consider the formula RES[[φx1
n′ ,KB]]n

′

x1
.

A trivial induction argument shows that this objective formula does not contain either n1

or n′, since RES does not introduce any new names in its result. Now we will apply
Corollary 2.8.9 using a bijection ∗ that swaps the names n1 and n′ but leaves all other
names unchanged. We get that

|H RES[[φx1
n′ ,KB]]n

′

x1
x1
n1

x2
n2 · · ·

xk
nk iff |H RES[[φx1

n′ ,KB]]n
′

x1
x1
n′

x2
n2∗
· · ·

xk
nk∗
.

But the formula RES[[φx1
n′ ,KB]]n

′

x1
x1
n′ is just RES[[φx1

n′ ,KB]], and by induction,

|H RES[[φx1
n′ ,KB]]x2

n2∗
· · ·

xk
nk∗

iff |H (KB ⊃ φ)x1
n′

x2
n2∗
· · ·

xk
nk∗
.

Again applying Corollary 2.8.9 we have that

|H (KB ⊃ φ)x1
n′

x2
n2∗
· · ·

xk
nk∗

iff |H (KB ⊃ φ)x1
n1

x2
n2 · · ·

xk
nk

as desired, which completes the proof.

This lemma shows that RES properly captures the known instances of φ. As a corollary to
this, we have

Corollary 7.2.3: Let KB, e, φ and the names ni be as in the lemma. Let w be an arbitrary
world state. Then e |H Kφx1

n1 · · ·
xk
nk iff w |H RES[[φ,KB]]x1

n1 · · ·
xk
nk .

The proof is that because the result of RES is a wff that does not use predicate symbols,
function symbols, or K operators, its instances are either valid or their negations are valid.
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7.3 Reducing arbitrary sentences to objective terms

Now that we have seen how we can replace Kφ by an objective wff that correctly represents
its instances, we need to reconsider more precisely the idea discussed earlier of replacing
all such subwffs in a sentence, so that the result can then be conjoined with a KB. We
call this operation reducing a formula to objective terms, and for any wff α of KL, we use
the notation ||α||KB to mean the objective reduction α with respect to KB. Formally the
definition is as follows:

Definition 7.3.1: Given a finite KB and α an arbitrary wff of KL, ||α||KB is the objective
wff defined by

||α||KB = α, when α is objective;

||¬α||KB = ¬||α||KB;

||(α ∧ β)||KB = (||α||KB ∧ ||β||KB);

||∀xα||KB = ∀x ||α||KB;

||Kα||KB = RES[[||α||KB,KB]].

Note that this recursive definition works from the “inside out” in that we first reduce the
argument to K to objective terms before applying RES. If the argument to K happens to
be objective, || · || will not change it, and RES is called directly. Otherwise, that is, when
we have nested K operators, the call to || · || produces an objective wff which can then be
passed to RES.1

For example, if KB is {P(#1), P(#2)} as we had before, then

||∃x[P(x) ∧ ¬KP(x)]||KB =

∃x[P(x) ∧ ¬((x = #1) ∨ (x = #2))].

Note that the only part of the sentence that gets changed by || · || is the part involving K.
Unlike RES, the goal of || · || is not to produce the known instances of a wff; rather, it is
to take an arbitrary wff and produce an objective version that is true in exactly the same
world states by encoding what is needed from the epistemic state. More precisely, we have
the following:

Lemma 7.3.2: For any finite KB with e = <[[KB]], any world state w, any formula α of

1 Strictly speaking, the well-formedness of this definition should not simply be assumed; we need to prove (by
induction) that || · || always returns an objective formula.
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KL with free variables x1, . . . , xk, and any standard names n1, . . . , nk,

e, w |H αx1
n1 · · ·

xk
nk iff w |H ||α||KB

x1
n1 · · ·

xk
nk .

Proof: The proof is by induction on the structure of α. If α is atomic or an equality,
the lemma clearly holds since α is then objective. The lemma also holds by induction for
negations, conjunctions, and quantifications. Now consider the formula Kα. We have that

e |H Kαx1
n1 · · ·

xk
nk

iff for every w′ ∈ e, we have
e, w′ |H αx1

n1 · · ·
xk
nk

iff (by induction) we have for every w′ ∈ e,
w′ |H ||α||KB

x1
n1 · · ·

xk
nk

iff we have
e |H K||α||KB

x1
n1 · · ·

xk
nk .

Since the formula within the K operator here is now objective, by Corollary 7.2.3, this
holds iff

w |H RES[[||α||KB,KB]]x1
n1 · · ·

xk
nk

which, by definition of || · ||, is the same as
w |H ||Kα||KB

x1
n1 · · ·

xk
nk .

So this lemma shows that || · || preserves the truth value of α with respect to the world
state, but removes the dependency of α on the epistemic state. This is just what we need to
represent a new epistemic state in objective terms.

7.4 TELL and ASK at the symbol level

With the lemma of the previous section, we saw how we could take an arbitrary formula
of KL, and reduce it to objective form in a way that captures its dependency on the epis-
temic state. This will allow us to deal with TELL and ASK completely in objective terms,
provided that we start with a finitely representable objective state.

Theorem 7.4.1: [The Representation Theorem] Let KB be any finite set of objective
sentences and α be any sentence of KL. Then:

1. TELL[α,<[[KB]]] = <[[(KB ∧ ||α||KB)]].

2. ASK[α,<[[KB]]] = yes iff KB |H ||α||KB.

The proof is immediate from the fact that for any w, and for e = <[[KB]],

e, w |H α iff w |H ||α||KB,
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which is just Lemma 7.3.2 when α has no free variables. We can also state a variant for
ASK:

Corollary 7.4.2: Under the same conditions as the Theorem,

ASK[α,<[[KB]]] = yes iff ||Kα||KB is TRUE.

This important theorem tells us that the result of a TELL can always be represented by
conjoining an objective sentence to the KB, and that an ASK can always be calculated
in terms of the (objective) logical implications of the KB. Moreover, as can be seen by
examining the definition of || · || and RES, the reduction to objective terms itself can be
done using only the (objective) logical implications of the KB. The conclusion: we can
calculate the answers to TELL and to ASK for arbitrary sentences of KL using ordinary
first-order theorem proving.

Of course, this does not make it easy to perform these operations, since in general,
it is impossible to calculate the objective logical implication of a KB. Moreover, the way
RES was defined was not particularly realistic, since it involved constructing a formula that
could be as large as twice the total number of constants in the KB. But the representation
theorem at least shows that the operation is definable in terms of these ordinary first-order
operations, which opens the door to possible optimizations in special cases.

Another way of looking at this theorem is to consider a symbolic “implementation” of
TELL and ASK which works directly on representations of the epistemic states. Call these
procedures TELL′ and ASK′ respectively, where

• ASK′[α,KB] is defined as

1. Calculate ||α||KB using the recursive definition. Call this φ.

2. Test if (KB |H φ); if it does, return yes; otherwise, no.

• TELL′[α,KB] is defined as

1. Calculate ||α||KB using the recursive definition. Call this φ.

2. Return (KB ∧ φ).

The representation theorem can thought of as a proof of correctness for these symbol level
procedures.

7.5 The example KB reconsidered

Let us now return to the example KB introduced in Section 5.7 to examine the workings
of the representation theorem. We begin by looking at an example of ASK, in particular,
Question 8:
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8. ∃x[Teach(x, sue) ∧ ¬KTeach(x, sue)] TRUE

We have already considered why the answer should be yes on semantic grounds. In terms
of the representation theorem, we need to reduce the question to objective terms. To do so,
we need to calculate the known instances of Teach(x, sue). If we apply the definition of
RES, we get that

RES[[Teach(x, sue),KB]] =

((x = tom) ∧ RES[[Teach(tom, sue),KB]]) ∨
((x = sam) ∧ RES[[Teach(sam, sue),KB]]) ∨
((x = tina) ∧ RES[[Teach(tina, sue),KB]]) ∨
((x = tara) ∧ RES[[Teach(tara, sue),KB]]) ∨
((x = sue) ∧ RES[[Teach(sue, sue),KB]]) ∨
((x = ted) ∧ RES[[Teach(ted, sue),KB]]) ∨
((x = sara) ∧ RES[[Teach(sara, sue),KB]]) ∨
((x = sandy) ∧ RES[[Teach(sandy, sue),KB]]) ∨
((x 6= tom) ∧ (x 6= sam) ∧ (x 6= tina) ∧ (x 6= tara) ∧

(x 6= sue) ∧ (x 6= ted) ∧ (x 6= sara) ∧ (x 6= sandy) ∧
RES[[Teach(tania, sue),KB]]tania

x ),

where tania is the chosen new name not appearing in the KB. Here all the recursive calls
are of the form Teach(n, sue) and have no free variables. So they will either return TRUE

or FALSE, depending on whether KB |H Teach(n, sue). For all but the standard name tina,
the answer will be FALSE. So simplifying, we have

RES[[Teach(x, sue),KB]] = (x = tina),

meaning that Tina is the only known teacher of Sue. Then we get that

||∃xTeach(x, sue) ∧ ¬KTeach(x, sue)||KB =

∃x[Teach(x, sue) ∧ ¬(x = tina)].

So the original question reduces to whether or not Sue has a teacher apart from Tina. The
answer depends on whether or not

KB |H ∃x[Teach(x, sue) ∧ ¬(x = tina)].

Since the entailment holds (because of what is known about Tom and Ted), the answer is
yes, as desired.

Notice the two step operation: we first reduce the question to objective terms (using
the implications of the KB) and then we determine if the result is implied by the KB.
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Alternatively, we could have used the corollary to the representation theorem, and simply
calculated

||K∃x[Teach(x, sue) ∧ ¬KTeach(x, sue)]||KB.

First the argument to the outermost K must be reduced, which produces

∃x[Teach(x, sue) ∧ ¬(x = tina)],

as before because of RES[[Teach(x, sue),KB]]. Then we need to apply RES to this sentence
which, because it is implied by the KB, gives us TRUE, and so once again the answer is
yes.

As a second example, consider Question 11:

11. ∃y K∀x[Teach(x, y) ⊃ KTeach(x, y)] TRUE

We need to apply RES to the innermost formula dominated by a K, Teach(x, y). This has
two free variables, and so the depth of recursion will be two. Assuming the y is used first,
say, we get

RES[[Teach(x, y),KB]] =

((y = tom) ∧ RES[[Teach(x, tom),KB]]) ∨
((y = sam) ∧ RES[[Teach(x, sam),KB]]) ∨
((y = tina) ∧ RES[[Teach(x, tina),KB]]) ∨
((y = tara) ∧ RES[[Teach(x, tara),KB]]) ∨
((y = sue) ∧ RES[[Teach(x, sue),KB]]) ∨
((y = ted) ∧ RES[[Teach(x, ted),KB]]) ∨
((y = sara) ∧ RES[[Teach(x, sara),KB]]) ∨
((y = sandy) ∧ RES[[Teach(x, sandy),KB]]) ∨
((y 6= tom) ∧ (y 6= sam) ∧ (y 6= tina) ∧ (y 6= tara) ∧

(y 6= sue) ∧ (y 6= ted) ∧ (y 6= sara) ∧ (y 6= sandy) ∧
RES[[Teach(x, sally),KB]]sally

x ),

where sally is the chosen new name that does not appear in the KB. For each name n, we
need to calculate RES[[Teach(x, n),KB]] which, as in the previous example, gives us the
known teachers of n. For example, if n has no known teachers, such as for sally or tom, we
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get the following:

RES[[Teach(x, sally),KB]] =

((x = tom) ∧ RES[[Teach(tom, sally),KB]]) ∨
((x = sam) ∧ RES[[Teach(sam, sally),KB]]) ∨
((x = tina) ∧ RES[[Teach(tina, sally),KB]]) ∨
((x = tara) ∧ RES[[Teach(tara, sally),KB]]) ∨
((x = sue) ∧ RES[[Teach(sue, sally),KB]]) ∨
((x = ted) ∧ RES[[Teach(ted, sally),KB]]) ∨
((x = sara) ∧ RES[[Teach(sara, sally),KB]]) ∨
((x = sandy) ∧ RES[[Teach(sandy, sally),KB]]) ∨
((x = sally) ∧ RES[[Teach(sally, sally),KB]]) ∨
((x 6= tom) ∧ (x 6= sam) ∧ (x 6= tina) ∧ (x 6= tara) ∧ (x 6= sue) ∧

(x 6= ted) ∧ (x 6= sara) ∧ (x 6= sandy) ∧ (x 6= sally) ∧
RES[[Teach(tony, sara),KB]]tony

x ),

where tony is the new name. Note that in this case, tony must be distinct from all the names
in the KB and from the name of sally as well, which was introduced earlier in the recursion.
Here each of the recursive calls returns FALSE, and so RES[[Teach(x, sally)]] simplifies to
FALSE. So overall, after simplification, we get

RES[[Teach(x, y),KB]] =

((y = sam) ∧ (x = tom)) ∨
((y = sue) ∧ (x = tina)) ∨
((y = sandy) ∧ (x = ted)),

which captures all the known instances of the Teach predicate. Given this, we can reduce
the formula

∀x[Teach(x, y) ⊃ KTeach(x, y)],

which says that all of the teachers of y are known, to

∀x[Teach(x, y) ⊃ ((y = sam) ∧ (x = tom)) ∨
((y = sue) ∧ (x = tina)) ∨ ((y = sandy) ∧ (x = ted))].

This formula, call itψ,will now become the argument to RES for the outermost K operator.
It has a single free variable y, and we wish to find names n for which ψ(n) is known to be
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true. As usual, we need to consider all the names in the KB:
RES[[ψ(y),KB]] =

((y = tom) ∧ RES[[ψ(tom),KB]]) ∨
((y = sam) ∧ RES[[ψ(sam),KB]]) ∨
((y = tina) ∧ RES[[ψ(tina),KB]]) ∨
((y = tara) ∧ RES[[ψ(tara),KB]]) ∨
((y = sue) ∧ RES[[ψ(sue),KB]]) ∨
((y = ted) ∧ RES[[ψ(ted),KB]]) ∨
((y = sara) ∧ RES[[ψ(sara),KB]]) ∨
((y = sandy) ∧ RES[[ψ(sandy),KB]]) ∨
((y 6= tom) ∧ (y 6= sam) ∧ (y 6= tina) ∧ (y 6= tina) ∧

(y 6= sue) ∧ (y 6= ted) ∧ (y 6= sara) ∧ (y 6= sandy) ∧
RES[[φ(steve),KB]]steve

y ).

For each name n, the sentence ψ(n) is true if either n has no teachers or n is sam and his
only teacher is tom, or n is sue and her only teacher is tina, or n is sandy and her only
teacher is ted. The values of n for which this is implied by the KB are tom, tina, tara,
ted and steve, (for which it is known that they have no teachers), and sandy (for which it
is known that ted is her only teacher). For these values of n, RES[[ψ(n),KB]] will return
TRUE, and for the others, FALSE. Thus, we get that

RES[[ψ(y),KB]] =

(y = ted) ∨ (y = tom) ∨ (y = tina) ∨ (y = tara) ∨ (y = sandy) ∨
[(y 6= tom) ∧ (y 6= sam) ∧ (y 6= tina) ∧ (y 6= tara) ∧ (y 6= sue) ∧

(y 6= ted) ∧ (y 6= sara) ∧ (y 6= sandy)]
which simplifies to

[(y 6= sam) ∧ (y 6= sue) ∧ (y 6= sara)].

Thus for anyone but sam, sue, or sara, it is known that all of the teachers are known (for
all but sandy, this is because they are known to not have any teachers). So ψ is an example
of a non-trivial formula with infinitely many known instances, captured by the last disjunct
of RES using inequalities.

Finally, we can reduce the original question

∃y K∀x[Teach(x, y) ⊃ KTeach(x, y)]

to

∃y.(y 6= sam) ∧ (y 6= sue) ∧ (y 6= sara).

This will be answered yes, since it is implied by the KB, because of what is known about
Sandy. She is the only individual that has a teacher and for which it is known that all of
her teachers are known.
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As a final example in this chapter, we will consider the effect of the Assertion 3 in
terms of the representation theorem:

3. ∀x[Teach(x, sara) ⊃ ∃y KTeach(x, y)] [e2 → e3]

Earlier, we considered the result of this assertion after two preliminary assertions. To
simplify here, we assume that this is being asserted starting in the original KB.

What this sentence says is that anyone who teaches Sara must have someone they are
known to teach. To reduce this sentence, we must calculate RES[[Teach(x, y),KB]],which
we did in the previous example. Using that result, the assertion reduces to

∀x(Teach(x, sara) ⊃ ∃y
[((y = sam) ∧ (x = tom)) ∨
((y = sue) ∧ (x = tina)) ∨
((y = sandy) ∧ (x = ted))]),

which simplifies to

∀x(Teach(x, sara) ⊃ [(x = tom) ∨ (x = tina) ∨ (x = ted)]).

This sentence is objective and can be conjoined to the KB. So the effect of the TELL is to
assert that Sara’s teachers must be among Tom, Tina, or Ted, the only individuals with a
known student.

7.6 Wh-questions at the symbol level

In Chapter 5, we introduced a new interaction operation WH-ASK which returned the
known instances of a formula, defined by

WH-ASK[α[Ex], e] = {En | e |H Kα[En]}.

We also mentioned that this set of standard names could be infinite, which presents a
problem from an implementation standpoint. But || · ||, which can be used to represent the
known instances of a formula, provides a perfect solution to this problem:

WH-ASK[α,<[[KB]]] = ||α||KB.

Instead of returning a possibly infinite set of known instances of α, we return instead a
finite formula from which as many standard names as desired can easily be extracted.
From Lemma 7.3.2, it follows that these standard names are precisely the known instances
of α.

We also considered in Chapter 5, an interaction operation DESCRIBE which returned
terms known to be co-referential with a given standard name, defined by

DESCRIBE[n, e] = {t | e |H K(t = n)}.
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Again, this presents an implementation problem since for a KB like {∀x .x = f (x)}, the
standard name #1 is known to be co-referential with an infinite number of other terms:

{
#1, f (#1), f ( f (#1)), f ( f ( f (#1))), . . .}.

A suggestion here is that instead of returning all co-referential terms, we only return co-
referential primitive terms, that is, containing exactly one function or constant symbol:

DESCRIBE[n, e] = {t | t is primitive and e |H K(t = n)}.

For example, asked to describe a standard name like #23, we might get the set

{jake, jack, jackie, best friend(#13), first child(#5, #79)}

of primitive co-referring terms. We are then free to further elaborate on this set by de-
scribing any of the standard names mentioned, and so on to any depth. We leave it as an
exercise to show that DESCRIBE as redefined above always returns a finite set.

7.7 Bibliographic notes

As discussed in Chapter 4, knowledge has many of the closure properties of entailment,
validity, or provability. Further, as seen in Chapter 6, what is known objectively in the
epistemic state represented by some KB is precisely the logical entailments of that KB.
At its simplest, the Representation Theorem of the current chapter is based on the idea
of going through a formula and replacing knowledge of an objective sentence by either
TRUE or FALSE according to whether the sentence is entailed by the given KB. This idea
is then generalized to non-objective knowledge by working recursively on formulas from
the inside out. Finally, we use standard names and equality to deal with formulas with free
variables and quantifying in. An early version of these ideas appeared in [111] and [113].
The Representation Theorem was subsequently used to describe integrity constraints on
databases in [160]. We will see another use in the final chapter of the book in the context
of reasoning about action (see also [20, 172], for example).

7.8 Exercises

1. Show that for any KB, RES[[(x = #1),KB]] is equivalent to (x = #1).

2. Consider the KB that is the conjunction of
∀y.R(#1, y) ≡ (y = #1) ∨ (y = #2)

∀y.R(#2, y) ≡ (y 6= #2) ∧ (y 6= #3)

∀y.¬R(#3, y)

∀x,∀y.((x 6= #1) ∧ (x 6= #2) ∧ (x 6= #3)) ⊃ (R(x, y) ≡ (x = y))
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Calculate each of the following: RES[[R(#1, y),KB]]; RES[[R(#5, y),KB]];
RES[[R(x, #2),KB]]; and RES[[R(x, #5),KB]].

3. Show using the representation theorem, why the answer to the question
∃x .Teach(x, sam) ∧ ¬KTeach(x, sam)

for the example KB in Section 5.7 is UNKNOWN.
4. The definition of RES requires constructing a formula using every standard name men-

tioned in the KB. Describe a more practical class of KB’s and queries where it would
not be necessary to enumerate all the standard names in the KB.

5. Call an epistemic state quasi-finitely representable if it can be represented by a KB
(finite or infinite) that uses only finitely many standard names.

(a) Prove that the representation theorem works for quasi-finite epistemic states, and
hence that these are closed under TELL.

(b) Prove that the sentence π of Theorem 6.5.1 is not satisfied by a quasi-finite epis-
temic state, and hence that the logic of KL requires epistemic states that are not
quasi-finite.

6. Give an example where RES would return an incorrect value if the standard names
used in the definition ranged only over those in the KB, but not over those in the first
argument.

7. Prove that for a finite KB, DESCRIBE[n,<[[KB]]] is always finite.
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In previous chapters, we covered in detail the language KL and how it could be used as the
interface language for TELL and ASK operations. We also saw how its objective fragment,
L, could always be used to represent what was known. In this chapter, we begin the
examination of a third use for a logical language: as a specification of the behaviour of a
knowledge base under the TELL and ASK operations.

Since we already have a semantic definition of these operations and, as a result of the
Representation Theorem of the previous chapter, an equivalent symbolic characterization,
why do we need yet another specification? The answer is simply that this logical specifi-
cation will allow us to generalize very nicely the TELL and ASK operations in a way that
will make a close connection to some of the work in nonmonotonic reasoning, explored in
chapters 10 and 11.

8.1 The logic of answers

Suppose we start with an epistemic state e represented by P(#1). In this state, we have, for
example, that

ASK[∃x P(x), e] = yes.

One question we can ask about this answer is this:

What property of the logic of KL tells us that this answer is correct?

By looking at the definition of ASK, we can see that all the world states in e satisfy
∃x P(x). In other words, we answer yes because any w that satisfies the KB must also
satisfy ∃x P(x). This is just another way of saying that we will answer yes for any α for
which

|H (KB ⊃ α),

as expected.
But there is clearly more to the story of ASK. For example, we also have that

ASK[K∃x P(x), e] = yes

and even

ASK[∃x KP(x), e] = yes,

where the α here is not implied by the KB. In this case, the answer arises due to introspec-
tion: knowing the α is implied by knowing the KB. Thus, we will answer yes for any α for
which

|H (KKB ⊃ Kα).
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The reason is that since e |H KKB, we get that e |H Kα and thus ASK must return yes.
This also subsumes the previous case since if KB implies α, then KKB implies Kα.

Although this explanation handles positive introspection properly, it does not work for
negative introspection. For example, we also have that

ASK[¬KP(#2), e] = yes.

What property of the logic of KL explains this? In this case, knowing KB does not imply
knowing α. In fact there is nothing in KB that suggests anything one way or another about
P(#2). Just because P(#1) is known, P(#2) may or may not be known. If P(#2) is in fact
known, then so will be KP(#2), by positive introspection; if it is not known, then¬KP(#2)
will be known by negative introspection.

How then did ASK come to settle on the second case? Informally, the answer is that
because the negation of P(#2) is consistent with what is known, that is, because

|6= (P(#1) ⊃ P(#2)),

P(#2) is not known. In other words, although there is nothing about P(#2) implied by
knowing P(#1), if this is all that is known, then we can say something about P(#2), namely
that it is not known.

To make this distinction, we need to clearly separate the difference between saying
that α is known and α is all that is known. Of course, we never mean that α is the unique
single sentence known to be true, since at the very least we will know the logical conse-
quences of α and other formulas by positive introspection. But when we say that a state e
is represented by the sentences in KB, we are saying more than just that these sentences
are known. We are implicitly saying that these represent all that is known.

The difference between the two readings shows up most clearly with objective sen-
tences. If KB and φ are objective, and KB does not imply φ, then if KB is known, φ may
or may not be known; but if KB is all that is known, φ is not known, and so ¬Kφ will be
known by negative introspection, as above.

But characterizing the answer to ASK for non-objective sentences involving negative
introspection is somewhat more complex. Rather than try to devise a complicated strat-
egy using satisfiability (or consistency) instead of validity, we will take a very different
approach: we will extend the language KL so that we can distinguish between saying “α
is known” and “α is all that is known.” As always, we will write the former as Kα. For
the latter, we will introduce a new modal operator O so that Oα is read as α is all that is
known, or that only α is known. We will also sometimes use the expression “only-knowing
α.” What we will end up establishing is that ASK returns yes for question α iff

|H (OKB ⊃ Kα),
that is, only-knowing the KB implies knowing α. This will subsume the previous two
cases above since if the KB is all that is known, then the KB is known. Thus we will have
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characterized the behaviour of ASK as applied to finitely representable states completely
by the valid sentences of this extended logic. And, as we saw in the last chapter, we can
restrict our attention to such states when it comes to arguments for TELL and ASK.

8.2 The language OL

The language OL has exactly the same syntactic formation rules as that of KL but with
one addition:

• If α is a wff, then Oα is one too.

Note that the argument to O need not be objective or even a sentence of KL. For example,

O[P(#1) ∧ ¬O(P(#2))] ∨ KO(P(#3))
is a proper sentence of OL. It is also considered to be a subjective sentence of OL, since
all predicate and function symbols are within the scope of a modal operator. A sentence of
OL is called basic if it is also a sentence of KL (that is, contains no O operators.)

Turning now to the semantics of OL, we will have the usual rules of interpretation for
all the connectives from KL. All we need to do, then, is to specify when e |H Oα holds,
after which satisfaction, validity, and implication will be as before.

The idea of only-knowing α means knowing no more than α about the world. So α will
be all that is known in e when α is known, but e has as little world knowledge as possible.
Since, as we discussed in Chapter 3, more knowledge means fewer world states and less
knowledge means more world states, we want e to have as many world states as possible,
although it clearly cannot contain any where α comes out false. In other words, α is all
that is known in e iff e consists of exactly the world states where α is true, no more (since
α is known) and no less (since it is all that is known).

More formally, we augment the semantic specification of KL by a single new rule of
interpretation:

• e, w |H Oα iff for every w′, w′ ∈ e iff e, w′ |H α.

Note that this is (inductively) well-defined for any α in OL. So whereas the semantics of
K requires e to be a subset of the states where α is true, that is,

• e, w |H Kα iff for every w′, if w′ ∈ e then e, w′ |H α,

the semantics of O requires equality. That is, an “if” has been augmented to an “iff.” Thus
Oα logically implies Kα, but not vice versa.

Also worth noting is that because we are insisting that e be the set of all states where
α is true, we need to be careful when it comes to equivalent epistemic states. For example,
imagine that we have two completely equivalent states but that one is a subset of another, as
we described in Chapter 6. Since these two states know exactly the same basic sentences,
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we obviously want them to agree on all sentences of the form Oα as well. But by the
above definition, they would not. One would only be a subset of the set of states where α
was true. Rather than complicate the semantics somehow (using the equivalence relation)
to handle this situation, we will simply restrict our attention to maximal epistemic states,
as we have done in previous chapters. Indeed, with maximal sets it is straightforward to
show that the basic beliefs of an epistemic state uniquely determine all beliefs at that state,
including those that mention O. Let a basic belief set 0 be defined just like a belief set in
KL, that is, 0 = {α | α is basic and e |H Kα}.

Lemma 8.2.1: If e and e′ are maximal sets that have the same basic belief set, then for
any subjective sentence σ of OL, e |H σ iff e′ |H σ .

Proof: Since e and e′ have the same belief set, they are equivalent. Since they are
both maximal, they must be equal by Theorem 6.1.2, and so satisfy the same subjective
sentences.

With that we define satisfiability, validity, and logical implication in OL just like in KL
except that we explicitly restrict ourselves to maximal sets of worlds only.

8.3 Some properties of OL

The simplest and most common case of only-knowing that we will consider is when the
argument is an objective sentence φ. Saying Oφ is simply saying that what is known can
be finitely represented by φ. There is exactly one epistemic state where this is true:

Theorem 8.3.1: For any objective φ, there is a unique maximal e such that e |H Oφ.

Proof: Let e = <[[φ]]. Clearly, e |H Oφ, and no other e′ can contain any other world
states or fail to contain those in e.

As a trivial corollary, we have

Corollary 8.3.2: If φ is objective and σ is subjective, then either

|H (Oφ ⊃ σ) or |H (Oφ ⊃ ¬σ).

So given that only φ is known, everything else about the epistemic state is logically implied.
Note that this is not true for K. If φ and ψ are distinct atomic sentences, then we have that

|H (Oφ ⊃ ¬Kψ),
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yet |6= (Kφ ⊃ ¬Kψ) and |6= (Kφ ⊃ Kψ). In other words, Kφ leaves open whether or not
Kψ. We also have:

Theorem 8.3.3: Suppose φ and ψ are objective. Then

|H (Oφ ⊃ Kψ) iff |H (φ ⊃ ψ).

Proof: Suppose that |H (Oφ ⊃ Kψ), and that e is such that e |H Oφ as guaranteed by
the previous theorem, and so e |H Kψ . For any w, if w |H φ, then w ∈ e, and so w |H ψ .
Conversely, assume that |H (φ ⊃ ψ), and so, |H (Kφ ⊃ Kψ). For any e, if e |H Oφ, then
e |H Kφ, and so e |H Kψ .

Finally, notice that nothing in the proof of the theorem depends on φ being finite. Hence we
obtain the following corollary, which, in a sense, generalizes the concept of only-knowing
to arbitrary sets of sentences, a subject we will not pursue further in this book.

Corollary 8.3.4: For any set of objective sentences 8, there is a unique maximal e such
that for any objective ψ, e |H Kψ iff 8 |H ψ.

These results give us a complete characterization of which objective sentences are believed,
given that all that is known is also objective.

Turning now to only-knowing purely subjective sentences, here the situation is some-
what trivial. If we say “all that is known about the world is σ,” and σ is subjective and
so doesn’t say anything about the world, then nothing is known about the world. So the
epistemic state must be e0. The only other possibility is the inconsistent epistemic state: in
this case, for certain σ, such as ¬Kα, we have that σ is known because every sentence is
known, and nothing else need be known to arrive at this inconsistent state, since Kα is also
true. More precisely, we have:

Theorem 8.3.5: For any e and subjective σ, e |H Oσ iff either e |H σ and e = e0, or
e |H ¬σ and e = {}.

Proof: Suppose that e |H Oσ . In one case, we have e |H σ , in which case e = e0 since
for every world state w, e, w |H σ . In the other case, we have e |H ¬σ , and so for any
world state w, e, w |H ¬σ , and thus e |H K¬σ . However, because we also have e |H Kσ ,
we must have e = {}.

Conversely, suppose that e |H σ where e = e0. Then clearly e |H Kσ , and since e0

contains every w, e |H Oσ . Similarly, assume that e |H ¬σ where e = {}. Then, for no w
do we have e, w |H σ , and since e |H Kσ , we get that e |H Oσ .
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So if Oσ satisfiable at all, it is only satisfied in trivial epistemic states like e0 or {}, or
both. For example, O¬Kψ is satisfied by both e0 and {}. For a similar reason, we have the
following:

Corollary 8.3.6: Suppose that ψ is atomic. Then |H ¬OKψ.

Proof: Assume, to the contrary, that e |H OKψ. Then, by the theorem, e = e0 or e = {}.
However, e0 |H ¬Kψ, and {} |H Kψ , contradicting the theorem.

Thus, just as there are sentences of the form Kα that are valid in KL and OL, there are
sentences¬Oα that are valid in OL. In other words, there are sentences that simply cannot
be all that is known in any state, from e0 to the inconsistent one.

The following properties provide us with criteria under which sentences can be con-
joined or disjoined to what is only-known without actually changing the epistemic state.

Theorem 8.3.7: |H (Oα ∧ Kβ ⊃ O[α ∧ β]).

Proof: Suppose that e |H Oα ∧ Kβ. Then e |H Kα ∧ Kβ, and so e |H K[α ∧ β]. Now
assume that e, w |H [α ∧ β]. Then e, w |H α, and so w ∈ e, since e |H Oα.

So in expressing all that is known, we can conjoin anything that happens to be known. The
second property is:

Theorem 8.3.8: For any subjective σ, |H (Oα ∧ σ ⊃ O[α ∨ ¬σ ]).

Proof: Suppose that e |H Oα ∧ σ . Then e |H Kα, and so e |H K[α ∨ ¬σ ]. Now assume
that e, w |H [α ∨ ¬σ ]. Then e, w |H α, since e |H σ , and so w ∈ e.

So in expressing all that is known, we can disjoin any false subjective sentence. This is just
another way of saying that when it comes to only-knowing, the true subjective sentences
add nothing, and the false ones take nothing away.

We will investigate many other properties of OL in more detail later, including an
attempt at axiomatizing the logic in Chapter 9. At this point, however, we already know
enough about the logic to apply it to the specification of ASK and TELL within OL, a task
we now turn to.
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8.4 Characterizing ASK and TELL

Recall that ASK and TELL were specified originally in terms of what the epistemic state
<[[KB]] of a KB knows. With O this specification can be carried out entirely within OL,
that is, in terms of certain valid sentences.

Theorem 8.4.1: Let KB be an objective sentence and α arbitrary. Then

ASK[α,<[[KB]]] = yes iff |H (OKB ⊃ Kα).

Proof: To prove the only-if direction, assume e |H OKB. Then e = <[[KB]] because KB
is objective. Since the answer is yes, we have e |H Kα by the definition of ASK.

Conversely, assume that |H (OKB ⊃ Kα). Clearly <[[KB]] |H OKB and, therefore,
<[[KB]] |H Kα. So the answer is yes.

Note that the theorem holds for any α, not just basic ones. Moreover, the use of O is
essential for the theorem to go through.

The characterization of TELL turns out to be not quite as straightforward. One might
expect that TELL[α,<[[KB]]] = <[[KB∗]] iff |H OKB∗ ≡ O[KB ∧ α].

While this is true for objective α, it does not hold if α is non-objective. For example,
TELL[(K p ∨ p), e0] = <[[p]], but |6= Op ≡ O[K p ∨ p]. To see why the equivalence
fails, recall that TELL requires that any occurrence of K within the new sentence α be
interpreted with respect to the old epistemic state<[[KB]] (e0 in the example). Occurrences
of K within O[KB ∧ α], on the other hand, refer to the state(s) which only know KB ∧ α.
As the example shows, these are in general different from <[[KB]].

What does hold, on the other hand, is that adding an objective sentence φ to the KB as
a result of TELL[α,<[[KB]]] is correct just in case α is known to be equivalent to φ before
TELL is performed. Formally:

Theorem 8.4.2: Let KB and φ be objective, α arbitrary. Then

TELL[α,<[[KB]]] = <[[KB ∧ φ]] iff |H (OKB ⊃ K(α ≡ φ)).

Proof: Let e = <[[KB]]. Recall that TELL[α, e] = e ∩ {w | e, w |H α}. To show the
if direction, assume that (OKB ⊃ K(α ≡ φ)) is valid. Then clearly e |H K(α ≡ φ), that
is, {w ∈ e | e, w |H α} = {w ∈ e | w |H φ}. Hence TELL[α, e] = e ∩ {w | w |H φ} =
<[[KB ∧ φ]].

Conversely, assume that TELL[α, e] = <[[KB ∧ φ]]. Then e ∩ {w | e, w |H α} =

e ∩ {w | w |H φ}. Thus for any w ∈ e, e, w |H α iff w |H φ, from which e |H K(α ≡ φ)
follows immediately.
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Corollary 8.4.3: For any objective KB and any basic α there is an objective φ such that
|H (OKB ⊃ K(α ≡ φ)).

Proof: The corollary follows immediately from this theorem and the Representation
Theorem (Theorem 7.4.1).

8.5 Determinate sentences

We have seen that objective sentences uniquely determine epistemic states, that is, for any
φ, there is exactly one e such that e |H Oφ. Let us call such sentences determinate. Notice
that there is nothing in the definition that requires a determinate sentence to be objective
and it seems worthwhile to look at the more general case. In this section, we will therefore
consider arbitrary determinate sentences. The main result will be that the Representation
Theorem, which we obtained in Chapter 7 for objective knowledge bases, carries over
nicely to the case of arbitrary determinate knowledge bases. We begin by showing that
determinate sentences indeed deserve their name, that is, they leave no doubt about what
is and is not believed.

Theorem 8.5.1: A sentence δ is determinate iff for every basic α, exactly one of (Oδ ⊃ Kα)
and (Oδ ⊃ ¬Kα) is valid.

Proof: First, suppose that δ is determinate, and that e is the unique maximal set of
worlds satisfying Oδ. Then, as in Corollary 8.3.2 either (Oδ ⊃ Kα) or (Oδ ⊃ ¬Kα) is
valid according to whether e |H Kα or not.

Now suppose that exactly one of (Oδ ⊃ Kα) or (Oδ ⊃ ¬Kα) is valid for every basic
α. Oδ must be satisfiable since otherwise it would imply every sentence. Moreover, for
any e that satisfies it, we have that e |H Kα iff (Oδ ⊃ Kα) is valid, because either Kα or
¬Kα is implied by Oδ. Thus, if e and e′ satisfy Oδ, then e |H Kα iff e′ |H Kα for every
basic α. So e and e′ are equivalent and, by Theorem 6.1.2, e = e′. Thus, δ is determinate.

Thus, determinate sentences not only tell us exactly what is and what is not believed, they
are also the only sentences to do so. As such, they can be used as representations of
knowledge, since they implicitly specify a complete epistemic state.

To see that there are interesting determinate sentences beyond the objective ones, let
γ be the closed world assumption from Chapter 5, saying that all instances of predicate P
are known,

∀x(P(x) ⊃ KP(x)),
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and consider KB1 = {P(#1), P(#2), γ }. As the following lemma shows, there is a unique
epistemic state which only knows KB1:

Lemma 8.5.2: Let e = <[[∀x(P(x) ≡ [(x = #1) ∨ (x = #2)])]]. Then for any e∗,
e∗ |H OKB1 iff e = e∗.

Proof: We begin by showing that e |H OKB1. Clearly, e |H KKB1. Now let w 6∈ e.
There are two cases. If w |6= P(#1) ∧ P(#2), then e, w |6= KB1. Otherwise, w |H P(n)
for some n 6∈ {#1, #2}. Then e, w |H P(n) ∧ ¬KP(n), from which e, w |6= KB1 follows.
Therefore, e |H OKB1.

Now let e∗ be any epistemic state such that e∗ |H OKB1. Consider any world w ∈ e,
that is, w |H P(n) iff n ∈ {#1, #2}. Since e∗ |H KP(#1)∧ KP(#2), we obtain e∗, w |H KB1

and, hence, w ∈ e∗. Since this is true for all w ∈ e, we obtain e ⊆ e∗. Since e itself is
maximal, no proper superset of e only-knows KB1. Hence e∗ = e.

Note that KB1 makes the closed world assumption just for P. In particular,

|H OKB1 ⊃ K¬P(#3), yet
|H OKB1 ⊃ ¬KQ(#1)
|H OKB1 ⊃ ¬K¬Q(#1)
|H OKB1 ⊃ ¬K¬Q(#2)
etc.

In general, we have that

|H OKB1 ≡ O∀x(P(x) ≡ [(x = #1) ∨ (x = #2)]).

We get the similar behaviour in the case where our knowledge about P is infinite. For
example, let KB2 = {∀x((x 6= 3) ⊃ P(x)), γ }. We leave it to the reader to prove that
OKB2 ≡ O[∀x(P(x) ≡ (x 6= 3))] is valid.

If the knowledge base has incomplete information about P, applying the closed world
assumption may not lead to a determinate knowledge base. For example, if KB3 =

{P(#1) ∨ P(#2), γ }, then there are two corresponding epistemic states, one where #1 is
the only P and another one where #2 is the only P. Formally,

OKB3 ≡ O∀x[P(x) ≡ (x = #1)] ∨ O∀x[P(x) ≡ (x = #2)]

is valid. We will not prove this here, but in Chapter 10, we will have a lot more to say about
such nondeterminate sentences. What we will show here is that the only way something
like (φ ∧ γ ) can lead to more than one epistemic state is when it is already known from φ

that γ is false (as above).
First we need the following lemmas:
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Lemma 8.5.3: If e1 ⊆ e2 and e2, w |H γ , then e1, w |H γ .

Proof: Suppose n is any name and w |H P(n). Since e2, w |H γ , we have that e2 |H

KP(n), from which it follows that e1 |H KP(n), since e1 ⊆ e2. Consequently, for any n,
e1, w |H (P(n) ⊃ KP(n)).

Lemma 8.5.4: Suppose φ is objective, and <[[φ]] |H ¬K¬γ . Further suppose that e is an
epistemic state such that e |H O(φ ∧ γ ). Then for any w, e, w |H γ iff <[[φ]], w |H γ .

Proof: As with Lemma 5.6.1, we show that for any n, e |H KP(n) iff <[[φ]] |H KP(n).
If <[[φ]] |H KP(n), then e |H KP(n), since e ⊆ <[[φ]]. Conversely, if <[[φ]] |H ¬KP(n),
then since<[[φ]] |H ¬K¬γ , there is aw in<[[φ]] such thatw |H φ,<[[φ]], w |H γ and thus
for which, w |H ¬P(n). However, by the lemma above, we then have that e, w |H (φ∧γ ),
and so w ∈ e. Thus, there is a w ∈ e such that w |H ¬P(n), and so e |H ¬KP(n).

Theorem 8.5.5: Suppose φ is objective, and<[[φ]] |H ¬K¬γ . Then (φ∧γ ) is determinate
and TELL[γ,<[[φ]]] is the unique epistemic state satisfying O(φ ∧ γ ).

Proof: Let e′ = TELL[γ,<[[φ]]] = {w | <[[φ]], w |H (φ ∧ γ )}. We first show that
e′ |H O(φ ∧ γ ). By the definition of TELL, e′ |H Kφ, and by Theorem 5.6.2, e′ |H Kγ ,
and so e′ |H K(φ ∧ γ ). Now suppose that for some w, e′, w |H (φ ∧ γ ). By Lemma 5.6.1,
<[[φ]], w |H (φ ∧ γ ), and so w ∈ e′.

Next we need to show that if e |H O(φ∧γ ) then e = e′. So suppose that e |H O(φ∧γ ).
Then for any w, we have that w ∈ e iff e, w |H (φ ∧ γ ) iff (by the lemma immediately
above) <[[φ]], w |H (φ ∧ γ ) iff (by Lemma 5.6.1) e′, w |H (φ ∧ γ ) iff w ∈ e′.

So as long as γ is not already known to be false given φ, (φ ∧ γ ) will be determinate.
Moreover, from the point of view of TELL, we can see that if we start with an objective
KB and assert that γ is true, we not only end up in a state where γ is known (as already
established in Theorem 5.6.2), we also have that (KB ∧ γ ) is all that is known.

The previous examples of determinate knowledge bases have in common that they can
always be converted into equivalent objective knowledge bases. The main result of this
section is that this is true in general, that is, it is always possible to represent determinate
knowledge in objective terms. Although believing does not reduce to believing objective
sentences (Theorem 4.6.2), only believing does, at least as far as determinate sentences are
concerned.
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Definition 8.5.6: Let φ be an objective formula, e an epistemic state, and δ a determinate
sentence such that e |H Oδ. Suppose that n1, . . . , nk, are all the names in φ or in δ, and
that n′ is some name that does not appear in φ or in δ.
RESK [[φ, e]] is defined by:

1. If φ has no free variables, then RESK [[φ, e]] is
∀z(z = z), if e |H Kφ, and
¬∀z(z = z), otherwise.

2. If x is a free variable in φ, then RESK [[φ, e]] is
[((x = n1) ∧ RESK [[φ

x
n1
, e]]) ∨ . . .

((x = nk) ∧ RESK [[φ
x
nk
, e]]) ∨

((x 6= n1) ∧ . . . ∧ (x 6= nk) ∧ RESK [[φ
x
n′ , e]]n

′

x )].

RESO[[φ, e]] is defined by:

1. If φ has no free variables, then RESO[[φ, e]] is
∀z(z = z), if e |H Oφ, and
¬∀z(z = z), otherwise.

2. If x is a free variable in φ, then RESO[[φ, e]] is
[((x = n1) ∧ RESO[[φ

x
n1
, e]]) ∨ . . .

((x = nk) ∧ RESO[[φ
x
nk
, e]]) ∨

((x 6= n1) ∧ . . . ∧ (x 6= nk) ∧ RESO[[φ
x
n′ , e]]n

′

x )].

Note that the definition of RESK and RESO are exactly like the old RES except that the
implication KB |H φ is replaced by e |H Kφ and e |H Oφ, respectively.

Given a determinate sentence δ, an epistemic state e with e |H Oδ, and an arbitrary
wff α of OL, ||α||e is the objective wff defined by

1. ||α||e = α, when α is objective

2. ||¬α||e = ¬||α||e
3. ||(α ∧ β)||e = (||α||e ∧ ||β||e)

4. ||∀xα||e = ∀x ||α||e
5. ||Kα||e = RESK [[||α||e, e]]

6. ||Oα||e = RESO[[||α||e, e]]

Again, the definition of || · || is exactly like the old one except that now we also reduce
formulas of the form Oα.

Theorem 8.5.7: For every determinate sentence δ there is an objective sentence φ such
that |H Oδ ≡ Oφ.
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Proof: The proof is exactly analogous to the proof of the Representation Theorem. In
particular, all the results of Section 7.2 and 7.3 carry over using the new definitions of RES
and || · || in a straightforward way. Finally choose φ = ||α||e where e |H Oδ.

We will see in Theorem 10.5.5 of Chapter 10 that this property does not hold in general for
non-determinate sentences.

In this chapter we have seen how introducing the concept of only-knowing allows us
to fully characterize ASK and TELL within the logic itself. The logic OL has many other
uses, which we will explore in subsequent chapters.

***

This then ends the first part of the book, which can be thought of as providing the
basic concepts of a logic of knowledge bases. In the remaining chapters, we will touch on
various more specialized topics which all build on the foundations we have laid out so far.

8.6 Bibliographic notes

As we have seen, the key feature which distinguishes only-knowing from knowing (at least)
is that both accessible and inaccessible worlds (e and its complement) are involved. This
idea was independently developed by Humberstone [70] and later extended by Ben-David
and Gafni [6]. Pratt-Hartmann [155] proposed what he calls total knowledge, which shares
many of its properties with only-knowing. The semantics is based on sets of world states
identical to ours except that beliefs are required to be true, that is, the actual world state is
always considered possible. A sentence α is said to be total knowledge if α is known and
every objective sentence which does not follow from knowing α is not known. As far as
objective sentences are concerned, only-knowing and total knowledge basically coincide.
In the general case, however, there are differences. Since these refer to properties of only-
knowing treated in Chapters 10 and 11, we defer any further discussion of total knowledge
to the end of Chapter 11.

Going back to the earlier work by Humberstone, Ben-David and Gafni, while they
restrict themselves to the propositional case, they are in some sense more general than
we are because they do not make the assumption of an underlying set of all worlds, that
is, having a world for every interpretation of the atomic formulas. In fact, they allow
general Kripke structures and consider modal logics other than K45. Allowing models with
arbitrary sets of worlds, however, is problematic for only-knowing on intuitive grounds.
For consider the case where we have just one world w where both p and q are true and
w is the only accessible world. Then we have, for example, that both Op and Kq hold.



Only-Knowing 139

This seems rather strange since only knowing p and, at the same time, knowing q seems
incompatible with the intuitive reading of only-knowing.

To give only-knowing the right properties, then, it seems essential that the underlying
models be large enough and contain worlds for every conceivable state of affairs. Note,
however, that it is not at all obvious what constitutes a particular state of affairs. In our
framework where we consider a single, fully introspective agent, it just so happens that a
state of affairs can be identified with a world state. This is no longer the case when the
agent is not fully introspective or when there are multiple agents. For example, consider
the case of two agents A and B. From A’s point of view, a state of affairs consists not just
of facts about the world but also of B’s beliefs about the world. This is because, as far as
A is concerned, B’s beliefs are just as objective for A as, say, the fact that Tina teaches
Sue. Not surprisingly, modeling only-knowing for multiple agents is a complicated matter.
Several approaches are discussed in [58, 87, 60]. In [18] Chen considers a specialized
logic of only-knowing for two agents which allows the author to capture Gelfond’s notion
of epistemic specifications [51] within the framework of only-knowing.

In [61] Halpern and Moses define a concept of minimal knowledge in the propositional
case which bears a striking resemblance to our notion of only-knowing. Roughly, given a
sentence α, they define the corresponding epistemic state that only-knows α as the union
of all sets of world states where α is known. α is called honest just in case α itself is
known in this epistemic state. It is easily seen that every objective φ is honest. Indeed, for
objective propositional formulas our notion of only-knowing coincides with that of Halpern
and Moses. Also, just as there are sentences that cannot be only-known there are sentences
that are dishonest, for example K p ∨ Kq. Despite those similarities there are differences
as well. An obvious difference is that Halpern and Moses consider knowledge instead of
belief, that is, (Kα ⊃ α) comes out valid or, equivalently, the real world is always assumed
to be among the accessible world states. A much more surprising difference has to do
with complexity. In [35] it was discovered that reasoning about minimal knowledge is
actually harder than reasoning about only-knowing (again, restricted to the propositional
case). See also [104] for more discussion on the difference between only-knowing and
minimal knowledge in both the single and multi-agent case.

In [85] only-knowing was extended to a notion of only-knowing about a subject matter,
where a subject matter consisted of a set of atomic propositions. Given a KB consisting of
(cows ⊃ mammals) ∧ (mammals ⊃ animals) one would then have that all the KB knows
about cows is captured by (cows ⊃ mammals) ∧ (cows ⊃ animals), leaving out the more
general information that mammals are animals. These ideas were later extended to the
multi-agent case [88] and also served as the basis for a certain kind of logical relevance [90,
92]. The interested reader may wish to consult the first edition of this book [119] for a
chapter dedicated to only-knowing about a subject matter.
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Halpern and Moses’ logic of minimal knowledge is only one example of a wide range
of formalisms called nonmonotonic logics. Only-knowing has intimate connections to a
number of these besides the one just mentioned. Since we will study one such connection
in much more depth in chapters 10 and 11, we defer a discussion of the related literature
to Section 11.6. Similarly, see Section 9.5 for literature on proof-theoretic and complexity
issues regarding OL.

8.7 Exercises

1. Generalize Theorem 8.3.1 to the case of non-finitely representable states as follows:
Show that for any set of objective sentences 8 there is a unique epistemic state e such
that for any objective ψ, e |H Kψ iff 8 logically implies ψ.

2. Consider the statement “Only-knowing is closed under logical consequence.” State
this precisely as a theorem, and prove that it is true.

3. Give an example of a subjective σ such that Oσ is only satisfied by e0, and another
that is only satisfied by the inconsistent epistemic state.

4. Show that only-knowing is closed under introspection in the following sense: for any
subjective σ,

|H Oα ∧ σ ⊃ O(α ∧ σ).
Give an example of where this fails when O is replaced by K.

5. Show that for no α is it the case that Oα is valid. Hint: consider finitely and infinitely
representable states.

6. Show that for any falsifiable objective φ, |H ¬O[φ ∨ Kφ].
7. Show that for any determinate KB and basic α, there is an objective φ with |H (OKB ⊃

K(α ≡ φ)).
8. Let KB = {∀x((x 6= 3) ⊃ P(x)),∀x(P(x) ⊃ KP(x))}. Show the validity of OKB ≡

O[∀x(P(x) ≡ (x 6= 3))].
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9 On the Proof Theory of OL

We already saw proof theoretic characterizations of L and KL and found them useful be-
cause they gave us an independent account of the valid sentences of the respective logics. In
this chapter, we consider an axiom system for OL. We demonstrate its usefulness by syn-
tactically deriving some of the conclusions about the closed world assumption discussed in
the previous chapter and prove its completeness for the propositional case. Unfortunately,
it is not complete for the whole language, and we will discuss why this is so. In addition,
the axioms are not even recursively enumerable, that is, we do not have a proof theory in
the traditional sense. We will see that this feature is inescapable in OL.

9.1 Knowing at least and at most

To better analyze only-knowing and for this chapter only, it is convenient to consider O not
as a primitive notion but to define it in terms of K and a new operator N in the following
way. One way to read Oα is to say that α is believed and nothing more, whereas Kα says
that α is believed, and perhaps more. In other words, Kα means that α at least is believed
to be true. A natural dual to this is to say that α at most is believed to be false, which we
write Nα. The idea behind introducing this operator is that Oα would then be definable as
(Kα ∧ N¬α), that is, at least α is believed and at most α is believed.1 So, exactly α is
believed. In other words, we are taking K to specify a lower bound on what is believed
(since there may be other beliefs) and N to specify an upper bound on beliefs (since there
may be fewer beliefs).2 What is actually believed must lie between these two bounds.

These bounds can be seen most clearly when talking about objective sentences. Given
an epistemic state as specified by a maximal set of world states e, to say that Kφ is true
wrt e is to say that e is a subset of the states where φ is true. By symmetry then, N¬φ will
be true when the set of states satisfying φ are a subset of e. The fact that e must contain all
of these states means that nothing else can be believed that would eliminate any of them.
This is the sense in which no more than φ is known. Finally, as before, Oφ is true iff both
conditions hold and the two sets coincide.

This leads us to the precise definition of Nα:

6′. e, w |H Nα iff for every w′, if e, w′ |6= α then w′ ∈ e.

from which the original constraint 6 on Oα follows trivially.

1 Although using negation with the N operator appears perhaps to be needlessly complex, it will indeed simplify
matters later.
2 A slightly simplistic way of saying this is that Kα means that what is actually believed is of the form (α ∧ β),

whereas Nα means what is actually believed is of the form (¬α ∨ β).
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So what are the properties of believing at most that α is false? It is very easy to show
that if α is valid, then Nα will be valid too, if Nα and N(α ⊃ β) are both true, then so is
Nβ, and if some subjective σ is true, then so is Nσ. In other words, remarkably enough, N
behaves like an ordinary belief operator: it is closed under logical implication and exhibits
perfect introspection. This is most clearly seen by rephrasing very slightly the definition
of N and comparing it to that of K:

5. e, w |H Kα iff for every w′ ∈ e, e, w′ |H α.

6′. e, w |H Nα iff for every w′ 6∈ e, e, w′ |H α.3

Letting e stand for the set of states not in e, we have

6′. e, w |H Nα iff for every w′ ∈ e, e, w′ |H α.

So N is like a belief operator with one important difference: we use the complement of
e. In possible-world terms, we range over the inaccessible possible world states. In other
words, K and N give us two belief-like operators: one, with respect to e, and one with
respect to e.

In these terms, the relation between the two belief operators is that the accessible
world states they range over must be disjoint (empty intersection) and exhaustive (uni-
versal union). As it turns out, only the exhaustiveness property is used in the axiomatiza-
tion. In fact, we will show as part of the propositional completeness proof that there is an
equivalent semantics where the set of world states considered for K and N may overlap.

In the following, a subjective sentence is understood as in KL except that any occur-
rence of K (but not necessarily all) can be replaced by N. For example, the sentence
(∀x∀z(x = y) ⊃ KNP(x, y)) is considered subjective since its truth depends only on the
epistemic state and its complement. The axioms for OL are then given as follows:4

1. Lα, where α is an instance of an axiom of L (with the proviso on specialization).

2. L(α ⊃ β) ⊃ Lα ⊃ Lβ.
3. ∀xLα ⊃ L∀xα.
4. σ ⊃ Lσ, where σ is subjective.

5. The N vs. K axiom:
(Nφ ⊃ ¬Kφ), where φ is any objective sentence such that |6= φ.

6. The definition of O: Oα ≡ (Kα ∧ N¬α).
The first thing to notice is that N, taken by itself, has precisely the same properties as

K, that is, K and N can both be thought of as ordinary belief operators except, of course,
that there is a strong connection between the two. For one, Axiom 4 expresses that both K

3 Note that phrased this way, α rather than ¬α is required to be true. This is why negation was used for N.
4 In the following axioms, L is used as a modal operator standing for either K or N. Multiple occurrences of L
in the same axiom should be uniformly replaced by K or by N.
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and N are perfectly and mutually introspective. For example, (Kα ⊃ NKα) is an instance
of 4. If we think of K and N as two agents, then this says that each agent has perfect
knowledge of what the other knows. The other and more interesting connection between
the two is, of course, Axiom 5, which is valid because K and N together range over all
possible world states.

It is not hard to show that all these axioms are sound:

Theorem 9.1.1: If a sentence of OL is derivable, then it is valid.

Proof: The proof proceeds by a standard induction on the length of a derivation, just like
in the case KL. Here we only show the base case for the N vs. K axiom. Thus let φ be an
objective sentence such that |6= φ and e a maximal set of world states such that e |H Nφ.
Then for all world states not in e, w |H φ. Since |6= φ, there must be a world state w′ such
that w′ |H ¬φ. Moreover, w′ must be in e, from which e |H ¬Kφ follows.

9.2 Some example derivations

Before turning to the issue of completeness, let us go through several derivations in order
to get a better feel for the axioms. The examples are taken from Section 8.5 involving the
closed world assumption. Syntactic derivations of the closed world assumption are partic-
ularly instructive, since they exhibit very nicely the use of Axiom 5 and, more generally,
the power of the proof theory.

In the derivations to follow, we will use a natural-deduction-style argument with three
justifications: (1) the definition of O in terms of N and K, (2) the axiom relating N to K for
objective sentences, and (3) KL, which we normally do not analyze further. When writing
KL as a justification we really mean Axioms 2–4, which include the axioms of KL with K
replaced by N.

Recall from Section 8.5 that we were able to capture the closed world assumption for
a unary predicate P by adding the sentence

γ = ∀x(P(x) ⊃ KP(x))

to the knowledge base. We saw that only knowing that P holds of #1 and #2 together with
γ logically implies that P(#3) is known to be false. With the axioms above we can now
give a syntactic derivation.

Example 9.2.1: If KB = {P(#1) ∧ P(#2)} then (O(KB ∧ γ ) ⊃ K¬P(#3)) is a theorem.
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Proof:
1. O(KB ∧ γ ) Assumption.

2. K(KB ∧ γ ) 1;defn. of O.

3. (K¬KP(#3) ⊃ K¬P(#3)) 2;KL.

4. (¬KP(#3) ⊃ K¬P(#3)) 3;KL.

5. N¬(KB ∧ γ ) 1;defn. of O.

6. N(KB ⊃ ∃x P(x)) 5;KL.

7. ¬K(KB ⊃ ∃x P(x)) 6;N vs. K.

8. ¬KP(#3) 7;KL.

9. K¬P(#3) 4,8;KL.

Most of the uses of KL here are direct: lines 6 and 8 involve propositional reasoning
within a modal operator; line 9 is the result of ordinary propositional logic; line 3 requires
distributing the K over a conjunction, then over an implication; and line 4 uses the KL
axiom (¬KP(#3) ⊃ K¬KP(#3)) to obtain the final formula. Note that line 7 is the only
place where we need to make use of the special connection between K and N (Axiom 5).
The derivation is valid because (KB ⊃ ∃x P(x)) clearly is falsifiable.

Example 9.2.2: Let

KB = {(P(#1) ∨ P(#2))}

The theorem to derive is O[KB ∧ γ ] ≡ (O[KB ∧ φ1)] ∨ O[KB ∧ φ2]),

where φ1 = ∀x(P(x) ≡ x = #1) and φ2 = ∀x(P(x) ≡ x = #2).

Proof: In the following syntactic derivation we will occasionally write a line σ and then
follow it by Kσ or Nσ. This is not using the rule: from α infer Kα which, in general, is
only sound when α is valid. Rather it is an application of modus ponens, together with the
axiom (σ ⊃ Kσ), which holds whenever σ is subjective. Also, for clarity, we will expand
some of the steps that depend only on properties of KL.

The first part of the proof (only-if direction) has two stages: we first establish that
KP(#1) ∨ KP(#2) is provable given the assumption O[KB ∧ γ ]; then we show that each
of the disjuncts of the desired conclusion is derivable from either KP(#1) or KP(#2).

1. O[KB ∧ γ ] Assumption.

2. N[KB ⊃ ∃x(P(x) ∧ ¬KP(x))] 1;defn. of O.

3. K[KB ∧ ∀x(P(x) ⊃ KP(x))] 1;defn. of O.

4. K(P(#1) ∨ P(#2)) 3;KL.

5. K(KP(#1) ∨ KP(#2)) 3,4;KL.
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6. KP(#1) ∨ KP(#2) 5;KL.

Now what we will do is show that

KP(#1) ⊃ O[KB ∧ ∀x(P(x) ≡ (x = #1))]

is a theorem, and so, by an analogous derivation, we have that

KP(#2) ⊃ O[KB ∧ ∀x(P(x) ≡ (x = #2))]

is a theorem, in which case, the required disjunction follows immediately from Line 6.

7. KP(#1) Assumption.
8. (K∀x(x = #1 ⊃ P(x))) 7;KL.
9. NKP(#1) 7;KL.

10. N[KB ⊃ ∃x(P(x) ∧ (x 6= #1))] 2,9;KL.
11. ¬K[KB ⊃ ∃x(P(x) ∧ (x 6= #1))] 10;N vs. K.
12. (∀x(x 6= #1) ⊃ ¬KP(x)) 11;KL.
13. K[∀x(x 6= #1) ⊃ ¬KP(x)] 12;KL.
14. K[∀x(x 6= #1) ⊃ ¬P(x)] 3,13;KL.
15. K[KB ∧ ∀x(P(x) ≡ (x = #1))] 8,14;KL.
16. N[KB ⊃ ∃x(P(x) ∧ (x 6= #1))] 2,7;KL.
17. N[KB ⊃ ¬∀x(P(x) ≡ (x = #1))] 16;KL.
18. O[KB ∧ ∀x(P(x) ≡ (x = #1))] 15,17;defn. of O.

This completes the first part of the proof. Note that except for line 11 all the reasoning
involved requires only the axioms of KL (for both K and N). Line 11 requires Axiom 5,
which is applicable because (KB ⊃ ∃x(P(x) ∧ (x 6= #1))) is not valid.

We now proceed to the if direction of the proof. What we will do is show that

O[KB ∧ ∀x(P(x) ≡ (x = #1))] ⊃ O[KB ∧ γ ]

is a theorem. Because this proof applies equally well to #2, the disjunction of the two
possibilities gives us the desired conclusion.

19. O[KB ∧ ∀x(P(x) ≡ (x = #1))] Assumption.
20. K[KB ∧ ∀x(P(x) ≡ (x = #1))] 19;defn. of O.
21. KP(#1) 20;KL.
22. (K∀x(P(x) ⊃ KP(x))) 20,21;KL.
23. K[KB ∧ γ ] 20,22;KL.
24. N[KB ⊃ ¬∀x(P(x) ≡ (x = #1))] 19;defn. of O.
25. N[KB ⊃ ∃x P(x)] KL.
26. N[KB ⊃ ∃x(x 6= #1 ∧ P(x))] 24,25;KL.
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27. ¬K[KB ⊃ ∃x(x 6= #1 ∧ P(x))] 26;N vs. K.

28. ¬K[∃x(x 6= #1 ∧ P(x))] 27;KL.

29. (∀x(x 6= #1 ⊃ ¬KP(x))) 28;KL.

30. N∀x(x 6= #1 ⊃ ¬KP(x)) 29;KL.

31. N[KB ⊃ ∃x(P(x) ∧ ¬KP(x))] 26,30;KL.

32. O[KB ∧ γ ] 23,31;defn. of O.

Note that there is again only one place in the proof where we need Axiom 5 (line 27), and
it is exactly the same as in the first part. This completes the proof.

9.3 Propositional completeness

We now turn to the issue of completeness of the axiom system in the propositional case.
The proof uses the standard technique of constructing satisfying models for maximally
consistent sets. As in the case of KL, not every maximally consistent set is satisfiable. In
KL this was due mainly to technical reasons, having to do with quantification and stan-
dard names. Interestingly, the reasons here are not only entirely different, which is not
surprising, but they also lead to a deeper understanding of the underlying semantics. As
we already mentioned, it is sufficient for Axiom 5 to be sound if K and N cover all world
states. Whether or not the two sets are disjoint or not seems to be neither sufficient nor
necessary. In fact, it turns out that there are maximally consistent sets which are only
satisfiable if we allow the set of world states considered by K to overlap with the set of
world states considered by N. In a moment, we will consider just such an “overlapping”
semantics. Not only are all of the axioms of OL (restricted to the propositional case)
sound, but the valid sentences of the overlapping semantics are precisely the same as in
our original semantics. What this tells us is that, while the disjointness property maybe
more intuitively appealing, it cannot be captured axiomatically. Indeed, insisting on dis-
jointness needlessly complicates the completeness proof since we would have to show that
we can restrict ourselves to a subset of the maximally consistent sets. While this can be
done, we will instead prove completeness for the equivalent overlapping semantics, which
is straightforward given the known techniques for modal logics. Finally, the overlapping
semantics has another revealing feature in that it does not require maximal sets of world
states. So, as a corollary, we get that our original semantics yields the same valid sentences
if we allow arbitrary epistemic states, not just maximal ones.

We begin with the definition of the overlapping semantics for propositional OL. Let e
and e′ be two sets of world states. If e∪e′ = e0, then we call (e, e′) an exhaustive pair. De-
fine a new satisfaction relation |Hx that is exactly like OL’s except for K- and N-formulas.
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Let (eK, eN) be an exhaustive pair. Then

1. eK, eN, w |H
x Kα if eK, eN, w

′
|H

x α for all w′ ∈ eK

2. eK, eN, w |H
x Nα if eK, eN, w

′
|H

x α for all w′ ∈ eN.

Note that K and N are now treated in a completely symmetric way.
A sentence α is called x-valid (|Hx α) iff eK, eN, w |H

x α for all world states w and all
exhaustive pairs (eK, eN). α is called x-satisfiable iff ¬α is not x-valid.

Theorem 9.3.1: The axioms are sound with respect to |Hx .

The proof is straightforward and omitted. Note that for Axiom 5 to be sound it suffices
that eK and eN together cover all world states. In particular, it does not matter whether or
not the two sets overlap.

It is clear that the notions of satisfiability and validity coincide for both semantics when
restricted to objective formulas. To prove that this is true in general, we need the following
lemmas.

Lemma 9.3.2: Let φ and ψ be objective formulas such that φ ∧ ¬ψ is satisfiable. Then
(K¬φ ⊃ ¬Nψ) and (N¬φ ⊃ ¬Kψ) are both valid and x-valid.

Proof: The proof relies only on the fact that the world states considered for K together
with those for N cover all world states, which holds in either semantics. Here we only
consider the nonstandard case.

Let eK, eN, w |H
x K¬φ. Then eN contains every world state that satisfies φ. Hence, by

assumption, there is a w′ ∈ eN such that w′ |Hx φ ∧ ¬ψ, that is, eK, eN, w |H
x
¬Nψ.

(N¬φ ⊃ ¬Kψ) is handled in a completely symmetric way.

Next we show that every propositional sentence is provably equivalent to one without
nested modal operators. Let us write L to stand for either K or N. As before, we write ` α
for α is provable from the axioms.

Lemma 9.3.3: ` L(φ ∨ σ) ≡ (Lφ ∨ σ).

Proof: Since ` (σ ⊃ L(φ ∨ σ)) because σ is subjective, and ` (Lφ ⊃ L(φ ∨ σ)),
then clearly ` ((Lφ ∨ σ) ⊃ L(φ ∨ σ)). Conversely, since ` (L(α ⊃ β) ⊃ (Lα ⊃ Lβ))
in general, we have that ` (L(φ ∨ σ) ⊃ (Lφ ∨ ¬L¬σ)). But since σ is subjective,
` (¬L¬σ ⊃ σ). Thus, ` (L(φ ∨ σ) ⊃ (Lφ ∨ σ)).
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Lemma 9.3.4: Every sentence is provably equivalent to one where K or N operators
apply only to objective sentences.

Proof: Consider a subformula Lα. Using the rules of standard propositional logic, put α
into conjunctive normal form so that ` (α ≡

∧
(φi ∨ σi )), where we have separated the

subjective and objective parts. By induction, assume that each σi is in the correct form.
Then,5 ` (Lα ≡

∧
L(φi ∨ σi )) and so, by the above lemma, ` (Lα ≡

∧
(Lφi ∨ σi )). One

level of nesting of L has been eliminated. By applying this to all subformulas, the correct
sentence will be obtained.

Theorem 9.3.5: For all propositional sentences α, α is x-satisfiable iff α is satisfiable.

Proof: The only-if direction is straightforward. If e, w |H α then simply let eK = e and
let eN be the complement of e.

To prove the if direction, let eK, eN, w |H
x α. We need to find a maximal set of world

states e such that e, w |H α. By Theorem 9.3.1 and Lemma 9.3.4, we can assume, without
loss of generality, that α =

∨
αm, where each αm has the form

αm = φ ∧
∧

Kri ∧
∧
¬Ks j ∧

∧
Ntk ∧

∧
¬Nul

for objective φ, ri , s j , tk, and ul . Then eK, eN, w |H
x αm for some m. It suffices to find a

maximal set e such that e, w |H αm .

Let α∗ = (
∧

tk ⊃ (p ∧
∧

ri )) for some atom p not occurring in α and let e =
{w | w |H α∗}. e is obviously maximal and e |H Oα∗ or, equivalently, e |H Kα∗ ∧ N¬α∗.
To show that e, w |H αm we need to prove that each of the conjuncts is satisfied.

e, w |H φ: Follows immediately because φ is objective and eK, eN, w |H
x αm .

e, w |H Kri : Let w′ ∈ e. Then w′ |H ¬
∧

tk ∨ (p ∧ ri ). If w′ |H
∧

tk, then w′ |H ri .

Otherwise, w′ |H ¬
∧

tk . Since N
∧

tk ∧ Kri is x-satisfiable, by Lemma 9.3.2, |H
(¬
∧

tk ⊃ ri ). Hence w′ |H ri .

e, w |H ¬Ks j : Since (eK, eN, w) |H
x K

∧
ri ∧ ¬Ks j , |6= (

∧
ri ⊃ s j ). Since p does

not occur in any of the ri and s j , |6= ((p
∧

ri ) ⊃ s j ). Thus, by Lemma 9.3.2, |H
(N¬(p

∧
ri ) ⊃ ¬Ks j ), from which e |H ¬Ks j follows.

e, w |H Ntk : Follows immediately from e |H N¬α∗.
e, w |H ¬Nul : Since eK, eN, w |H

x N
∧

tk ∧ ¬Nul , |6= (
∧

tk ⊃ ul) and, therefore, |6=
((
∧

tk∧¬p) ⊃ ul), which implies (|6= ¬α∗ ⊃ ul). Thus, by Lemma 9.3.2, |H (Kα∗ ⊃
¬Nul), from which e |H ¬Nul follows.

5 We repeatedly use the fact here and later that `
∧

Lαi ≡ L
∧
αi .
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Since a sentence is valid (x-valid) iff its negation is not satisfiable (x-satisfiable) we imme-
diately get:

Corollary 9.3.6: |H α iff |Hx α.

An interesting consequence of the theorem is that whether or not we use maximal sets
of world states has no effect on the valid sentences, at least as far as the propositional
subset of OL is concerned.

Corollary 9.3.7: |H α iff e, w |H α for all world states w and epistemic states e (including
nonmaximal e).

Proof: The if direction holds immediately since maximal sets of world states are special
epistemic states.

For the converse, assume |H α and let w be a world state and e an arbitrary epistemic
state. Let e denote the complement of e. By Theorem9.3.6, |Hx α and hence e, e, w |Hx α,

from which e, w |H α follows immediately.

Theorem 9.3.8: For all propositional sentences α, if |Hx α then ` α.

Proof: The approach is very similar to the one taken in the completeness proof of KL
(Theorem 4.5.1). Recall that to establish completeness it suffices to show that every con-
sistent sentence is satisfiable, which in turn is established by showing that any maximally
consistent set that contains α is satisfiable. Of course, (maximal) consistency now refers to
the axioms of OL.

Let C0 be the set of all maximally consistent sets of propositional sentences of OL.
For 0 ∈ C0, define 0/K = {α | Kα ∈ 0} and 0/N = {α | Nα ∈ 0}. We then define
• C0K = {0

′
∈ C0 | 0/K ⊆ 0′},

• C0N = {0
′
∈ C0 | 0/N ⊆ 0′}.

If we view maximally consistent sets as world states, then C0K and C0N represent the
world states accessible from 0 for K and N, respectively. The following lemma reflects
the fact that K and N are both fully and mutually introspective (Axiom 4).

Lemma 9.3.9: If 0′ ∈ C0K ∪ C
0
N , then C0′K = C0K and C0′N = C0N .

Proof: We prove the lemma for 0′ ∈ C0K . The case 0′ ∈ C0N is completely symmetric.
To show that C0K = C0′K , it clearly suffices to show that 0/K = 0′/K . Let α ∈ 0/K . Then
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Kα ∈ 0 and also KKα ∈ 0 by Axiom 4. Thus Kα ∈ 0′ (since 0′ ∈ C0K implies that
0/K ⊆ 0′) and, hence, α ∈ 0′/K.

For the converse, let α ∈ 0′/K . Thus, Kα ∈ 0′. Assume that α 6∈ 0/K . Then ¬Kα ∈
0 (since 0 is a maximally consistent set) and, therefore, K¬Kα ∈ 0, from which ¬Kα ∈
0′ follows, a contradiction.

The proof that C0′N = C0N proceeds the same way, that is, we show that 0/N = 0′/N .
Let α ∈ 0/N . Then Nα ∈ 0 and also KNα ∈ 0 by Axiom 4. Hence Nα ∈ 0′, so
α ∈ 0′/N .

For the converse, let α ∈ 0′/N . Thus, Nα ∈ 0′. Assume that α 6∈ 0/N . Then ¬Nα ∈
0 and also K¬Nα ∈ 0, from which ¬Nα ∈ 0′ follows, a contradiction.

As in the completeness proof for KL, each maximally consistent set 0 is mapped into
the world state w0 with w[p] = 1 iff p ∈ 0 for all atomic propositions p.

For any 0 ∈ C0, let e0K = {w0′ | 0
′
∈ C0K } and e0N = {w0′ | 0

′
∈ C0N }.

Lemma 9.3.10:

(a) (e0K , e0N ) is an exhaustive pair.

(b) For all α, we have α ∈ 0 iff e0K , e0N , w0 |H
x α.

Proof: For part (a), to show that (e0K , e0N ) is an exhaustive pair, we must show that
e0K ∪e0N consists of all world states. By way of contradiction, suppose there is a world state
w not in e0K ∪ e0N . Let Fw = {p | p is an atom and w |H p} ∪ {¬p | p is an atom and w |H
¬p}. Fw ∪ 0/K cannot be consistent, for otherwise there would be some 0′ ∈ C0K that
contains Fw, which would mean that w ∈ e0K . Similarly Fw ∪ 0/N cannot be consistent.
Thus, there must be formulas φ1, φ2, φ3, φ4 such that φ1 and φ2 are both conjunctions of
a finite number of formulas in Fw, φ3 is the conjunction of a finite number of formulas in
0/L , and φ4 is the conjunction of a finite number of formulas in 0/N , and both φ1∧φ3 and
φ2 ∧φ4 are inconsistent. Thus, we have ` (φ3 ⊃ ¬φ1) and ` (φ4 ⊃ ¬φ2). Using standard
modal reasoning, we have ` (Kφ3 ⊃ K¬φ1) and ` (Nφ4 ⊃ N¬φ2). Since Kψ ∈ 0
for each conjunct ψ of φ3, standard modal reasoning shows that Kφ3 ∈ 0. Similarly, we
have Nφ4 ∈ 0. Since 0 is a maximally consistent set, both K¬φ1 and N¬φ2 are in 0.
Since ` (K¬φ1 ⊃ K(¬φ1 ∨ ¬φ2)) and ` (N¬φ2 ⊃ N(¬φ1 ∨ ¬φ2)), it follows that both
K(¬φ1 ∨ ¬φ2) and N(¬φ1 ∨ ¬φ2) are in 0. But this contradicts Axiom 5, since φ1 ∧ φ2

is a propositionally consistent objective formula.
For part (b), the proof proceeds by induction on the structure of α. The statement

holds trivially for atomic propositions, conjunctions, and negations. In the case of Kα, we
proceed by the following chain of equivalences:
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Kα ∈ 0
iff for all 0′ ∈ C0K , we have α ∈ 0′

iff for all 0′ ∈ C0K , we have e0
′

K , e0
′

N , w0′ |H
x α (by induction)

iff for all w0′ ∈ e0K , we have e0K , e0N , w0′ |H
x α (by Lemma 9.3.9)

iff (e0K , e0N , w0) |H
x Kα.

The case Nα is completely symmetric.

The completeness result now follows easily. Let α be a consistent formula and 0 a
maximally consistent set of sentences containing α. e0K , e0N , w0 |H

x α then follows imme-
diately from Lemma 9.3.10.

Finally, since, by Corollary 9.3.6, validity and x-validity are one and the same, we
obtain

Corollary 9.3.11: For all propositional sentences α, if |H α then ` α.

9.4 Incompleteness

As already mentioned in the introduction, the axioms are incomplete for the full language,
that is, there are sentences which are valid in OL but which cannot be derived. We will not
prove this result here, but rather discuss the ideas behind it in an informal way.

The reasons for the incompleteness can essentially all be traced back to Axiom 5:

(Nφ ⊃ ¬Kφ), where φ is any objective sentence such that |6= φ.

To begin with, note that the axiom is already problematic for reasons other than com-
pleteness. Proof theories normally require axioms to be recursive, that is, it should be
decidable whether any given sentence is an instance of an axiom. Clearly, Axiom 5 vi-
olates this requirement since the set of non-valid sentences in L is not even recursively
enumerable. As we will see below, this deficiency is really inescapable in OL, that is, no
complete axiom system can be recursive.

The second and perhaps more serious problem with Axiom 5 is that it is simply too
weak. In a nutshell, only considering objective non-valid sentences is just not good enough
in a logic where nested beliefs do not reduce to non-nested ones, a property of KL and
hence of OL, which we proved in Chapter 4.6 In fact, a sentence quite similar to the one
which we used to show irreducibility can be employed to prove incompleteness. Let

ζ = ∃x[P(x) ∧ ¬KP(x)] ∨ ∃x[¬P(x) ∧ KP(x)].

6 In the propositional completeness proof this problem did not arise since propositional nested beliefs indeed
reduce.
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Thus ζ says that either there is a P which is not believed to be a P, or there is a non-P
which is believed to be a P. We then obtain the following result.

Lemma 9.4.1: (Nζ ⊃ ¬Kζ ) is valid.

Proof: Suppose e |H Nζ. Let A = {n | n is a standard name and e |H KP(n)} and let
w be a world state such that w |H P(n) iff n ∈ A. It is easy to see that e, w |H ¬ζ. Since
e |H Nζ, it must be the case that w ∈ e. Thus, e |H ¬Kζ.

While valid, it can be shown that the sentence is not derivable from the axioms by
devising a slightly different semantics where all of the axioms of OL are sound, but where
(Nζ ⊃ ¬Kζ ) is not valid. Incompleteness then follows immediately because no non-valid
sentence can be derived from sound axioms.

Of course, the question remains what a complete axiomatization would look like. We
already remarked that the set of instances of Axiom 5 is not recursively enumerable (r.e.).
Even without knowing what a complete axiomatization might look like, it is easy to see
that it cannot be recursive.

Lemma 9.4.2: Every complete axiomatization of OL is non-recursive.

Proof: Suppose there were a recursive complete axiomatization of OL. Then the set of
non-valid objective formulas would be r.e., since we could generate them by generating all
the objective formulas φ such that (Nφ ⊃ ¬Kφ) is provable. Since the set of non-valid
objective formulas is co-r.e., this is a contradiction.

Given the non-recursive nature of the axioms, there is, in a sense, a trivial solution
to the problem simply by declaring every valid sentence an axiom. Of course, such a
“proof theory” is completely useless since it does not give us any new insights into the
logic. Instead we would expect axioms to be natural in that they at least have a compact
representation. We do not know whether there is such a natural proof-theoretic account of
the logic, at least within first-order modal logic. As the following results suggest, if there
is one, it may be hard to find.

Recall that the incompleteness proof proceeds by showing that, for a particular basic
formula ζ, the formula (Nζ ⊃ ¬Kζ ) is valid yet not provable from the axioms. The
latter formula almost looks like an instance of Axiom 5. It is not, of course, since 5
would apply only if the formula ζ were objective. The obvious idea, namely to strengthen
Axiom 5 by allowing it to range over all non-valid basic sentences, can easily be dismissed.
For example, consider the subjective sentence KP(n) for some predicate P and standard
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name n. KP(n) is obviously not valid, yet (NKP(n) ⊃ ¬KKP(n)) is not valid. In fact,
NKP(n) ≡ KKP(n) is easily derivable from the axioms (using 2) and is therefore valid.

But what about basic sentences that are not subjective like the sentence ζ used above?
In other words, do we obtain a complete axiomatization if we replace Axiom 5 by the
following Axiom 5′?

(5′.) (Nα ⊃ ¬Kα), where α is a basic non-subjective sentence such that |6= α.

Since ζ is basic, non-subjective, and not valid, the offending sentence (Nζ ⊃ ¬Kζ )
would now come out trivially as a theorem. Unfortunately, 5′ does not solve the problem
either, since restricting the axiom to non-subjective basic sentences is still unsound. To see
this, consider the formula

ξ = ∀x(P(x) ⊃ KP(x)),

which is obviously not valid. However,

Lemma 9.4.3: (Nξ ⊃ ¬Kξ) is not valid.

Proof: Let eP consist of all world states w such that w |H ∀x P(x). Clearly eP is
maximal. We now show that eP |H Kξ ∧Nξ. It is easy to see that eP , w |H (K(∀x P(x)) ⊃
ξ) for all world states w. Since eP |H K(∀x P(x)), it follows that eP , w |H ξ for all world
states w. This means that eP |H Kξ ∧ Nξ. Hence (Nξ ⊃ ¬Kξ) is not valid.

Although, as we just showed, (Nξ ⊃ ¬Kξ) is not valid, there is a sense in which it
just misses being valid. As we now show, the only time it fails to be valid is when every
standard name is known not to satisfy P (as was the case for the set eP of world states
considered in Lemma 9.4.3).

Lemma 9.4.4: (¬K(∀x P(x)) ⊃ (Nξ ⊃ ¬Kξ)) is valid.

Proof: Let e be any maximal set of world states such that e |H ¬K(∀x P(x))∧Nξ. Since
e |H ¬K(∀x P(x)), there is a standard name n∗ such that e |H ¬KP(n∗). Since e |H Nξ,
it follows that for all w′ /∈ e, we have e, w′ |H (∀x(P(x) ⊃ KP(x))). In particular, this
means that for all w′ /∈ e, we must have w′ |H ¬P(n∗). Thus, there must be some w ∈ e
such that w |H P(n∗). Clearly e, w |H ¬ξ, so e |H ¬Kξ, as desired.

These lemmas suggest that it may not be easy to find an extension of Axiom 5 that
would cover the counterexample, let alone lead to a complete axiomatization.
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9.5 Bibliographic notes

In [117] an alternative completeness proof for the propositional case is given, which uses
the original semantics of OL. Rosati [163, 164] investigated the computational complexity
of only-knowing in the propositional case. He presents an algorithm which decides satis-
fiability in propositional OL in nondeterministic polynomial time using an NP-oracle for
propositional satisfiability. In other words, the problem is in 6 p

2 (the second level of the
polynomial hierarchy). Rosati also shows that the problem is in fact 6 p

2 -complete, which
follows easily because of the close connection between OL and AEL (discussed in the next
chapter) and a result by Gottlob [54], who showed that determining whether a formula has
a stable expansion is 6 p

2 -hard.
The alternative semantics for OL with overlapping sets of world states was first intro-

duced in [60]. The proof that the axioms are incomplete in the first-order case appeared
in [59]. Most of the material of Section 9.4 is taken from there.

9.6 Where do we go from here?

The investigations regarding a proof theory of OL make up the first chapter of Part II of this
book, which covers special topics extending our basic logic of knowledge bases in various
ways. Naturally, there are many open research issues which are only touched upon lightly
or not at all. For this reason, we include a paragraph or more in this and the following
chapters to draw attention to some of the open issues.

The most immediate open question remaining regarding the proof theory is whether
there is a finite set of axioms which is complete for all of OL. Besides that, it seems
also interesting to ask whether there are classes of sentences for which the given axioms
are actually complete. Clearly, this is true for sentences of KL or those mentioning only
N. But what about sentences involving both K and N (or O). For example, what about
sentences of the form (OKB ⊃ Kα), where KB is objective or, more generally, where KB
is a determinate sentence?

9.7 Exercises

1. Let KB be any sentence such that |6= KB ⊃ b for some atomic sentence b. Show that
(O[KB∧ (¬Kb ⊃ ¬b)] ⊃ K¬b) follows from the axioms. (This is a formalization of
the “older-brother example” considered in the next chapter.)

2. In the propositional case, the soundness of Axiom 5 depends on the fact that there are
infinitely many atomic propositions.
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(a) Give an example where Axiom 5 fails in the case where there are only finitely
many atomic propositions in the language.

(b) Show that in this case O can be expressed using K alone.
Hint: Use the fact that each world state can be represented completely by a sen-
tence as long as there are only finitely many propositions.



158 Chapter 9



10 Only-Knowing and Autoepistemic Logic

Up to now we have mainly focussed on knowledge bases (or arguments of O, for that
matter) that uniquely determine an epistemic state. We saw that this restricted use of O
is sufficient to completely characterize the interaction routines ASK and TELL developed
earlier. While our intuitions about O are certainly strongest in the case of determinate
sentences, going beyond them not only helps us deepen our understanding of O, but it
also allows us to demonstrate a close connection between only-knowing and autoepistemic
logic (AEL), originally introduced by R. Moore to capture certain forms of nonmonotonic
or default reasoning.

Defaults are assumptions which are not based on facts about the world but rather on
conventions, statistical information, and the like. For example, most people agree that
birds generally fly. So, if presented with a particular bird called Tweety, it seems perfectly
reasonable to assume that Tweety flies. Of course, later information may contradict this
assumption, for example, if we find out that Tweety is a stuffed bird or an ostrich. In this
case, we are more than willing to retract our previous belief about Tweety’s flying ability.
Notice that the use of defaults has the effect that the set of beliefs may grow nonmonoton-
ically with the information obtained about the world. In other words, by adding new facts
to our knowledge base we may be forced to retract beliefs held previously about the world.
This is why reasoning by default is generally referred to as nonmonotonic reasoning, a
term which also stands for the whole research area which has investigated the fundamental
principles underlying this type of reasoning since the 1980s.

AEL represents one branch of this endeavour. The idea, in a nutshell, is to interpret
defaults such as birds generally fly epistemically. Roughly, one is willing to assume that a
particular bird flies provided one’s own knowledge about the world does not conflict with
this assumption.

In the following, we will first demonstrate, by way of example, how autoepistemic
reasoning is modeled in OL. Then we will show how OL not only captures Moore’s
original ideas in a precise sense but also extends it substantially, mainly because we are
using a more expressive language.

10.1 Examples of autoepistemic reasoning in OL

To begin let us consider the following simple example, originally due to Moore.

Suppose Bob is the oldest child in his family and someone asks him whether
he has an older brother. Naturally he would answer no and, asked to explain
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his reasoning, Bob may answer as follows: “If I had an older brother, I would
certainly know about it. And since I do not know that I have an older brother, I
conclude I do not have one.”

Note what is happening here. Bob draws a conclusion not based on factual knowledge
about the world but based on his ignorance (not knowing about an older brother), which is
why this form of reasoning is called autoepistemic. The first sentence of Bob’s explanation
really expresses a default assumption. It is a quite reasonable one to make, but it can be
defeated by new information.1

The logic OL allows us to formalize the example in a natural way. Let b stand for
“Bob has an older brother” and let KB be Bob’s knowledge base consisting of objective
sentences such that |6= (KB ⊃ b). We can express the default as δ = (¬Kb ⊃ ¬b). If we
then assume KB∧ δ is all Bob knows then we get the desired result, that is, ¬b is believed.

Example 10.1.1: (O(KB ∧ δ) ⊃ K¬b) is a valid sentence.

Proof: Let e = {w | w |H KB ∧ ¬b}. Clearly, e |H K¬b. Let e∗ be any set of worlds
such that e∗ |H O(KB∧ δ). It suffices to show that e∗ = e. To show that e ⊆ e∗, let w ∈ e.
Thenw |H KB∧¬b and, hence, e∗, w |H KB∧δ, from whichw ∈ e∗ follows. Conversely,
let w ∈ e∗. Then w |H KB. Note that e∗ |H ¬Kb. (For assume otherwise and let w∗ 6∈ e∗

such that w∗ |H KB ∧ ¬b. Then e∗, w∗ |H KB ∧ δ and, hence, w∗ ∈ e∗, a contradiction.)
Then, since e∗, w |H δ, we have w |H ¬b and, hence, w ∈ e.

An important characteristic of defaults is that the objective beliefs of an agent may
change nonmonotonically if new information is added to the knowledge base. In the ex-
ample, Bob initially knows KB and, by default, ¬b. When Bob’s mom finally tells Bob
the truth about the extent of his immediate family, Bob may add b to his knowledge base
overriding his previous default belief. Formally, (O(KB ∧ b ∧ δ) ⊃ Kb) is valid, which
can be derived using ordinary reasoning about K.

Let us now turn to more complex cases of defaults with quantifiers. Actually, we
already saw examples of those in our previous discussion of determinate sentences (Sec-
tion 8.5). Recall that we formalized the closed world assumption for a particular pred-
icate P using the sentence γ = (∀x P(x) ⊃ KP(x)). Note that we can rewrite γ as
(∀x¬KP(x) ⊃ ¬P(x)), which is more suggestive of a default saying that P is a assumed
to be false unless known otherwise. In this sense, the older-brother example is nothing
more than an instance of the closed world assumption. Closed world reasoning, as it is
commonly applied in databases, is perhaps the simplest form of default reasoning. But,

1 In fact, one of the authors has two older brothers whose existence was not revealed to him for a long time.
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of course, defaults can also be used to derive positive facts about the world. The classic
example is about birds and their ability to fly. In particular, one would like to conclude that
any bird such as the infamous Tweety can fly unless known otherwise. One way to express
the appropriate default is by using sentences like

∀x[Bird(x) ∧ ¬K¬Fly(x) ⊃ Fly(x)]

within the scope of an O operator. If we let δ stand for this sentence, we obtain the follow-
ing:

Example 10.1.2: Assume that KB = {Bird(tweety)}. Then the following sentences are
valid:

1. O(KB ∧ ¬Fly(tweety) ∧ δ) ⊃ K¬Fly(tweety)

2. O(KB ∧ Fly(tweety) ∧ δ) ⊃ KFly(tweety)

3. O(KB ∧ δ) ⊃ KFly(tweety).

Proof: (1) and (2) follow easily using the fact that (Oα ⊃ Kα) is valid.
To show (3), let e |H O(KB ∧ δ). We first show that e |H ¬K¬Fly(tweety). Let w∗

be any world state such that w∗ |H Bird(tweety) ∧ ∀xFly(x). Then e, w∗ |H KB ∧ δ and,
hence, w∗ ∈ e. Since w∗ |H Fly(tweety), we obtain e |H ¬K¬Fly(tweety).

Now we show that e |H KFly(tweety), that is, for every w ∈ e, w |H Fly(tweety).
Let w ∈ e. Then e, w |H (Bird(tweety) ∧ ¬K¬Fly(tweety) ⊃ Fly(tweety)). Clearly,
w |H Bird(tweety). By the above, we also have e |H ¬K¬Fly(tweety). Therefore, w |H
Fly(tweety).

This example shows that Tweety’s flying is indeed the default: if his flying ability is spec-
ified explicitly, then this works out properly (cases 1 and 2); otherwise, flying is taken as
the default (case 3).

Note, however, that the proof uses the fact that there are worlds where all things fly,
which is certainly true when KB = {Bird(tweety)}. However, this condition is too strong.
We should be able to get the default for Tweety even if there are some flightless birds. So
what happens if the KB implies of some bird that it is flightless? The answer is that the
default still works properly, but for a slightly different reason. In the following, both tweety
and chilly are meant to be distinct standard names.

Example 10.1.3: Assume that

KB = {Bird(tweety),Bird(chilly),¬Fly(chilly)}.

Then

O(KB ∧ δ) ⊃ K∀x[Bird(x) ∧ (x 6= chilly) ⊃ Fly(x)]
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is valid and thus, (O(KB ∧ δ) ⊃ KFly(tweety)) is valid.

Proof: We leave the proof as an exercise.

Note that the default belief that Tweety flies is based on the default belief that any bird
other than Chilly flies. In fact,with no information at all, it will be assumed that all birds
fly: the sentence (Oδ ⊃ K∀x[Bird(x) ⊃ Fly(x)]) is valid. In many applications this is too
strong; we might not want to infer anything about distal unknown birds. One way to do
this is to write the default as

∀x[KBird(x) ∧ ¬K¬Fly(x) ⊃ Fly(x)].

This makes the default apply only to the known birds. However, it does have disadvan-
tages compared to the previous form of default. For example, if KB = {∃x(Bird(x) ∧
Yellow(x))}, then using this form of default, we would not conclude by default that there
was a yellow bird that flies. Although its existence is known, the bird in question is not
(yet) a known bird.

A nice property of the examples considered so far is that the KB together with the de-
fault is determinate as defined previously, that is, there is a unique corresponding epistemic
state. In particular, the effect of the default is to add information to the KB, in this case,
information about birds’ flying ability. This “filling in the blanks” is precisely what one
would expect from a default. Unfortunately the desired effect does not always obtain, and
to see why, let us go back to our original birds-fly default δ, which applies to all birds, not
just the known ones (although the same applies to the more restricted form). Note that so
far it has always been the case that (1) the KB implies that Tweety is a bird and (2) it does
not imply that Tweety is flightless. Unfortunately, these conditions are not sufficient for
the default to go through. For suppose that

KB = {Bird(tweety),Bird(chilly), (¬Fly(chilly) ∨ ¬Fly(tweety))}.

Then the KB does not imply that Tweety is flightless, but it would be inappropriate to
assume by default that it can fly, since by symmetry we could infer the same of Chilly,
contradicting the fact that one of them is flightless. A similar complication occurs if

KB = {Bird(tweety), ∃x(Bird(x) ∧ ¬Fly(x))}.

Again, if we are prepared to infer that Tweety flies, by symmetry, we should be able to do
likewise for any bird, and thus come to the conclusion that all birds fly, again contradicting
the belief. The trouble with the two KBs above is that the default δ is actually believed to
be false, that is, the sentence (OKB ⊃ K¬δ) is valid. In both cases the KB implies that
there is a flightless bird but it does not specify which; so, if this is all that is known, then it
is believed that there is a flightless bird whose identity is not known, which is ¬δ. So what
happens in these cases if we insist that O[KB∧ δ] is true? That is, what happens when we
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believe KB and δ and nothing else, even though believing KB alone implies believing ¬δ?
The answer, in short, is that (KB ∧ δ) is no longer determinate, that is, it fails to specify
completely what is and is not believed. More specifically, we have:

Example 10.1.4: Let KB = {Bird(tweety),Bird(chilly), (¬Fly(chilly) ∨ ¬Fly(tweety))}
and let Exc(x) be an abbreviation for Bird(x) ∧ ¬Fly(x). Then the sentence O[KB ∧ δ] is
logically equivalent to

O[KB ∧ ∀x(Exc(x) ≡ x = tweety)] ∨ O[KB ∧ ∀x(Exc(x) ≡ x = chilly)].

Proof: To prove the if direction, let e |H O[KB∧∀x(Exc(x) ≡ x = tweety)]. (The other
case is handled the same way.) We need to show that e |H O[KB ∧ δ]. If w ∈ e, then
clearly w |H KB. Also, e, w |H δ follows because all birds other than Tweety fly in w and
Tweety is known not to fly. Conversely, let w 6∈ e and assume that w |H KB. Thus w |6=
∀x(Exc(x) ≡ x = tweety), that is, either there is an exceptional bird n other than Tweety or
Tweety is not an exceptional bird. In the first case, w |H Bird(n)∧¬K¬Fly(n)∧¬Fly(n).
In the second case, we have the same with n replaced by Chilly because KB requires one
of Tweety and Chilly not to fly. In either case, e, w |6= δ, and we are done.

For the only-if direction, let e |H O[KB ∧ δ]. First note that e |H K¬Fly(tweety) ∨
K¬Fly(chilly) which follows by the default and the fact that either Tweety or Chilly does
not fly. Thus let us assume that e |H K¬Fly(tweety). It suffices to show that e = e∗

with e∗ = {w | w |H KB ∧ ∀x(Exc(x) ≡ x = tweety)}. (The other case is handled the
same way with Tweety replaced by Chilly.) Let w ∈ e∗. Since all birds other than Tweety
fly at w and Tweety is known not to fly by assumption, we obtain e, w |H KB ∧ δ and,
hence, w ∈ e. Conversely, suppose w ∈ e. By assumption, Tweety is known to be an
exceptional bird at e and is therefore exceptional at w. Any bird n other than Tweety flies
at w because of δ and the fact that e |H ¬K¬Fly(n), which follows from e∗ ⊆ e. Hence
w |H ∀x(Exc(x) ≡ x = tweety) and, therefore, w ∈ e∗.

This says that only-knowing KB and the default is the same as only-knowing KB and
that Tweety is the only flightless bird or only-knowing KB and that Chilly is the only
flightless bird. But the KB and the default together are not sufficient to specify exactly
what is believed; they describe what is believed, but do not determine it. They do, however,
determine what is common to both epistemic states. For example,

O[KB ∧ δ] ⊃ K∀x[Exc(x) ⊃ (x = tweety ∨ x = chilly)]

is valid.
It is not hard to see that the default may even lead to an infinite number of compatible

epistemic states. For instance, let KB = {∃xExc(x)}. The result here is that the sentence
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O[KB ∧ δ] ≡ ∃y O[KB ∧ ∀x(Exc(x) ≡ (x = y))] is valid, by an argument similar to the
one above. In other words, only knowing that birds fly by autoepistemic default and that
there is an exceptional bird does not determine exactly what is believed; however, it only
happens if, for some bird, all that is known is that this bird is the only exceptional one. In
this case, there is a different epistemic state for each standard name.

Finally, instead of multiple epistemic states there is also the case, as we saw already in
Chapter 8, that a sentence does not correspond to any epistemic state at all, that is, it can
never be all that is known like Kφ, since |H ¬O[Kφ] (see Corollary 8.3.6).

10.2 Stable sets and stable expansions

We now turn to the close relationship between only-knowing and Moore’s original formu-
lation of autoepistemic logic. There are two notions central to AEL, stable sets and stable
expansions. We will give precise definitions below, but let us first look at these notions
informally. Both have in common that they are syntactic characterizations of an agent’s
beliefs. A stable set simply states three basic conditions the beliefs of an ideal rational
agent should satisfy: closure under logical consequence, positive and negative introspec-
tion. Stable expansions then define those sets of beliefs that are stable and in some sense
derive from a set of assumptions A. In other words, a stable expansion describes the beliefs
an ideal rational agent might hold provided her knowledge base consists of the sentences
in A. The following properties will be established relating AEL and only knowing:

• Belief sets and stable sets coincide.
• The stable expansions of a sentence α are precisely those belief sets which result from

only-knowing α.
• While AEL was originally only defined for a propositional language, OL provides a

natural quantificational generalization.

The notion of stability depends on a definition of first-order consequence, so we should
be clear about this concept first. The idea is simple: α is a first-order consequence of 0
when 0 implies α by virtue of the rules of ordinary first-order logic alone, that is, without
using the rules for K or for O even over sentences containing these operators. One way
to formalize this is to think of sentences like Kα and Oα as new atomic sentences so that
there is no forced relationship between the truth value of, for example, Kα and ¬K¬¬α.
Although the conjunction of these two is not satisfiable, this depends on the semantics of
K, and so we want to say that it is first-order satisfiable.

More precisely, let θ be any function from sentences of the form Kα or Oα to {0, 1},
and w any world. We will say that a pair θ and w first-order satisfies a sentence α, which
we write θ,w |HFOL α according to these rules:
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1. θ,w |HFOL P(t1, . . . , tk) iff w[P(n1, ...nk)] = 1, where ni = w(ti );

2. θ,w |HFOL t1 = t2 iff w(t1) is the same name as w(t2);

3. θ,w |HFOL ¬α iff θ,w |6=FOL α;

4. θ,w |HFOL α ∧ β iff θ,w |HFOL α and θ,w |HFOL β;

5. θ,w |HFOL ∃xα iff for some n, θ, w |HFOL α
x
n ;

6. θ,w |HFOL Kα iff θ(Kα) = 1;

7. θ,w |HFOL Oα iff θ(Oα) = 1.

We will say that 0 is first-order satisfiable iff some θ and w first-order satisfies it. Finally,
we will say that 0 first-order implies α, which we write 0 |HFOLα, iff 0 ∪ {¬α} is not first-
order satisfiable. Clearly satisfiability implies first-order satisfiability, but not the converse.

We are now in a position to formally introduce stable sets and expansions and relate
them to only-knowing. Since AEL only deals with basic sentences, we focus on those first.
In Section 10.6, we will see that all definitions and results carry over naturally if we allow
non-basic sentences as well.

10.3 Relating epistemic states to stable sets and expansions

With first-order consequence the definition of a stable set is now very simple.

Definition 10.3.1: A set of basic sentences 0 is stable iff

1. If 0 |HFOLα, then α ∈ 0.2

2. If α ∈ 0, then Kα ∈ 0.
3. If α 6∈ 0, then ¬Kα ∈ 0.

Stability merely states in a rigorous way that beliefs are closed under perfect logical rea-
soning and introspection. Since we have been making these assumptions all along, it is
clear that every basic belief set is also a stable set. Below we will show that the converse
is also true, that is, stable sets correspond exactly to basic belief sets. But first we need
a result stating that for certain sets of sentences satisfiability and first-order satisfiability
coincide.

Definition 10.3.2: A set 6 is an adjunct of a set 0 iff 6 = {Kα | α is basic and α ∈ 0} ∪
{¬Kα | α is basic and α 6∈ 0}.

2 In other words we are requiring 0 to be closed under first-order implication. Moore used propositional logical
consequence since he only dealt with a propositional language.
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Lemma 10.3.3: If 6 is an adjunct of a basic belief set 0, then for any subjective sentence
σ, either 6 |H σ or 6 |H ¬σ.

Proof: Suppose 0 is a basic belief set for some maximal e and suppose that e |H σ . Then
any maximal e′ such that e′ |H 6 must have the same basic belief set as e. By Lemma 8.2.1,
e′ |H σ follows and, consequently, 6 |H σ. The case with ¬σ is analogous.

Theorem 10.3.4: Suppose1 is a set of basic sentences that contains an adjunct to a stable
set. Then 1 is satisfiable iff it is first-order satisfiable.

Proof: The only-if direction is immediate. So suppose that 1 contains an adjunct to a
stable set 0 and is first-order satisfiable, and that θ,w |HFOL 1. Define e as {w′ | θ,w′ |HFOL

0}. We will show by induction that for any w′ and any basic α, e, w′ |Hα iff θ,w′ |HFOL α.
This clearly holds for atomic sentences, equalities, and by induction, for negations,

conjunctions, and quantifications. Now suppose that θ(Kα) = 1. Therefore, ¬Kα 6∈ 1,
and so α ∈ 0. Thus, for every w′ ∈ e, θ, w′ |HFOL α and so by induction, e, w′ |Hα and so,
e |H Kα. Conversely, suppose that θ(Kα) = 0. Therefore, Kα 6∈ 1, and so α 6∈ 0. But
0 is closed under first-order implication, so 0 ∪ {¬α} is first-order satisfiable. Therefore,
there must be some θ∗ and some w′ such that θ∗, w′ |HFOL 0 ∪ {¬α}. But θ and θ∗ can
only differ on non-basic sentences since for every basic α, either Kα ∈ 0 or ¬Kα ∈ 0.
Thus, θ,w′ |HFOL 0 ∪ {¬α}. This means that w′ ∈ e, and so there is a w′ ∈ e such that
θ,w′ |HFOL ¬α, and by induction e, w′ |H¬α. Therefore, e |H¬Kα.

Thus, for every w′, e, w′ |Hα iff θ,w′ |HFOL α. This establishes that e, w |H1, and so
1 is satisfiable.

One simple consequence of this theorem is that it is not necessary to use first-order impli-
cation when dealing with (supersets of) adjuncts to stable sets:

Corollary 10.3.5: Suppose1 is a set of basic sentences that contains an adjunct to a stable
set. Then for any basic α, 1 |H α iff 1 |HFOLα.

Proof: Immediate from the theorem.

Now we can show that stable sets and basic belief sets are one and the same.

Theorem 10.3.6: Suppose 0 is a set of basic sentences. Then 0 is stable iff 0 is a basic
belief set.
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Proof: The if direction is straightforward: the first condition is a result of the logical
properties of a reasoner, and the last two are a result of its introspective capabilities.

Conversely, suppose 0 is stable. There are two cases. If 0 is satisfiable, then some
e, w |H 0. For any basic α, if α ∈ 0, then Kα ∈ 0, and so e |H Kα; if α 6∈ 0, then
¬Kα ∈ 0, and so e |H ¬Kα. Thus, α ∈ 0 iff e |H Kα, and so 0 is a basic belief set for e.
Suppose on the other hand that 0 is unsatisfiable. By properties (2) and (3) of stability, 0
must contain the adjunct to 0. Then by Theorem 10.3.4, 0 is not first-order satisfiable. So
for every basic α, 0 |HFOL α, and by definition of stability, α ∈ 0. Thus, 0 contains every
basic sentence. It is therefore the basic belief set of the empty set of worlds.

It has long been known that stable sets, when restricted to propositional sentences,
are uniquely determined by their objective subsets. With quantifiers and, in particular,
quantifying-in, this is no longer the case.3

Theorem 10.3.7: Stable sets are in general not uniquely determined by their objective
subsets.

Proof: The result follows easily from Theorem 4.6.2, which says that there are two
epistemic states e1 and e2 whose corresponding basic belief sets agree on all objective
sentences but disagree on K∃x[P(x) ∧ ¬KP(x)]. Since, by the previous theorem, stable
sets and basic belief sets are one and the same, the theorem follows.

Let us now turn to stable expansions. Roughly, a sentence γ belongs to a stable ex-
pansion of a set of basic sentences A if it follows from A using logical reasoning and
introspection. Of course, we need to be clear about what we mean by introspection here.
The trick is to assume we already know what the stable expansion is and use its adjunct as
the characterization of the beliefs that can be inferred by introspection. γ is then simply a
logical consequence of A and the adjunct. Formally, we obtain the following fixed-point
definition.

Definition 10.3.8: A set of sentences 0 is a stable expansion of a set of basic sentences
A iff 0 satisfies the fixed-point equation:

0 = {γ | γ is basic and A ∪ {Kβ | β ∈ 0} ∪ {¬Kβ | β 6∈ 0} |HFOL γ }.

The main result of this chapter says that the stable expansion of a sentence α and the
basic belief sets that result from only-knowing α are one and the same.

3 If we disallow quantifying-in, we obtain the same results as in the propositional case.



168 Chapter 10

Theorem 10.3.9: For any basic α and any maximal set of worlds e, e |H Oα iff the basic
belief set of e is a stable expansion of {α}.

Proof: Let e be any maximal set of worlds with 0 as its basic belief set and 6 as the
adjunct to 0. Thus, e |H6. What we want to show is that e |H Oα iff 0 is the set of basic
sentences that are first-order implied by {α} ∪ 6. Moreover, by Corollary 10.3.5, we can
use full logical implication instead of first-order implication since 0 is a stable set. Thus,
we need to show that

e |H Oα iff for every basic β, e |H Kβ iff {α} ∪6 |H β.

First assume that e |H Oα. For the if part, assume that {α}∪6 |H β. Now let w be any
element of e. Since e |H Oα, e, w |H {α}∪6, and therefore, e, w |H β. Thus, for any
w ∈ e, we have that e, w |H β, and so e |H Kβ.

For the only-if part, assume that e |H Kβ. To show that {α}∪6 |H β, let e′ be any
maximal set of worlds and w be any world. If e′, w |H {α}∪6, then e′ = e since 6 is
an adjunct of the basic belief set for e by Lemma 10.3.3. Thus, e, w |H α and so w ∈ e,
because e |H Oα. But if w ∈ e, then e, w |H β, since e |H Kβ. Thus for any e′ and w, if
e′, w |H {α}∪6, then e′, w |H β, and so {α}∪6 |H β.

Now assume that e |H Kβ iff {α}∪6 |H β. First we need to show that e |H Kα, but
this is immediate since clearly {α}∪6 |H α. Next we need to establish that if e, w |H α

then w ∈ e. If e, w |H α then e, w |H {α}∪6, since e |H 6. Now consider any β such that
e |H Kβ. We have that {α}∪6 |H β, and so e, w |H β. Therefore, by Theorem 6.1.1, we
have that e ≈ (e + w) and so, because e is maximal, w ∈ e. Thus, for any w, if e, w |H α
then w ∈ e, and so e |H Oα.

So only-knowing a sentence means that what is believed is a stable expansion of that
sentence (or, more intuitively, what is believed is derivable from that sentence using first-
order logic and introspection alone). This theorem provides for the first time a semantic
account for the notion of stable expansion. In addition, we have generalized the notion of
a stable expansion to deal with a quantificational language with equality. To summarize,
we have the following correspondences:

semantic syntactic
believing membership in a stable set

basic belief sets stable sets
only believing stable expansions

One easy corollary to this theorem relates the number of stable expansions of a sentence to
the number of sets of worlds where that sentence is all that is known.
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Corollary 10.3.10: A sentence α has exactly as many stable expansions as there are max-
imal sets of worlds where Oα is true.

Proof: By Theorem 8.2.1, the mapping between maximal sets of worlds and basic belief
sets is bijective. By Theorem 10.3.6, beliefs sets are the stable sets. The correspondence
then follows from the above theorem.

What this says, among other things, is that our previous discussions of determinate and
non-determinate sentences applies equally well to stable expansions.

10.4 Computing stable expansions

In the previous section, we saw that there was a one-to-one correspondence between the
stable expansions of a formula and the epistemic states where the formula is all that is
known. In this section, we examine a procedure for calculating these stable expansions or
epistemic states in the propositional case. Specifically, we will return a set of objective
formulas that represent each of the epistemic states where the given propositional formula
is all that is known.

In the following, we will show that for any propositional β ∈ OL, the formula Oβ
is equivalent to a finite disjunction of formulas of the form Oψ where ψ is objective. In
the process, we will need to substitute subwffs of the form Kγ or Oγ in β by either TRUE

or FALSE. We begin by enumerating all subwffs Kγ1, . . . , Kγk, and Oγk+1, . . . Oγn that
appear in β. In the proof below, we will let OLβ mean the subset of OL whose Kγ or Oγ
subwffs appear in this list.

Definition 10.4.1: Let v ∈ {0, 1}n . Then for any α ∈ OLβ , ||α||v is the objective formula
that results from replacing a subwff Kγi or Oγi in α by TRUE if vi = 1 and FALSE if
vi = 0.

Lemma 10.4.2: Let e be an epistemic state, and suppose that v ∈ {0, 1}n satisfies vi = 1
iff e |H Kγi (or e |H Oγi ). Then for any w, and any α ∈ OLβ , e, w |H α iff w |H ||α||v ,
and consequently, e |H Oα iff e |H O||α||v.

Proof: By induction on the length of α.

Lemma 10.4.3: Suppose e and v are as above, and that for some α ∈ OLβ , we have that
e |H Oα. Then for all 1 ≤ i ≤ k, vi = 1 iff |H (||α||v ⊃ ||γi ||v), and for all k + 1 ≤ i ≤ n,
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vi = 1 iff |H (||α||v ≡ ||γi ||v).

Proof: For the first part with i ≤ k, in the only-if direction, assume that vi = 1. Now
suppose that for any w, w |H ||α||v . By the lemma above, e |H O||α||v, and so w ∈ e. Since
vi = 1, we have that e |H Kγi , and therefore, e, w |H γi , and again by the same lemma,
w |H ||γi ||v. So |H (||α||v ⊃ ||γi ||v).

In the if-direction, assume that |H (||α||v ⊃ ||γi ||v), and suppose that w is any element
of e. Since we have that e |H O||α||v, we get that w |H ||α||v and so w |H ||γi ||v, and then
by the above lemma, e, w |H γi . Thus, e |H Kγi , and so vi = 1.

The second part of the proof with i > k is analogous.

Lemma 10.4.4: Assume that v ∈ {0, 1}n and that for the given β we have that for all
1 ≤ i ≤ k, vi = 1 iff |H (||β||v ⊃ ||γi ||v), and for all k + 1 ≤ i ≤ n, vi = 1 iff
|H (||β||v ≡ ||γi ||v). Let e = <[[||β||v]]. Then for any α ∈ OLβ and any w, we have that
e, w |H α iff w |H ||α||v, and so e |H Oβ.

Proof: By induction on the length of α. For atoms, negations and conjunctions, the
argument is clear. If α is Kγi , then e, w |H α iff for every w′ ∈ e, we have that e, w′ |H γi

iff (by induction) for every w′ ∈ e, we have that w′ |H ||γi ||v . Since e = <[[||β||v]], this
happens iff |H (||β||v ⊃ ||γi ||v), iff vi = 1 iff ||α||v = TRUE iff w |H ||α||v . The final case
with Oγi is analogous.

Theorem 10.4.5: For any formula β ∈ OL and any epistemic state e, e |H Oβ iff
there is a v ∈ {0, 1}n such that e = <[[||β||v]] and where for all 1 ≤ i ≤ k, vi = 1 iff
|H (||β||v ⊃ ||γi ||v), and for all k + 1 ≤ i ≤ n, vi = 1 iff |H (||β||v ≡ ||γi ||v).

Proof: In the if direction, we can define the v using e as in Lemma 10.4.2, and then apply
Lemma 10.4.3. The only-if direction is an immediate consequence of Lemma 10.4.4.

Corollary 10.4.6: For any β ∈ OL, there are objective wffs ψ1, . . . , ψm,m ≥ 0 such
that |H Oβ ≡ (Oψ1 ∨ · · · ∨ Oψm).

Proof: Let S be the set of all objective wffs of the form ||β||v where v ∈ {0, 1}n and
for all 1 ≤ i ≤ k, vi = 1 iff |H (||β||v ⊃ ||γi ||v), and for all k + 1 ≤ i ≤ n, vi = 1 iff
|H (||β||v ≡ ||γi ||v). Then by the theorem, if e |H Oβ, then for some ψ ∈ S, e |H Oψ .
Furthermore, if ψ ∈ S, and e = <[[ψ]], then again by the theorem, e |H Oβ. Thus we
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Input: any propositional formula β ∈ OL;
Output: a set of objective formulas ψ1, . . . , ψm satisfying

|H Oβ ≡ (Oψ1 ∨ · · · ∨ Oψm ).

Procedure
/* Assume that β has subwffs Kγ1, . . . , Kγk , Oγk+1, . . . , Oγn . */
S ← {}

for v ∈ {0, 1}n do
if for all 1 ≤ i ≤ k, vi = 1 iff |H (||β||v ⊃ ||γi ||v)

and for all k + 1 ≤ i ≤ n, vi = 1 iff |H (||β||v ≡ ||γi ||v)
then S ← S ∪ {||β||v}

end
return S

end

Figure 10.1: Calculating stable expansions

have that Oβ is logically equivalent to ∨{Oψ |ψ ∈ S}.

We can also see looking at the proof of this corollary that the m in question can be no
larger that 2n where n is the number of subwffs of the form Kγ or Oγ that appear in β.

This then suggests a procedure for generating the epistemic states that satisfy a given
propositional formula Oβ by generating a finite set of objective formulas that represent all
that is known in each of these states.4 The procedure appears in Figure 10.1. Because of
Corollary 10.3.10, this procedure also generates the stable expansions of any propositional
formula. More precisely, the objective formulas returned by the procedure represent the
epistemic states whose basic belief sets are the stable expansions.

Finally, the theorem leads us to the conclusion that propositional OL is reducible,
in the sense of Section 4.6: it is possible to reduce any propositional formula involving
perhaps nested K or O operators to an equivalent one where the K and the O only dominate
objective formulas. The proof of this is left as an exercise.

10.5 Non-reducibility of OL

We have seen in Chapter 4 that KL is irreducible, that is, there are sentences such as
K[∃x P(x) ∧ ¬KP(x)] with nested occurrences of K which are not equivalent to any sen-
tence without nested K’s. Of course, the same holds in OL as well since it subsumes KL.
But what about sentences of the form Oα? Do we obtain reducibility at least for this special
case? We saw in the previous section that we do get reducibility when α has no quanti-
fiers. With quantifiers, the answer, in short, is no, but finding an appropriate irreducible

4 This will not work in the first-order case since as in the example on page 164, a formula Oβ can be satisfied
by an infinite set of epistemic states.
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1. ∀xyz[R(x, y) ∧ R(y, z) ⊃ R(x, z)]
R is transitive.

2. ∀x¬R(x, x)
R is irreflexive.

3. ∀x[KP(x) ⊃ ∃y.R(x, y) ∧ KP(y)]
For every known instance of P, there is another one that is R related to it.

4. ∀x[K¬P(x) ⊃ ∃y.R(x, y) ∧ K¬P(y)]
For every known non-instance of P, there is another one that is R related to it.

5. ∃x KP(x) ∧ ∃x K¬P(x)
There is at least one known instance and known non-instance of P.

6. ∃x¬KP(x)
There is something that is not known to be an instance of P.

7. ∀x KP(x) ⊃ P(x).
Every known instance of P is a P.

8. ∀x K¬P(x) ⊃ ¬P(x).
Every known non-instance of P is not a P.

Figure 10.2: A sentence unsatisfiable in finite states

sentence is not as straightforward as one might think. For example, obvious candidates
like O[∃x P(x) ∧ ¬KP(x)] and O[∃x P(x) ∧ ¬OP(x)] are both equivalent to O∃x P(x)
and hence reducible (see Exercise 6).

To show that only-knowing does not reduce, we choose a sentence which is almost
identical to the sentence π in Figure 6.1 on page 105, which was used to show that finitely
representable epistemic states are not sufficient to capture KL. Let ζ be the conjunction
of the sentences of Figure 10.2, which differs from π only in that there are two additional
conjuncts (7) and (8).

Our first task is to show that ζ can be all that is known. To this end, let � be the set
{
#1, #3, #5, . . .} and let us call a standard name odd if it is in � and even otherwise. Let e

be the set of world states w which satisfy the following conditions:

a) w satisfies all of the following objective sentences:

{P(#1),¬P(#2), P(#3),¬P(#4), . . . .};

b) w satisfies conjuncts (1) and (2) stating that R is transitive and irreflexive;

c) for every even n there are infinitely many even standard names m which are R-related
to n, that is, for which w |H R(n,m);

d) for every odd n there are infinitely many odd standard names which are R-related to n.

Lemma 10.5.1: e |H Oζ.

Proof: It is easy to see that for every w ∈ e, e, w |H ζ. Given our particular choice
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of R (conditions (b)–(d)), the argument is very similar to the one used to show the satis-
fiability of π. Note also that the conjuncts (7) and (8) are clearly satisfied because both
K[∀x KP(x) ⊃ P(x)] and K[∀x K¬P(x) ⊃ ¬P(x)] are valid sentences. Now consider
an arbitrary world state w not in e. Then it violates one of the conditions (a)–(d). We
will show that, in each case, one of the conjuncts of ζ is falsified by w. If w violates
condition (a), then w does not satisfy an even P or w satisfies an odd P, that is, either
conjunct (7) or (8) turns out false. If condition (b) is violated, then clearly either (1)
or (2) is false. Now consider the case where (c) is violated. Then there is an even n
and at most finitely many even m1, . . . ,mk such that w |H R(n,mi ), and for all other
even m, w |6= R(n,m). We claim that there must be some m∗ ∈ {m1, . . . ,mk} such that
w |6= R(m∗,m) for all even m. For assume otherwise, that is, for every mi there is an even
m′i such that w |H R(mi ,m′i ). Then, by the transitivity of R, we also have w |H R(n,m′i ).
Hence m′i ∈ {m1, . . . ,mk}. However, this is only possible if there is a cycle, that is, w sat-
isfies all of {R(mi ,m j1), R(mi ,m j2), . . . , R(mi ,m jk )} and m jk = mi for some i. But then
w |H R(mi ,mi ), contradicting the irreflexivity of R. Given that there is an even name m∗

such that for all even names m, w |6= R(m∗,m), conjunct (3) of ζ is clearly not satisfied.
Similarly, the case where condition (d) is violated implies that conjunct (4) is not satisfied.
Therefore, for every w 6∈ e, e, w |6= ζ and e |H Oζ follows. Finally, note that e is also a
maximal set because any w 6∈ e falsifies a known basic sentence, namely ζ.

Lemma 10.5.2: For any e such that e |H Oζ, both the set of known instances of P and
the set of known non-instances are infinite.

Proof: If we assume that there are only finitely many known instances of P, say,
m1, . . . ,mk, then the assumption that conjunct (3) of ζ is satisfied at every w ∈ e leads
to a contradiction with the irreflexivity of R, using an argument similar to the one in the
previous proof. The case of the known non-instances of P is symmetric.

Lemma 10.5.3: Let e be any epistemic state such that e |H Oζ. Then for all objective φ,
e |6= Oφ.

Proof: Assume otherwise, that is, suppose there is an objective φ such that e |H Oφ.
Then e is finitely represented by φ. By Lemma 6.5.3, either the set of known instances of
P is finite or the set of known non-instances, contradicting Lemma 10.5.2.

Lemma 10.5.4: Let e |H Oζ and let q be a 0-ary predicate symbol not occurring in ζ. Let
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e∗ = e ∩ {w | w |H q}. Then for any w and any α which does not mention q and whose
subformulas Oφ are restricted to objective φ, e, w |H α iff e∗, w |H α.

Proof: The proof is by induction on the structure of α. The lemma clearly holds for
objective sentences and, by induction, for ¬, ∨, and ∃. Let e |H Kα. Then for all w ∈ e,
e, w |H α and, by induction, for all w ∈ e, e∗, w |H α. Since e∗ ⊆ e, e∗ |H Kα
follows. Now suppose e |6= Kα. Then there is a w ∈ e such that e, w |6= α. By induction,
e∗, w |6= α. If w ∈ e∗ we are done. Otherwise, by the construction of e∗, w |H ¬q . Since
q does not appear in ζ, it is easy to see that there must be a w ∈ e which is exactly like w
except that w |H q. Then w is in e∗ and e∗, w |6= α because q does not appear in α. Hence
e∗ |6= Kα. Finally, let us consider Oφ. Since φ is objective, e∗ |H ¬Oφ because e∗ knows
q and q does not occur in φ. Also, e |H ¬Oφ because of Lemma 10.5.3. Hence, e |H Oφ
iff e∗ |H Oφ.

Theorem 10.5.5: There is no α without nested modal operators such that Oζ is logically
equivalent to α.

Proof: Assume, to the contrary, that there is an α without nested modal operators such
that |H Oζ ≡ α. Let e be any maximal set of world states such that e |H Oζ and let
e∗ = e ∩ {w | w |H q}, where q is a 0-ary predicate symbol occurring nowhere in ζ or α.

First we show that e∗ itself is maximal. For that it suffices to show that for any w 6∈ e∗,
e∗, w |6= γ for some basic γ such that e∗ |H Kγ . If w |6= q we are done because e∗ |H Kq.
Otherwise w |H q and, since w 6∈ e∗, w 6∈ e. Since e |H Oζ by assumption, e, w |6= ζ .
Also, since ζ does not mention q, e∗, w |6= ζ follows from Lemma 10.5.4. By the same
lemma, e∗ |H Kζ and we are done.

Continuing with the main proof of the theorem, since |H Oζ ≡ α and e |H Oζ by
assumption, we have e, w |H α for any w. Then, since any occurence of O in α applies
only to an objective formula, e∗, w |H α by Lemma 10.5.4. Now consider aw in e which is
not in e∗. (Such w clearly exists.) Then e, w |H ζ and thus, by Lemma 10.5.4, e∗, w |H ζ .
Therefore, e∗ |6= Oζ, contradicting our assumption that α and Oζ are equivalent.

10.6 Generalized stability

So far, the two main results relating OL to Moore’s autoepistemic logic, Theorem 10.3.6
and Theorem 10.3.9, have only dealt with basic sentences or sentences like Oα, where α
is basic. However, the generalization to deal with arbitrary sentences is not difficult. First
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define the generalized belief set of e to be the set of all sentences α (basic or not) such that
e |H Kα. Then we have the following:

Theorem 10.6.1: A set of sentences 0 is a generalized belief set iff 0 is a generalized stable
set, that is, it satisfies the following conditions:

1. If 0 |H α, then α ∈ 0.5

2. If α ∈ 0, then Kα ∈ 0.
3. If α 6∈ 0, then ¬Kα ∈ 0.

Proof: The proof is identical to that of Theorem 10.3.6, except without the diversion via
Theorem 10.3.4 to handle first-order implication.

So to convert a belief set to a generalized belief set, we need only close it under implication
(rather than just first-order implication).

Dealing with Oα in general is also straightforward:

Theorem 10.6.2: For any α and any maximal e, e |H Oα iff the generalized belief set of e
is a generalized stable expansion of α, that is, the generalized belief set 0 satisfies

0 is the set of implications of {α} ∪ {Kβ | β ∈ 0} ∪ {¬Kβ | β 6∈ 0}.

Proof: The proof is the same as that of Theorem 10.3.9, except again without the diver-
sion through Theorem 10.3.4 to handle first-order implication, and a generalized belief set
is used here. However, by Lemma 10.3.3, belief sets completely determine the generalized
belief sets.

This, then, is perhaps the most succinct characterization of only-knowing: α is all that is
known iff every belief follows logically from α and the basic subjective facts.

10.7 Bibliographic notes

Since the next chapter addresses other forms of nonmonotonic reasoning besides AEL, we
defer bibliographic notes to that chapter.

5 This closure under full implication is the only change to the definition of stability.
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10.8 Where do we go from here?

As the next chapter addresses weaknesses of AEL with regards to default reasoning, we
defer comments on where to go from here also to that chapter.

10.9 Exercises

1. Show that (K p ⊃ p) has two stable expansions.
2. Let KB = {Bird(tweety),Bird(chilly),¬Fly(chilly)}. We assume that both tweety and

chilly are standard names. Show that (O(KB ∧ δ) ⊃ KFly(tweety)) is valid, where δ
is the birds-fly default.
Hint: Use the proof of Example 10.1.2, part 3, but with ∀x(x 6= chilly) ⊃ Fly(x)
instead of ∀xFly(x).

3. Let KB = {∃xExc(x)}, where Exc(x) stands for Bird(x) ∧ ¬Fly(x) as before. Show
that O[KB ∧ δ] ≡ ∃y O[KB ∧ ∀x(Exc(x) ≡ (x = y))] is valid, that is, there are
infinitely many epistemic states compatible with only-knowing KB.

4. Let δK = ∀x[KBird(x)∧¬K¬Fly(x) ⊃ Fly(x)], that is, the default about flying birds
only applies to known birds, as discussed on page 162. Let
KB = {Bird(tweety),Bird(best friend(tweety)),¬Fly(best friend(tweety))}.
Show whether (O(KB ∧ δK ) ⊃ KFly(tweety)) is valid.

5. Show that for any propositional formula α there is an equivalent one α′ where the K
and the O only dominate objective formulas..

6. Show that both O[∃x P(x)∧KP(x)] and O[∃x P(x)∧OP(x)] are logically equivalent
to O∃x P(x).



11 The Logic of Defaults

In the previous chapter, we examined a form of default reasoning in terms of autoepistemic
logic. We saw how to use only-knowing to characterize what should be believed given a
knowledge base consisting of a set of objective facts and a set of defaults, where the de-
faults were represented as non-objective sentences. As usual, we said that a sentence φ
would be believed if |H (OKB ⊃ Kφ). We also saw how, in the propositional case, epis-
temic states correspond to what are called stable sets of sentences, and how the epistemic
states satisfying Oα correspond to what are called stable expansions of α.

So the account of default reasoning from the previous chapter depends crucially on
which epistemic states are considered to only-know α. It turns out that when the sentence
α is not objective, there are some reasonable alternatives to what it means to only-know it.
In this chapter, we will consider some variants. We will propose a logic with three only-
knowing operators: OM, OK, and OR. The first of these is a relabelling of the O operator from
previous chapters, while the other two will be new. The three operators agree completely
on what it means to only-know an objective sentence, but give different results on the
non-objective sentences, and therefore lead to different forms of default reasoning.

The three subscripts on the O operator are taken from the names of three researchers
whose proposals inspired the definitions: Robert Moore, Kurt Konolige, and Ray Reiter.
All three worked on default reasoning in terms of the sets of objective sentences believed
given certain defaults, which in this chapter we will call extensions of the KB: the Moore
extensions are the objective parts of stable expansions from the previous chapter; the Kono-
lige extensions (corresponding to OK) and the Reiter extensions (corresponding to OR) will
be the new ones.

It will be convenient in what follows to restrict knowledge bases to what are called
closed default theories. So unless stated otherwise, KB = F ∪ D, where F is an arbitrary
finite set of objective sentences, and D is a finite set of closed defaults, sentences of the
form (Kφ ∧ Mψ ⊃ χ). Three things to notice: First, we are using Kφ instead of φ as
the first part of the default (called the prerequisite). This already came up in the previous
chapter. This formulation does the job in many cases, but does admittedly have drawbacks
when it comes to drawing default conclusions from disjunctions or existentials. Second, we
are using Mψ instead of ¬K¬ψ as the second part of the default (called the justification).
For now, this M can be thought as an abbreviation for¬K¬. Finally, we are not considering
defaults that have quantifiers on the outside of the belief operators, as we did in the previous
chapter. These will be taken up at the end in Section 11.5.
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11.1 Varieties of only-knowing

To introduce the three forms of only-knowing, we first define the three forms of extensions
from the literature. The Moore extensions derive directly from stable expansions:

Definition 11.1.1: A set E of objective sentences is a Moore extension of a closed default
theory 〈F, D〉 iff E is the objective subset of a stable expansion of (F ∪ D).

As noted in the previous chapter, AEL sometimes allows too many stable expansions.
Consider, for example, γ = (¬K p ∨ p). This has two stable expansions since there are
two epistemic states that satisfy Oγ : e0 = W and ep = {w : w |H p}. It is easy to see
why e0 should satisfy Oγ . First note that K(¬K p ∨ p) is valid in OL (and in KL), so γ
is believed in every epistemic state. So e0 believes γ and clearly e0 knows nothing else.
But why should ep satisfy Oγ ? The answer goes back to Theorem 8.3.8 of Chapter 8:
if all you know is something, then disjoining a false subjective sentence does not affect
anything. Since ep |H Op and ep |H K p, we have that ep |H O(p ∨ ¬K p).

But there is another way of looking at it. We can think of only-knowing a sentence as
requiring that everything that is known be recoverable from that sentence alone. But as we
said, the γ above is believed in every state. So if this is all that is known, there is no reason
to believe p. Consequently, ep must know something more than just γ .

This is the basis for the definition of OK in the next section. In terms of the objective
sentences believed, we have the following definition:

Definition 11.1.2: A set E of objective sentences is a Konolige extension of a closed
default theory 〈F, D〉 iff E is a minimal Moore extension of 〈F, D〉.

So the γ above has two Moore extensions but only one Konolige extension.1 What
we will get in terms of only-knowing in the logic is that ep |H OMγ but ep 6|H OKγ . More
generally, we will have that |6= (OMγ ⊃ ¬K p), but |H (OKγ ⊃ ¬K p).

Turning now to OR, we first need to consider how Reiter extensions are defined:

Definition 11.1.3: Let 〈F, D〉 be a closed default theory and let S be a set of objective
sentences. 0(S) is defined to be the least set of objective sentences such that

1. F ⊆ 0(S);
2. if 0(S) |H φ then φ ∈ 0(S);
3. if (Kφ ∧ Mψ ⊃ χ) ∈ D, φ ∈ 0(S), and ¬ψ /∈ S then χ ∈ 0(S).

A set E of objective sentences is a Reiter extension of 〈F, D〉 iff 0(E) = E .

1 Konolige used the term “moderately grounded stable expansion.”
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This definition is quite different from the ones based on stable expansions, and so
relating Reiter extensions to only-knowing is somewhat more involved. In particular, it
will push us to treat the M operator as different from ¬K¬. To see why, consider the
default theory where F is empty and D contains the following two defaults:

K p ∧ MTRUE ⊃ p
KTRUE ∧ M¬p ⊃ p.

If M means ¬K¬, we have that |H δ ≡ p and so it will turn out that |H OMδ ≡ OM p and
|H OKδ ≡ OK p. So ep satisfies both OMδ and OKδ (and is the only epistemic state to do so).

However, it is not hard to see that this default theory has no Reiter extensions. The first
default does not sanction p for the same reason (¬K p ∨ p) does not sanction p (as seen
above); the second default is nonsensical, since it says that we can conclude p when ¬p is
consistent with what is believed. In Reiter’s logic, defaults are not sentences,2 and so we
cannot somehow combine the K p from the first default with the M¬p from the second to
derive p. This means that we will need to give up on the duality of K and M within the
context of the OR operator.

11.2 The logic O3L

Putting all the pieces into place, we define a new logic O3L that is similar to OL, but with
separate K and M operators, and with the O operator replaced by three operators, OM, OK,
and OR. The semantics of O3L is like that of OL except that two epistemic states are used:
one to interpret K and one to interpret M (since, as we noted, there will be contexts where
the two operators are not duals).

Definition 11.2.1: A sentence α is true wrt epistemic state e and world w, which we write
as e, w |H α, according to whether or not e, e, w |H α, defined as follows:

1. e1, e2, w |H P(t1, . . . , tk) iff w[P(n1, . . . , nk)] = 1, where ni = w(ti );

2. e1, e2, w |H (n1 = n2) iff w(t1) is the same name as w(t2);

3. e1, e2, w |H ¬α iff e1, e2, w 6|H α;

4. e1, e2, w |H (α ∧ β) iff e1, e2, w |H α and e1, e2, w |H β;

5. e1, e2, w |H ∀x .α iff e1, e2, w |H α
x
n for every standard name n;

6. e1, e2, w |H Kα iff e1, e2, w
′
|H α for every w′ ∈ e1;

7. e1, e2, w |H Mα iff e1, e2, w
′
|H α for some w′ ∈ e2.

2 In Reiter’s original formulation, there were no belief operators, and defaults were merely triples 〈φ,ψ, χ〉.
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8. e1, e2, w |H OMα iff for every w′ ∈ W, e1, e2, w
′
|H α iff w′ ∈ e1.

9. e1, e2, w |H OKα iff for every e′ such that e1 ⊆ e′, e′, e′, w |H OMα iff e′ = e1;

10. e1, e2, w |H ORα iff for every e′ such that e1 ⊆ e′, e′, e2, w |H OMα iff e′ = e1;

We say that a sentence α is valid in O3L (which we write as |H α) iff e, w |H α for every e
and w. If α is objective, we often omit the e and write w |H α; if α is subjective, we write
e |H α or perhaps e1, e2 |H α.

Observe that when e1= e2 in the above, K and M behave like the usual duals. In fact, the
only time they do not behave like duals is within the scope of OR:

Theorem 11.2.2: A sentence α is valid in O3L iff α′ is valid, where α′ is α with all
occurrences of M outside of an OR operator replaced by ¬K¬.

Proof: The only place we can get e1 6= e2 is within the OR operator.

This means that without OK and OR operators, O3L behaves exactly like OL:

Theorem 11.2.3: A sentence α not mentioning OK and OR is valid in O3L iff α′ is valid in
OL, where α′ is α with all occurrences of M replaced by ¬K¬ and OM by O.

Proof: Without OK and OR operators, only the first epistemic state e1 is ever used.

Note also that the definition of OK and OR differ only in one small detail: where OK uses the
e′ for its second epistemic argument (thus keeping the two epistemic states identical), OR

uses the given e2.
Before turning to defaults, let us consider the relationships among these three forms of

only-knowing. It is easy to see that all three coincide on objective sentences.

Theorem 11.2.4: If φ is objective, then |H OMφ ≡ OKφ and |H OKφ ≡ ORφ.

This is so because there is a unique e such that e |H OMφ, namely e = {w | w |H φ}, and
the second epistemic state is irrelevant for objective sentences.

From the definition of the O-operators it also follows immediately that OM is the most
basic of the three in the following sense:

Theorem 11.2.5: For all sentences α, |H (OKα ⊃ OMα) and |H (ORα ⊃ OMα).
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The converse, however, fails in both cases. For suppose that γ is (¬K p∨p) as before. Then
ep |H OMγ, but ep |6= OKγ because e0, e0 |H OMγ , and ep |6= ORγ because e0, ep |H OMγ .

Looking at the definition of OM and OK, it is not difficult to derive necessary and suffi-
cient conditions for when the two modalities coincide:

Lemma 11.2.6: For any epistemic state e and basic sentence α, e |H OKα iff e |H OMα

and for all e′ ) e, e′ |6= OMα.

Theorem 11.2.7: |H OMα ≡ OKα iff for all e, if e |H OMα then for all e′ ) e, e′ |6= OMα.

As a special case of this theorem we get that OM and OK agree on α if there is a unique
epistemic state that only-knows it:

Corollary 11.2.8: Suppose α is definite. Then |H OMα ≡ OKα.

Theorem 11.2.7 fails when we use OR instead of OK. Indeed, it does not even hold in the
case where there is a unique e such that e |H OMα, as the following example demonstrates.
Let δ be the two defaults from before

(¬K p ∨ ¬MTRUE ∨ p) ∧ (¬KTRUE ∨ ¬M¬p ∨ p).

Since OM treats K and M as duals, OMδ is logically equivalent to OM p, and so ep is the only
epistemic state e such that e |H OMδ. But OR treats K and M differently and in particular,
ep |6= ORδ because e0, ep |H OMδ.

However, one interesting property is that OR does reduce to OK when K is the only
modality in α, and to OM when M is the only modality:3

Theorem 11.2.9: For any K-basic sentence α (that is, any sentence where K is the only
modality), |H ORα ≡ OKα, and for any M-basic sentence α (that is, any sentence where M
is the only modality), |H ORα ≡ OMα.

Proof: For the first part, recall that OK and OR differ only in one place, which concerns
the interpretation of M. A simple induction on α shows that for any e1, e2, e3, w, and a
K-basic α, e1, e2, w |H α iff e1, e3, w |H α. The equivalence of ORα and OKα then follows
immediately from the definitions of the two operators. Turning now to the second part,
the only-if direction is immediate because of Theorem 11.2.5. For the converse, suppose
e |H OMα. Then it suffices to show that for all e′ ) e, e′, e |6= OMα. As α does not mention

3 It is a happy coincidence that the first letters of the two names align with the two basic modalities.
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K, a simple induction shows that for any e1, e2, e3, w, e1, e2, w |H α iff e3, e2, w |H α.
Now let w ∈ e′ − e. By assumption, e, e, w |6= α. Therefore, e′, e, w |6= α, from which
e′, e |6= OMα follows.

As a final general property of O3L, recall Corollary 10.4.6 of the previous chapter. It
says that for any propositional α, there is a finite set of objective sentences 8M such that

|H OMα ≡
∨
{OMφ | φ ∈ 8M }.

A similar argument can be used to show analogous properties for OK and OR:

Theorem 11.2.10: For any propositional α, there are finite sets of objective sentences 8K

and 8R such that

1. |H OKα ≡
∨
{OKφ | φ ∈ 8K };

2. |H ORα ≡
∨
{ORφ | φ ∈ 8R}.

(The proof is left as an exercise.) Using Theorem 11.2.5, it also follows that 8K ⊆ 8M

and 8R ⊆ 8M . This means that, in the propositional case, only-knowing an arbitrary
basic sentence α is reducible to a sentence without nested modalities, not only for OM, but
also for OK and OR. None of these reductions hold in the full first-order case, however, as a
consequence of Theorem 10.5.5 of the previous chapter.

11.3 Handling closed defaults

The logic O3L defined above is quite general, and is not restricted to knowledge bases that
are closed default theories. What we will show in this section, however, is that under this
restriction, there is a one-to-one correspondence between the three forms of extensions
defined above and the three forms of only-knowing in O3L.

As we will see, this is fairly straightforward to prove in the case of Moore and Konolige
extensions, but not so for Reiter. To prepare for that, we first need to look at Reiter exten-
sions more closely (see Definition 11.1.3). We begin with an alternate characterization due
to Reiter that avoids the use of the operator 0:

Theorem 11.3.1: [Reiter] Let E be a set of objective sentences and 〈F, D〉 be a closed
default theory. Let

1. E0 = F;

2. Ei+1 = {χ | Ei |H χ} ∪ {χ | (Kφ ∧ Mψ ⊃ χ) ∈ D, φ ∈ Ei , and ¬ψ /∈ E}.

Then E is a Reiter extension of 〈F, D〉 iff E =
⋃
∞

i=0 Ei .
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Note that the theorem is not a recipe to construct extensions as E itself is mentioned in the
definition of Ei+1. We remark that for finite default theories, E = Ek for some k ≥ 0.

Next we define a semantic version of Reiter extensions in terms of epistemic states:

Definition 11.3.2: Let 〈F, D〉 be a closed default theory and let e be any set of worlds.
1(e) is defined to be the largest set of worlds such that

1. 1(e) ⊆ <[[F]]
2. for all Kφ ∧ Mψ ⊃ χ ∈ D, if 1(e) |H Kφ and e |H Mψ then 1(e) |H Kχ .

e ia called an e-extension of 〈F, D〉 if e = 1(e).

Eventually we will use this definition to prove the exact correspondence between Re-
iter extensions and OR, but we first need to establish that e-extensions and Reiter extensions
indeed amount to the same thing. We begin by establishing a semantic version of Theo-
rem 11.3.1 for e-extensions:

Lemma 11.3.3: Let e be a set worlds and 〈F, D〉 be a closed default theory. Let

1. e0
= <[[F]];

2. ei+1
= ei
∩ {w | for all Kφ ∧ Mψ ⊃ χ ∈ D, if ei

|H Kφ and e |H Mψ then w |H χ}.

Then e is an e-extension of 〈F, D〉 iff e =
⋂
∞

i=0 ei .

Proof: Let e∗ =
⋂
∞

i=0 ei . Note that e∗ ⊆ <[[F]] and for Kφ ∧ Mψ ⊃ χ ∈ D, if
e∗ |H Kφ and e |H Mψ then e∗ |H Kχ . By the maximality of of 1(e) it follows that
e∗ ⊆ 1(e).

To prove the only-if direction, let e = 1(e). We show that e ⊆ ei for all i , from which
e ⊆ e∗ follows. The proof is by induction on i . Clearly, e ⊆ e0 by the definition of 1(e).
Now suppose e ⊆ ei and let w ∈ e. We need to show that w ∈ ei+1. Since w ∈ ei by
induction, it suffices to show that for any Kφ ∧ Mψ ⊃ χ ∈ D, if ei

|H Kφ and e |H Mψ
then w |H χ . Let ei

|H Kφ and e |H Mψ . Since e ⊆ ei by assumption, we have e |H Kφ.
Since e = 1(e) we thus have e |H Kχ and, therefore, w |H χ .

Conversely, let e = e∗. We show that 1(e) ⊆ ei for all i , from which 1(e) ⊆ e∗(= e)
follows. Since we already have that e∗ ⊆ 1(e), we are done. The proof is by induction
on i . Clearly, 1(e) ⊆ e0. Suppose 1(e) ⊆ ei and let w ∈ 1(e). We need to show that
w ∈ ei+1. By induction w ∈ ei . It suffices to show for any Kφ ∧ Mψ ⊃ χ ∈ D, if
ei
|H Kφ and e |H Mψ then w |H χ . Let ei

|H Kφ and e |H Mψ . Since 1(e) ⊆ ei by
assumption, 1(e) |H Kφ. By the definition of 1(e), we then have 1(e) |H Kχ . Since
w ∈ 1(e), w |H χ follows.
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Note that for a given default theory 〈F, D〉, the Ei and ei do not line up exactly, that is,
<[[Ei ]]may not be the same as ei . A simple example is F = {p∧q} and D = {K p∧Mr ⊃
r}. While <[[E0]] = e0, <[[E1]] = {w |w |H p ∧ q} 6= e1

= {w |w |H p ∧ q ∧ r}. This
is because the beliefs of e0 are closed under logical entailment while E0 is not. However,
closure unter entailment is always achieved at higher levels in Reiter’s case. The following
two lemmas make this precise.

Lemma 11.3.4: Let 〈F, D〉 be a default theory and E a set of objective sentences such
that E = {φ | E |H φ} and e = <[[E]]. Then ei

⊆ <[[Ei ]] for all i .

Proof: The proof is by induction on i . Clearly e0
⊆ <[[E0]]. Suppose ei

⊆ <[[Ei ]].
We need to show that ei+1

⊆ <[[Ei+1]]. Let w ∈ ei+1. Recall that Ei+1 = {φ | Ei |H

φ} ∪ {χ | Kφ ∧ Mψ ⊃ χ ∈ D, φ ∈ Ei , and ψ /∈ E}. Since, by assumption, ei
⊆ <[[Ei ]]

and w ∈ ei , w |H {φ | Ei |H φ}. Suppose Kφ ∧ Mψ ⊃ χ ∈ D such that φ ∈ Ei and
¬ψ /∈ E . Then ei

|H Kφ and e |H Mψ . Hence, by the definition of ei+1, w |H χ , from
which w ∈ <[[Ei+1]] follows.

While the converse of the lemma does not hold, we do have the following:

Lemma 11.3.5: Let 〈F, D〉, E, and e be as in the lemma above.
Then <[[Ei+2]] ⊆ ei for all i .

Proof: The proof is by induction on i . Since e0
= <[[F]] and E2 ⊇ {φ | F |H φ},

<[[E2]] ⊆ e0. Suppose <[[Ei+2]] ⊆ ei and let w ∈ <[[Ei+3]]. We need to show that
w ∈ ei+1. By the definition of Ei+3, w |H {φ | Ei+2 |H φ}. Thus w ∈ <[[Ei+2]]

and since <[[Ei+2]] ⊆ ei by assumption, w ∈ ei . We are left to show that w ∈ e∗ =
{w | for all Kφ ∧ Mψ ⊃ χ ∈ D, if ei

|H Kφ and e |H Mψ then w |H χ}. So suppose ei
|H

Kφ and e |H Mψ for Kφ ∧ Mψ ⊃ χ ∈ D. We need to show that w |H χ . Since
<[[Ei+2]] ⊆ ei by assumption, <[[Ei+2]] |H Kφ, that is, φ ∈ {φ | Ei+2 |H φ}, and since
{φ | Ei+2 |H φ} ⊆ Ei+3, φ ∈ Ei+3. Since {φ | E |H φ} = E by assumption and e |H Mψ ,
¬ψ /∈ E . Thus χ ∈ Ei+3, from which w |H χ follows.

With the previous two lemmas in hand, we can now proceed to showing that e-extensions
are indeed a correct semantic account of Reiter extensions.

Lemma 11.3.6: Let 〈F, D〉 be a finite closed default theory, E = {φ | E |H φ} and
e = <[[E]]. Then E = 0(E) iff e = 1(e).
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Proof: To prove the only-if direction, let E = 0(E). By Theorem 11.3.1, E =
⋃
∞

i=0 Ei .
Since the default theory is finite, there is a k such that for all j ≥ k, E = E j . Now consider
e∗ =

⋂
∞

i=0 ei . Again, for some l and all j ≥ l, e∗ = e j . Wlog. let k ≥ l. Then we have
e = <[[E]] = <[[Ek]] = <[[Ek+2]] = ek+2 by Lemma 11.3.4 and 11.3.5. Hence e∗ = e
and, by Theorem 11.3.3, e = 1(e).

Conversely, let e = 1(e). By Theorem 11.3.3, e =
⋂
∞

i=0 ei . Now consider E∗ =⋃
∞

i=0 Ei . As before, for some l, e = el and for some k, E∗ = Ek with k ≥ l. By
Lemma 11.3.4 and 11.3.5, <[[Ek+2]] = ek+2. Since e = ek+2, <[[Ek+2]] = <[[E]]. Since
{φ | E∗ |H φ} = E∗ = {φ | Ek+2 |H φ} and {φ | E |H φ} = E , E∗ = E . Hence E = 0(E)
follows by Theorem 11.3.1.

The main theorem of this chapter is the close correpondence between only-knowing as
we have defined it and the three forms of extensions we have defined:

Theorem 11.3.7: Let α =
∧
(F ∪ D), where 〈F, D〉 is a closed default theory. Then

1. E is a Moore extension of 〈F, D〉 iff
there is an e such that e |H OMα and E is the objective belief set of e;

2. E is a Konolige extension of 〈F, D〉 iff
there is an e such that e |H OKα and E is the objective belief set of e;

3. E is a Reiter extension of 〈F, D〉 iff
there is an e such that e |H ORα and E is the objective belief set of e;

Proof:
1. Since Moore extensions uniquely determine stable expansions in the case of closed de-

fault theories, Part 1 of the theorem follows immediately from Theorem 10.3.9 together
with Theorem 11.2.2.

2. Let E be a Konolige extension. Then E is a minimal Moore extension. By Part 1, for
some e, e |H OMα and E is the objective belief set of e. Since E is minimal, there
cannot be an epistemic state e′ such that e ( e′ and e′ |H OMα.
Conversely, if e |H OKα, then the objective belief set of e is a Moore extension by
Theorem 11.2.5 and Part 1. In addition, it is clearly minimal as there is no proper
superset e′ of e such that e′ |H OMα.

3. For the only-if direction, let E be a Reiter extension of α. It suffices to show that for
e = <[[E]], e |H ORα, that is, e |H OMα and for all e′ ) e, e′, e |6= OMα. We first
prove that e |H OMα. By Theorem 11.3.6, e = 1(e). Given the definition of 1,
clearly e |H Kα. Now let w 6∈ e. Since e is a fixpoint of 1, e ∪ {w} |6= K(

∧
F)

or for some default, e ∪ {w}, e |6= Kφ ∧ Mψ ⊃ Kχ . Since F, φ, ψ.χ are objective,
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it follows that either w |6= F or e, w |6= Kφ ∧ Mψ ⊃ χ . Hence e, w |6= α. Now
let e′ ) e and suppose e′, e |H OMα. Then clearly e′ ⊆ <[[F]]. Also for any default,
e′, e |H K(Kφ ∧ Mψ ⊃ χ) and thus e′, e |H Kφ ∧ Mψ ⊃ Kχ). Since, by definition,
1(e) is maximal, we then have e′ ⊆ 1(e), contradicting the assumption that e = 1(e).
Conversely, let e |H ORα and let E be the objective belief set of e. By the definition of
OR we have that for all e′ ) e, e′, e |6= OMα. To show that E is a Reiter extension, it
suffices to show that 1(e) = e by Theorem 11.3.6. Suppose, to the contrary, that there
is an e′ ) e such that e′, e |H K(

∧
F) and for all defaults, e′, e |H Kφ ∧ Mψ ⊃ Kχ .

Let e′ be the largest superset of e with that property. Then e′, e |H Kα. Also, for any
w 6∈ e′, either w |6= F or e′, e, w |6= Kφ ∧ Mψ ⊃ χ for some default. But then
e′, e |H OMα, contradiction.

Corollary 11.3.8: Let KB be the encoding of a finite closed default theory and ψ be an
objective sentence. Then ψ is an element of every Moore / Konolige / Reiter extension of
KB iff Kψ is logically entailed by OMKB / OKKB / ORKB.

This shows that models of only-knowing are in 1–1 correspondence with the syntacti-
cally defined extensions of default theories, for Moore, Konolige, and Reiter. Many prop-
erties of closed default theories now follow directly from general properties of belief. For
example, the fact that every Reiter extension is also a Moore extension follows from our
Theorem 11.2.5. The fact that the converse does not hold in general, but does hold in the
case of prerequisite-free default theories (that is, ones where the defaults are of the form
KTRUE ∧ Mψ ⊃ χ ) follows from Theorem 11.2.9.

What we have, in other words, is a single logic with a well-defined notion of truth
where it is possible to compare what is believed in the presence of defaults according to
Moore, Konolige, and Reiter. Unfortunately, this does not tell us which treatment is the
best one, or indeed if any of them are any good. Rather, it appears that each of the three
proposals has faults and limitations. (For Reiter’s account, perhaps the only problem is its
handling of open defaults, discussed in Section 11.5.)

11.4 An axiomatic account

Given that O3L is a classical truth-theoretic logic, we can consider looking for a set of
axioms and rules of inference that will generate all and only the valid sentences of the
logic. These proof-theoretic characterizations sometimes provide additional insight into
the behaviour of the logic.

An axiom system will also allow us to consider step-by-step monotonic derivations for
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skeptical default reasoning. Instead of starting with a KB made up of facts and defaults and
looking for some nonmonotonic operations that will lead to a conclusion like Fly(tweety),
we can start with OKB as a given assumption, and then look for a sequence of classical
monotonic steps that will allow us to conclude KFly(tweety).

As in previous sections, we will only consider closed default theories. Specifically, we
will develop an axiomatic proof theory for O3L under the following restrictions:

1. we consider the propositional subset of the language only;

2. we exclude O operators within the scope of a K, M, or O operator;

3. we exclude K and M operators within the scope of a K or M operator.

(We will comment on the first of these restrictions in Section 11.5).
The axiomatization of O3L below builds on the one for OL of Chapter 9. All we will

really need are some new axioms and rules of inference to handle M, OK and OR.

11.4.1 Consistency of belief

It easy to characterize the M operator, since we can reduce it to the K operator:

Axiom:

Mα ≡ ¬K¬α.

11.4.2 Konolige

To characterize OK we can make use of Theorem 11.2.4 and Theorem 11.2.10 to relate OK

to OM. For any propositional basic α, OKα is equivalent to a disjunction of OMφi sentences,
where the φi are the ones that are “minimal.” This can be captured as follows:

Axiom:

(OKα ⊃ OMα)

Rules of Inference:

From (OMψ ⊃ OMα), (OMφ ⊃ OMα), (OMψ ⊃ Kφ), and (OMφ ⊃ ¬Kψ),
infer (Kψ ⊃ ¬OKα).

From (OMα ⊃ OMψ ∨
∨

OMφi ), (OMψ ⊃ OMα), and (OMψ ⊃
∧
¬Kφi ),

infer (OMψ ⊃ OKα).

The first rule of inference deals with the case where the ψ is not minimal (there is a com-
peting φ that is weaker: only-knowing φ does not require knowing ψ) and so knowing it
precludes OKα; the second rule deals with the case where the ψ is one of the minimal dis-
juncts (only-knowing ψ precludes knowing any of the competitors), where the conclusion
is the opposite.
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11.4.3 Reiter

For the OR operator, we first show how we can eliminate M operators, and then use Theo-
rem 11.2.9 to reduce OR to OK. To eliminate M operators, we use the following:

Theorem 11.4.1: Let α be any sentence of O3L subject to the restrictions noted. For any
epistemic state e, let α′ be like α but with a subformula Mφ replaced by TRUE or FALSE
according to whether or not e |H Mφ. Then e |H ORα iff e |H ORα

′.

Proof: We can show by induction on α that e′, e |H α iff e′, e |H α′ for any epistemic
state e′. Consequently, e |H ORα iff e |H ORα

′.

What this says is that for Reiter’s default logic, we can systematically replace every Mφ
in α by either TRUE or by FALSE and then use the Konolige version of only-knowing. We
can duplicate this reduction with the following axioms:

Axioms:

(ORα ≡ OKα), when α has no M operators.

Mφ ⊃ (ORα ≡ ORα
′), where α′ is α with Mφ replaced by TRUE.

¬Mφ ⊃ (ORα ≡ ORα
′), where α′ is α with Mφ replaced by FALSE.

This then completes the proof theory for O3L. Putting all the pieces together, we get the
following:

Theorem 11.4.2: Let α be any sentence of O3L subject to the restrictions noted. Then α
is valid iff it is derivable according to all the above axioms and rules of inference.

To give a simple example of how this proof theory can be used, consider how to derive
that Tweety flies in Reiter’s default logic. In this case, we want to derive

ORα ⊃ KFly(tweety)

where α is (Bird(tweety) ∧ [KBird(tweety) ∧ MFly(tweety) ⊃ Fly(tweety)]). (Note the
use of the closed default.) This can be done in two parts: first derive

ORα ∧ MFly(tweety) ⊃ KFly(tweety),

then derive

ORα ∧ ¬MFly(tweety) ⊃ MFly(tweety),

and finally use propositional logic to combine the two parts to get the desired conclusion.
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We sketch the two parts and leave the details as an exercise. For the first part, the derivation
is as follows: we start with the antecedent and then (using the axioms for OR) get OKα

′

where α′ is (Bird(tweety) ∧ [KBird(tweety) ⊃ Fly(tweety)]), then (using the axiom for
OK) get OMα

′, and then finally (using the properties of OM as in the previous chapter) get
the consequent KFly(tweety). For the second part, the derivation is as follows: we start
with the antecedent and then (using the axioms for OR) get OKBird(tweety), then (using the
axiom for OK) get OMBird(tweety), then (using the properties of OM and the axiom for M)
get the consequent MFly(tweety).

11.5 The first-order case

While the proof theory above only works for the propositional subset of the language, and
therefore for closed defaults only, the semantic theory allows quantified defaults in the case
of both OM and OK. For example, we can show that |H (OKα ⊃ KFly(#1)) where α is

Bird(#1) ∧ ∀x .KBird(x) ∧ MFly(x) ⊃ Fly(x)

and similarly with OR. (See the exercises.) However, the way these quantified defaults are
handled is not the same way Reiter suggests handling open defaults. The quantified default
here would not work for an arbitrary constant like tweety, since the default is restricted to
known birds and the identity of the constant need not be known. But for Reiter, an open
default is understood as standing for all its ground instances. This leads to the desired
conclusion for Tweety, but it has some curious anomalies.

For example, let a, b, c be constants and f a function symbol. If the only mention of
a and b in a KB is the sentence (Bird(a)∨Bird(b)), then Reiter’s logic would not sanction
deriving (Fly(a) ∨ Fly(b)), since neither a nor b are known to be birds. However, if the
KB also contains ( f (c) = a ∨ f (c) = b), then Reiter’s treatment of open defaults would
sanction (Fly(a)∨Fly(b)). So just the fact of giving the unknown bird a name (which need
not even be a constant) is enough to cause the system to believe in its flying ability.

But whatever the advantages or disdavantages of our way of handling quantified de-
faults, it is unlikely that there are axioms and rules of inference that would work for them.
Consider the following example. Let D consist of a single quantified default of the sim-
plest sort, normal and prerequisite-free: ∀x . M¬Ab(x) ⊃ ¬Ab(x). Let F consist of the
following objective facts:

∀x . R(x, x)
∀x, y, z. R(x, y) ∧ R(y, z) ⊃ R(x, z)
∃x . Ab(x)
∀x . Ab(x) ⊃ ∃y. R(x, y) ∧ Ab(y)
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This default theory has no Moore extensions: |H ¬OM(F ∧ D). Consequently, it has no
Konolige or Reiter extensions either. Intuitively, what is happening here is that D is in-
sisting that the extension of Ab be minimal, whereas F is insisting that it be infinite (using
an irreflexive, transitive relation R). No belief state e can satisfy both. It is unlikely that
there are axioms and rules of inference that would lead to this conclusion, however, as they
would need to confirm the impossibility of a minimal infinite set. It is interesting to note
that in Reiter’s treatment of open defaults, this theory would have a single extension: a
theory that insists that there are infinitely many Ab individuals, but that contains ¬Ab(t)
for every term t.

11.6 Bibliographic notes

Moore’s autoepistemic logic appeared in [148, 147]. The idea of stable sets goes back
to Stalnaker and appeared in a note already in 1980, but was published only much later
in [180]. There have been a number of proposals to syntactically characterize the stable
expansions of a given set of assumptions, for example [176, 178, 136, 151, 185]. Ours,
which we presented in the previous chapter, differs perhaps in that it yields a rather simple
algorithm (Figure 10.1). Corollary 10.4.6 was independently obtained by Waaler [185]
(see also [174]).

Konolige extensions were first introduced in [77]. That paper was the first in a line
of work, including [126, 150, 135, 183], that investigated the connections between AEL
and Reiter’s default logic [159] by translating Reiter defaults into AEL. They all had in
common that they required some modification of AEL in order to arrive at an exact corre-
spondence. Gottlob [55] later established that a faithful translation from default logic into
standard AEL is possible, but that it cannot be done in a modular way, that is, by translating
every default separately.

Moore’s AEL was inspired by earlier work on nonmonotonic modal logic by McDer-
mott and Doyle [142, 143], which was later thoroughly investigated by Marek et al. [137].
Nonmonotonic modal logic generalizes AEL essentially by also considering modal logics
other than K45 as the base logic. In [101] we showed that it is possible to reconstruct the
different versions of nonmonotonic modal logic in terms of only-knowing with a possible-
world semantics tailored to the requirements of the respective base modal logics. We did
not include this flavour of only-knowing in this chapter, as it is technically quite challeng-
ing and would have distracted too much from the main points we have tried to convey.

It is perhaps interesting to note that much of the work on nonmonotonic reasoning
was carried out in a propositional setting, or at least did not consider quantifying-in. In
fact, as far as we know only Konolige [78, 79] and Lifschitz [123] address nonmonotonic
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reasoning with quantifying-in apart from us. While there clearly are similarities, there are
also significant differences, in particular, regarding the use of names. For example, while
Lifschitz requires there to be a name for every individual, the name need not be unique.
Moreover, there is no restriction on the cardinality of the domain. Konolige even allows
for individuals which have no name at all. While certainly interesting, a detailed analysis
of what these differences amount to remains largely open.

11.7 Where do we go from here?

What we have attempted to show is that it is possible to consider default reasoning from
the standpoint of truth. We can look at a model of a default theory (a belief state e and a
world state w) and ask what is true, what is believed, what is all that is believed. Default
reasoning, in other words, does not need to be limited to a proof-theoretic analysis.

The exercise also reveals interesting connections among the versions of default reason-
ing proposed by Moore, Konolige, and Reiter. By formulating these three accounts within
a monotonic logic of belief, we also get sentence-by-sentence derivations that correspond
precisely to each form of default reasoning. The whole machinery of fixpoints, stable sets,
and so on is still there in the background, of course, but we are no longer forced to use it.

But many questions remain. The rules of inference for multiple Konolige extensions
are quite clumsy and should be reformulated. The use of quantified defaults and its con-
nection to open defaults needs to be further investigated. Other forms of default reasoning,
based on circumscription and nomonotonic modal systems, for instance, should be incor-
porated into some sort of grand unified theory.

11.8 Exercises

The exercises concerning derivations below are mainly questions about using the OK and
OR operators. Consequently, any valid sentence that does not mention these two operators
can be assumed to be derivable without any further justification.

1. Prove that |H OK(Bird(#1) ∧ ∀x .KBird(x) ∧ MFly(x) ⊃ Fly(x)) ⊃ KFly(#1).
2. Prove that |H OR(Bird(#1) ∧ ∀x .KBird(x) ∧ MFly(x) ⊃ Fly(x)) ⊃ KFly(#1).
3. Prove that the following is derivable: OK(¬K p ∨ p) ⊃ ¬K p.
4. Prove that the following is derivable: ¬OR(M p ⊃ ¬p).
5. Complete the derivation sketched in the text that Tweety flies according to Reiter’s

default logic with closed defaults.
6. Prove Theorem 11.2.10.
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12 Tractable Representations

12.1 Introduction

So far in our considerations, the “symbol level” and symbolic representations of knowledge
have played a relatively minor role. In as much as we cared at all about representations,
we focused on results like the Representation Theorem of Chapter 7, which deals with the
mere existence of finite representations, but more or less neglects the computational cost of
manipulating them. There was one exception, however: we were glad to see that ASK and
TELL could be characterized completely using first-order reasoning alone, even though
the interaction language is modal. While we did not say so explicitly, one motivation
for avoiding modal reasoning is that it is less well understood than non-modal reasoning.
However, this is only partly good news, since it is well known that first-order reasoning
itself is already undecidable. In particular, any faithful implementation of ASK and TELL
is bound to run forever on certain inputs. While this may be acceptable under certain
circumstances such as proving mathematical theorems, it clearly is not when it comes to
things like commonsense reasoning, the main motivation behind our work.

If we look at the problem in terms of the properties of belief, then one reason for
the computational difficulty is that beliefs are required to be closed under logical implica-
tion: what is believed is what follows logically from the knowledge base. Even when a
knowledge base is empty, the agent must still believe every valid sentence of the logic. As
already mentioned in Chapter 4, this assumption is known as logical omniscience, which
seems clearly unacceptable for real resource-bounded agents.

Overall, there are two major ways of dealing with this intractability:

1. restrict the kinds of knowledge that can be represented, or

2. change the kinds of reasoning that needs to take place.

In this chapter, we consider the first alternative, limiting the expressiveness of the repre-
sentation language used for knowledge bases or queries or both. We will see that if we
limit the sorts of knowledge in a knowledge base to certain fragments of L, calculating
what is logically entailed can then be tractable or at least decidable. In the next chapter, we
will consider the second option above, where we consider the reasoning needed for a less
omniscient and less computationally demanding model of belief.

In the following, when we refer to reasoning or query answering we mean it in the
sense of determining whether or not KB |H φ, (or equivalently, whether or not the sentence
(KB ⊃ φ) is valid), where KB and φ are expressed in fragments of L. As before KB should
be thought of as the knowledge base (a finite set of sentences understood conjunctively)
and φ as the query. (We put all epistemic operators on hold for now.)
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The computational complexity of query answering can be measured in several ways.
To distinguish them, we follow the terminology common in database theory. The obvious
way is to express the complexity in terms of the size of both KB and φ. This is called
combined complexity. However, for all practical purposes, KB can be assumed to be very
big and φ very small. In fact, it makes sense to assume that the size of φ is bounded by a
small constant, and consider only the size of the KB to be relevant for the computational
effort needed to answer queries. This is called data complexity. In the following, it will be
clear in each case which one is meant.

12.2 The propositional case

We begin our investigations by considering a KB that is restricted to sentences taken from
the propositional fragment of L, which we take to be L without variables, quantifiers,
function symbols, and =. So the propositional sentences of L are those which can be
formed using primitive atoms, ¬, and ∨. Other Boolean connectives such as ∧ or ⊃ will
be used freely as their usual abbreviations.

As literals and clauses play an important role in this and the following chapters, let us
briefly recall what they stand for: a literal is either an atom or its negation; a clause is a
disjunction of literals, and we often identify a clause with the set of literals it contains. A
formula is said to be in conjunctive normal form (CNF) if it is a conjunction of clauses,
and we often identify a formula in CNF with the set of clauses it contains. Atoms are
sometimes called positive literals and their negations negative literals. The complement of
an atom p is ¬p and the complement of ¬p is p. For any literal ρ, we sometimes write ρ
to denote its complement.

It is well known that reasoning in propositional logic is decidable but intractable, even
if we restrict ourselves to formulas in CNF.

Theorem 12.2.1: Let KB and φ be propositional formulas in CNF. Then the problem of
deciding whether KB |H φ is co-NP complete.

What makes this result particularly vexing is the fact that the hardness is in the size of both
KB and φ. If we imagine the KB to be very large, then this is a real problem, any advances
in satisfiability solvers notwithstanding. If we want to use full logical reasoning, and we
want it to be tractable, we need to be bold and drastically restrict the expressiveness of
knowledge bases.
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12.2.1 Knowledge bases as consistent sets of literals

So let us consider perhaps the simplest kind of knowledge base, where a KB consists of a
finite, consistent set of propositional literals. We have the following:

Lemma 12.2.2: Let KB be a finite, consistent set of propositional literals and φ any
propositional formula. Let φ∗ be φ with every atom p replaced by TRUE if p ∈ KB and by
FALSE if ¬p ∈ KB. Then for any world w with w |H KB, w |H φ iff w |H φ∗.

Proof: The proof is by induction on φ. For the base case, let φ = p for some atom p.
If neither p nor ¬p ∈ KB, then φ∗ = φ and we are done. If p ∈ KB then w |H p and
w |H TRUE. If ¬p ∈ KB then w |6= p and w |6= FALSE. In any case, w |H p iff w |H p∗.

For the induction, we only go over the case of ¬φ. Disjunctions are handled analo-
gously. Then w |H ¬φ iff w |6= φ iff (by induction) w |6= φ∗ iff w |H ¬φ∗ iff w |H (¬φ)∗

(since ¬φ∗ = (¬φ)∗).

Theorem 12.2.3: Let KB, φ and φ∗ be as above. Then KB |H φ iff |H φ∗.

Proof: For the if direction, let |H φ∗ and suppose w |H KB. Then w |H φ∗ and, by
Lemma 12.2.2, w |H φ.

Now let KB |H φ and let w be any world. Since φ∗ mentions none of the atoms
mentioned in KB, consider w∗, which is like w except w∗ |H ρ for all ρ ∈ KB. A simple
induction shows thatw |H φ∗ iffw∗ |H φ∗. By construction,w∗ |H KB and hencew∗ |H φ.
By Lemma 12.2.2, w∗ |H φ∗ and thus w |H φ∗.

This theorem gives us a direct recipe for how to evaluate a query φ when the KB is a
consistent set of literals as above: First compute φ∗ and then decide whether φ∗ is valid.
The first part is easy and can clearly be done in polynomial time. The second part is, in
the worst case, still a co-NP complete problem, but this time only in the size of the query,
which, as mentioned above can be assumed to be small compared to the KB. In the best
case, when all atoms of φ appear in the KB, the reasoning is easy, as φ∗ is then a Boolean
combination of TRUE and FALSE, which can be evaluated in linear time.

In case we are willing to transform queries into CNF, things become even easier, and
we lose the co-NP completeness over the query.

Theorem 12.2.4: Let KB be a finite, consistent set of propositional literals and φ a
propositional sentence in CNF. Then KB |H φ iff every clause in φ contains either com-
plementary literals or an element of KB.
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Proof: Let φ =
∧

ci . Since KB |H
∧

ci iff KB |H ci for all i , it suffices to consider the
case of a single clause c.

For the only-if direction, if c contains complementary literals, then |H c and hence
KB |H c. Otherwise, suppose c contains a literal ρ from KB and let w |H KB. Then
w |H ρ and hence w |H c.

Conversely, assume KB |H c and suppose c contains no complementary literals and
none of the literals in KB. Let w be a world such that w |H ρ for all ρ ∈ KB and for all
ρ ∈ c, let w |H ρ. Note that this can always be done since either KB contains neither ρ nor
ρ or KB contains ρ. But then w |H KB and w |6= c, a contradiction.

An obvious consequence of this is that answering CNF queries is tractable:

Corollary 12.2.5: Let KB and φ be as in the theorem. Then computing whether KB |H φ
can be done in polynomial time in the size of KB and φ.

12.3 The first-order case

In the rest of this chapter, we will be concerned with reasoning using first-order sentences
of L in the KB. (We will for now, however, put function symbols aside for simplicity.)
As we will see, it is much more difficult to obtain tractability in this case as the general
undecidability of first-order logic raises the bar considerably. As noted above, even in the
case of an empty KB, asking whether KB entails φ is the same as asking whether φ is
valid, and this is already undecidable. Conversion into normal form similar to what we did
in Theorem 12.2.4 is no longer of any help here, as the conversion itself is computable, and
thus leaves the validity problem undecidable.

12.3.1 Knowledge bases in database form

There are, however, some special cases where the entailment problem is tractable. Per-
haps the simplest is a knowledge base that lists the finite extensions of a finite number of
predicates. This is precisely what is done in relational databases.

Definition 12.3.1: A KB is in database form if it consists of a finite set of sentences of
the form ∀Ex[P(Ex) ≡ Ex = En1 ∨ . . . ∨ Ex = Enk]. where Ex is a sequence of variables, and
each Eni is a sequence of standard names, both of the length of the arity of the predicate P .
Each predicate P can appear at most once in the KB.

(By (Ex = En)we mean
∧
(xi = ni ).) Note that we must use the≡ operator in these sentences

to ensure that the extension of the predicate is precisely the set of tuples of standard names
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named in the sentence.
Here is a small example of a KB in this form for the single predicate Teach, inspired

by an example in Chapter 5.
∀x, y (Teach(x, y) ≡ x = tom ∧ y = sam ∨

x = tina ∧ y = sue ∨ x = ted ∧ y = sue ∨
x = ted ∧ y = sandy).

A KB like this always provides complete knowledge about the predicates involved: the
students Sam and Sandy each have exactly one teacher whose identity is known, and Sue
has two known teachers. In the earlier example in Figure 5.1, the student Sam may or not
have had additional teachers, the student Sue either had Tom or Ted as a teacher, and the
student Sandy had a teacher whose identity was not known.

It is not hard to see that for a KB in database form, if w1 |H KB and w2 |H KB, then
w1 and w2 must agree on the predicates that appear in the KB: they both satisfy P(En) iff
Ex = En appears as one of the disjuncts on the right-hand side of the equivalence for P in the
KB. Moreover, a KB in this form is always consistent, in that there is always at least one
world w that satisfies the KB, namely the one that assigns true to P(En) iff P appears in the
KB and Ex = En appears as one of the disjuncts.

It follows from these facts that it will be easy to determine if a query φ is entailed by a
KB, provided the predicates in φ are those in the KB. We will show this by exhibiting an
evaluation method U that returns 1 when the query is entailed, and 0 otherwise. The idea
is that U will handle a query by breaking it apart until it gets to a primitive atom, which it
evaluates by looking at the equivalence for that predicate in the KB.

The only real complication concerns quantified queries, like ∀xφ. To handle these, U
will check φx

n for every name n in the KB or in the query, and one additional name. As
we will see, if all of these are true, then ∀xφ must be true as well. More precisely, for any
set of sentences 0 let H+(0) denote the set of all standard names contained in 0 plus one
new name that does not occur in 0. When the context is clear, we will sometimes write
H+ instead of H+(0).

Given a KB and a query φ, the U procedure is defined as follows:

1. U [KB, P(En)] =
{

1 if (Ex = En) appears on the right-hand side for P in the KB;
0 otherwise;

2. U [KB, n = m] = 1 if n is identical to m, and 0 otherwise;
3. U [KB,¬φ] = 1−U [KB, φ];
4. U [KB, φ ∧ ψ] = min{U [KB, φ],U [KB, ψ]};
5. U [KB,∀xφ] = minn∈H+(KB∪{φ}) U [KB, φx

n ].

First we show that U is sound and complete provided the query φ only uses the predicates
that appear in the KB.
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Theorem 12.3.2: Let KB be in database form and φ be a sentence of L that mentions only
the KB predicates. Then KB |H φ iff U [KB, φ] = 1.

Proof: First let us consider the soundness. We show by induction on the length of φ that
whenever U [KB, φ] = 1 then KB |H φ, and whenever U [KB, φ] = 0 then KB |H ¬φ.
The base case, where φ is P(En) is straightforward since U returns 1 when Ex = En appears
on the right-hand side of the equivalence for P in the KB, in which case KB |H P(En), and
U returns 0 otherwise, in which case KB |H ¬P(En).

For the induction, we only prove the case ∀xφ. (All other cases are straightforward.)
Suppose U [KB,∀xφ] = 1. Then U [KB, φx

n ] = 1 for all n ∈ H+ and hence, by induction,
KB |H φx

n for all n ∈ H+. By Corollary 2.8.11, KB |H ∀xφ. Now suppose conversely that
U [KB,∀xφ] = 0. Then for some n ∈ H+, U [KB, φx

n ] = 0 and, by induction, KB |H ¬φx
n

for some n ∈ H+. Therefore KB |H ¬∀xφ.
Finally for completeness, we need to show that if KB |H φ then U [KB, φ] = 1. So

suppose that KB |H φ. Since KB is consistent, KB 6|H ¬φ. By the above soundness,
U [KB, φ] 6= 0, and therefore U [KB, φ] = 1.

Next we show that U runs in polynomial time.

Theorem 12.3.3: Let KB and φ be as in the previous theorem. Then U [KB, φ] has
polynomial data complexity.

Proof: We prove the theorem for queries where all the universal and existential quan-
tifiers appear at the front of the formula. (The more general case is left as an exercise.)
Suppose that the size of the KB is m, and that there are q quantifiers at the front of the
query followed by a quantifier-free body whose size is b. For each atomic query, U must
scan the entire KB looking for an equality on the right-hand side of an equivalence, which
will take no more than m steps. So for q = 0, the U procedure runs in time that is no
more than bm. For each quantifier, U must consider a subquery for each element of H+,
and there will be at most (m + b + q) of them. So for q = 1, U would take no more than
(bm)(m+b+q) steps. In general, for a query with q quantifiers, U will take no more than
(bm)(m + b + q)q steps. Taking q and b to be constant, this is polynomial in m.

This is a very rough analysis of the worst-case complexity of U . (See Section 12.4 for
more on this.)

Corollary 12.3.4: Let KB be in database form and φ be a sentence of L that mentions
only the KB predicates. Then computing whether KB |H φ can be done in polynomial time
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in data complexity.

Note that this tractability result is for queries that only use the predicates that appear in
the KB. Otherwise, the U procedure would not be sound. To see this, observe that if
U [KB, Q(n)] = 0 for some Q that does not appear in the KB, then U [KB,¬Q(n)] = 1
even though KB 6|H ¬Q(n).

On the other hand, the query is free to use standard names that are not mentioned in
the KB. In fact, it is not hard to generalize U to deal with knowledge bases where some
predicates are given an infinite extension.

Let us call a formula e an ewff if it is quantifier-free and contains no predicate, func-
tion, or constant symbols. So ewffs are made out of equalities over standard names and
variables, negations and conjunctions. Examples of ewffs are the right-hand sides of the
equivalences appearing in a KB in database form. Now we extend our KB representation
to allow any ewff to appear on the right-hand side.

Definition 12.3.5: A KB is in generalized database form if it consists of a finite set of
sentences of the form ∀Ex[P(Ex) ≡ e], where e is an ewff. Again, each predicate P can
appear at most once in the KB.

This generalizes the previous definition and allows for predicates with infinite extensions,
as in sentences like ∀x,y (R(x, y) ≡ x 6= y). A simple change to U is sufficient to deal
with knowledge bases with sentences like this. First observe that U is already sound and
complete for any ewff.

Lemma 12.3.6: For any ewff sentence e and any KB, U [KB, e] = 1 iff |H e.

Proof: The proof is by a simple induction on the length of e.

To handle knowledge bases in generalized database form, we need only change the
behaviour of U on primitive atoms:

1. U [KB, P(En)] =
{

1 if ∀Ex(P(Ex) ≡ e) appears in KB, where U [KB, eEx
En ] = 1;

0 otherwise;
So with this version of U , instead of looking for (Ex = En) in the right-hand side of the
equivalence, we use U itself to check that the right-hand side of the equivalence comes out
true, appealing to Lemma 12.3.6. This evaluation of an ewff can be done in linear time.
This then leads to the following:

Corollary 12.3.7: Let KB be in generalized database form and φ be a sentence of L
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that mentions only the KB predicates. Then computing whether KB |H φ can be done in
polynomial time in data complexity.

12.3.2 Proper knowledge bases

A major limitation of the previous subsection was that the knowledge represented was
required to be complete: for every query φ (whose predicates appear in the KB), either
KB |H φ or KB |H ¬φ. It was impossible to have a query come out unknown. In this
section, we relax this restriction and consider allowing a simple form of incomplete knowl-
edge. However, as we will see, even this small move introduces significant complications.

Perhaps the simplest change to the generalized database form would be to eliminate the
strict equivalences for predicates. Instead of requiring a sentence ∀Ex(P(Ex) ≡ e), which
pins down the extension of the predicate, we can use implications to list some positive and
negative instances of the predicate. This would allow some of the instances of the predicate
to be left unknown.

Definition 12.3.8: A proper KB is a finite and consistent collection of sentences of the
form ∀Ex(e ⊃ P(Ex)) or ∀Ex(e ⊃ ¬P(Ex)), where e is an ewff.

This obviously extends the idea of a KB in generalized database form since ∀Ex(P(Ex) ≡ e)
is equivalent to the conjunction of ∀Ex(e ⊃ P(Ex)) and ∀Ex(¬e ⊃ ¬P(Ex)). What it allows in
addition is a KB that says something like ∀x(x = #1 ⊃ T (x)) and ∀x(x = #2 ⊃ ¬T (x))
and no more. In this case, #1 is a known instance of T , #2 is a known non-instance of
T , but the status of #3, for example, is left unspecified. So with a proper KB, there is a
(potentially infinite) collection of primitive atoms that are known to be true, a (potentially
infinite) collection of primitive atoms that are known to be false, and all the others are
unknown.

The following lemma makes this explicit. Let

LITS(KB) = {P(En) | there is a ∀Ex(e ⊃ P(Ex)) in KB such that |H eEx
En }

∪ {¬P(En) | there is a ∀Ex(e ⊃ ¬P(Ex)) in KB such that |H eEx
En }.

Lemma 12.3.9: For any world w, w |H KB iff w |H LITS(KB).

With this, it can be seen that query answering for propositional queries is not much harder
than before.

Theorem 12.3.10: Let KB be proper and φ be in propositional CNF. Then KB |H φ iff
every clause in φ contains either complementary literals or an element of LITS(KB).
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Proof: The proof is analogous to the proof of Theorem 12.2.4 using Lemma 12.3.9.

Corollary 12.3.11: Let KB and φ be as in the previous theorem. Then computing whether
KB |H φ can be done in time polynomial in the size of KB and φ.

It is possible to generalize this idea to handle queries of the form ∀Exφ where φ is a
quantifier-free CNF formula. This is left as an exercise.

12.3.3 An evaluation-based reasoning procedure

To deal with quantified queries over a proper knowledge base in a more general way, how-
ever, it is best to look at a new evaluation procedure V that extends the previous U pro-
cedure. The idea is that for a query φ, V will return 1, 0, or 1

2 according to whether φ is
known to be true (that is, KB |H φ), known to be false (that is, KB |H ¬φ), or neither.

The V procedure is defined as follows:

1. V [KB, P(En)] =


1 if ∀Ex(e ⊃ P(Ex)) appears in KB, where V [KB, eEx

En ] = 1;
0 if ∀Ex(e ⊃ ¬P(Ex)) appears in KB, where V [KB, eEx

En ] = 1;
1
2 otherwise;

2. V [KB, n = m] = 1 if n is identical to m, and 0 otherwise;

3. V [KB,¬φ] = 1− V [KB, φ];

4. V [KB, φ ∧ ψ] = min{V [KB, φ], V [KB, ψ]};

5. V [KB,∀xφ] = minn∈H+(KB∪{φ}) V [KB, φx
n ].

Compared to U the definition of V differs only in how it treats primitive formulas. Of
course, the additional value 1

2 also effects the value returned for the Boolean connectives
and quantifiers. Note, in particular, how the min and minus operations work with 1

2 . In
the propositional case, these can be thought of as compact representations of Kleene’s
three-valued truth tables:

p ∧ q ¬p

q t u f

t t u f f
p u u u f u

f f f f t

Here t, f, u play the role of 1, 0, 1
2 , respectively.

As was the case with U , the V procedure runs in time that is polynomial in the size of
the KB. Moreover, the V procedure is always sound:
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Theorem 12.3.12: Let KB be proper and let the query φ be any sentence of L. If
V [KB, φ] = 1 then KB |H φ.

Proof: We prove that if V [KB, φ] = 1 then KB |H φ, and if V [KB, φ] = 0 then
KB |H ¬φ. The argument is the same as the soundness part of Theorem 12.3.2.

Note that there is no longer a restriction that the query only use predicates mentioned in
the KB. V will correctly return 1

2 for queries involving unknown predicates.
Since V behaves the same as U when applied to an ewff, we immediately obtain that

V is complete for for any ewff, that is, Lemma 12.3.6 applies to V as well:

Lemma 12.3.13: For any ewff sentence e and any KB, V [KB, e] = 1 iff |H e.

The general story of the completeness of V, however, is more complicated. Suppose
KB is empty and the query φ is (p∨¬p) for some primtive atom p. Then KB |H φ, but
V [KB, φ] = 1

2 . In general, tautologies cannot be detected by looking in the KB the way V
does. This is precisely why, in Theorem 12.3.10, we needed to also test for complementary
literals in clauses to obtain completeness.

But this difficulty shows up even without tautologies. Consider this knowledge base:

KB = {∀x(x = #1 ⊃ T (x)),∀x(x = #2 ⊃ ¬T (x))}.

Now let q = T (#1), r = T (#2) and p = T (#3), and consider this query:

φ = (q ∧ (¬r ∧ p)) ∨ (¬p ∧ (¬r ∧ q)).

Then again we get that KB |H φ, but V [KB, φ] = 1
2 . There is, however, a tautology

“hidden” here: if we convert φ to CNF, we get [q ∧ ¬r ∧ (p ∨ ¬p)].
This analysis suggests two ways of getting completeness for V . In the propositional

case, we can convert the formula φ to CNF and filter out tautologous clauses. Then if
KB |H φ, by Theorem 12.3.10, each clause must contain an element of LITS(KB), and so
V [KB, φ] = 1. It follows therefore that in the propositional case, V will be complete for
queries in CNF having no tautologous clauses.

The second way of ensuring the completeness of V, this time in the presence of uni-
versal and existential quantifiers, is to ensure that we can never get both p and ¬p as
subformulas of a query, and therefore nothing resembling a tautology. We will prove that
this idea works for perhaps the simplest case, when the query only has positive literals. To
further simplify matters, we assume these first-order queries are in negation normal form,
that is, where a ¬ operator only appears in front of an atom or an equality. (Every for-
mula can be put into this form by moving negations inward, replacing ¬∀xφ by ∃x¬φ,
replacing ¬(φ ∧ ψ) by (¬φ ∨ ¬ψ), and so on.) Let us call a formula in negation normal
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form negative if all the atomic subformulas appear negated, and positive if all the atomic
subformulas appear unnegated. (Equalities are unconstrained.) We will prove that V is
complete for positive queries in negation normal form.

Definition 12.3.14: Let S be any set of worlds. The world min(S) is defined to be the w∗

such that w∗[P(En)] = 1 iff for every w ∈ S, w[P(En)] = 1.

Lemma 12.3.15: Let S be a set of worlds, with w∗ = min(S), and let φ be a positive
sentence in negation normal form. If w∗ |H φ, then for every w ∈ S, w |H φ.

Proof: The proof is a simple induction on the length of φ.

Lemma 12.3.16: Let KB be proper and let φ and ψ be positive sentences in negation
normal form. Then we have the following:

1. If KB |H (φ ∨ ψ) then KB |H φ or KB |H ψ .

2. If KB |H ∃xφ then for some standard name n, KB |H φx
n .

Proof: For the disjunction, assume to the contrary that KB 6|H φ and KB 6|H ψ . Then
there is a w1 such that w1 |H KB and w1 6|H φ and a w2 such that w2 |H KB and w2 6|H ψ .
Let w∗ = min{w1, w2}. By Lemma 12.3.9, w1 |H LITS(KB) and w2 |H LITS(KB), and
so w∗ |H LITS(KB), and therefore w∗ |H KB. By the above lemma, since w1 6|H φ and
w2 6|H ψ, we have that w∗ 6|H φ and w∗ 6|H ψ . So w∗ |H KB but w∗ 6|H (φ∨ψ). Therefore,
KB 6|H (φ ∨ ψ). The argument for the existential operator is analogous.

Theorem 12.3.17: Let KB be proper and let the query φ be a positive sentence in negation
normal form. If KB |H φ, then V [KB, φ] = 1.

Proof: The proof is by induction on the length of φ. The theorem holds for primitive
atoms (by definition of V ), and for equalities and inequalities. It also holds by induction
for conjunctions and universal quantifications. Finally, for disjunctions and existential
quantifications, we apply the above lemma and once again use induction.

Corollary 12.3.18: Let KB and φ be as in the theorem. Then computing whether KB |H φ
can be done in polynomial time in the size of KB and φ.

It is not hard to show that the completeness theorem above also holds for negative queries.
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(We simply use a max(S) world instead of a min(S) one in the above.) It is left as an
exercise to show that the completeness also holds for queries that are neither positive nor
negative overall, but where each predicate in the query appears only positively or only
negatively. Finally, it is left as a somewhat more cumbersome exercise to show that the
completeness holds for queries that are not in negation normal form. In this case, a formula
is considered positive if every atomic subformula appears within the scope of an even
number of ¬ symbols, and negative if every atomic subformula appears within the scope
of an odd number of ¬ symbols.

12.4 Bibliographic notes

The logical omniscience problem was first discussed by Hintikka [65], who also proposed
a solution, however, without considering issues of complexity [66]. The fact that the eval-
uation procedure for KBs in database form is tractable (see Theorem 12.3.3) is actually
not that surprising as it relates directly to the tractability of query evaluation in relational
databases [184]. V was first proposed in [118]. The paper mentions the connection to
Kleene’s three-valued logic [74] in the propositional case and introduces a wide class
of sentences NF (for normal form) for which V is complete and which subsumes all
the cases considered in this chapter. In [96] we showed that V coincides precisely with
tautological entailment, a fragment of relevance logic [2, 37], for proper KBs and arbitrary
queries. The computational complexity of V was studied in [131], including a tractability
result for a large class of first-order queries. One limitation of V is that the only terms con-
sidered in either the KB or the query are variables and standard names. In [29] it is shown
how to handle unkown individuals in the form of constants without sacrificing tractability.

12.5 Where do we go from here?

This chapter was about how to keep the problem of deciding whether or not KB |H φ

computationally tractable by restricting the form of KB and φ. As we saw, one way to do
this was to restrict the KB to be in what we called proper form. However, this imposed
very strong requirements on the φ to ensure that the entailment did not hold because of
properties of φ itself. But another approach is to ensure that all the logical properties of φ,
that is all the hidden entailments it may contain, have been extracted beforehand.

We can sketch what this could mean in the propositional case. Suppose we have a
propositional query φ. Let C(φ) be the set of all minimal non-tautologous clauses entailed
by φ. (There can only be finitely many such clauses.) It is left as an exercise to show that
φ and C(φ) are logically equivalent. A conjunction of clauses like C(φ) is said to be in
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Blake canonical form. Moreover, if KB |H
∧

C(φ), then by Theorem 12.3.10, each clause
must contain an element of LITS(KB), and so V [KB,

∧
C(φ)] = 1. It follows therefore

that in the propositional case, V will be complete for queries in Blake canonical form.
So this is an example of a class of queries that is complete for V without requiring the

atoms to be all positive or all negative. It does require preprocessing the query to convert
it to Blake canonical form, however. And this is all in the propositional case. It remains
open how to apply anything like this idea to first-order queries.

Turning now to proper knowledge bases, it is also worth considering whether the
tractability results can be preserved for knowledge bases that are more expressive than
the proper ones. One easy generalization concerns the idea of basic and defined predicates.

We can think of a proper knowledge base as representing knowledge about a set of
basic predicates. We can now imagine a knowledge base also characterizes a set of defined
predicates using formulas of the form ∀Ex(P(Ex) ≡ φ), where P is the predicate and φ
is its definition, any formula using only basic predicates. It is not hard to extend the V
procedure to answer queries involving both basic and defined predicates in this way. With
a bit of care, it is also possible to let the definition φ include other defined predicates, so
long as we avoid circular definitions.

A more complex generalization of proper knowledge bases involves trying to incor-
porate terms other than variables and standard names. For example, it would be desirable
to be able to use constants in the knowledge base to represent individuals known to have
certain properties, without having to know who those individuals are. However, knowledge
bases that are in proper form except using constants instead of standard names can already
lead to disjunctive reasoning. For example, if we have a constant a where

KB = {∀x(x = a ⊃ P(x)),∀x(x 6= a ⊃ Q(x))},

then we get that KB |H (P(#5) ∨ Q(#5)), even though KB 6|H P(#5) and KB 6|H Q(#5).
So something like the V procedure cannot be used directly in this case. There are some
ideas about what can be done with constants (see the bibliographic notes), but the case with
function symbols more generally remains completely open.

12.6 Exercises

1. Prove Theorem 12.3.3 as stated, where queries may contain quantifiers not at the front
of the formula.

2. Let KB be proper and φ be a quantifier-free CNF formula whose only free variable
is x . Prove that KB |H ∀x .φ iff for all n ∈ H+, every clause in φx

n contains either
complementary literals or an element of LITS(KB).

3. Show that V is complete for queries in negation normal form that are neither positive
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nor negative overall, but where each predicate in the query appears only positively or
only negatively.

4. Extend the previous exercise to queries which are not in negation normal form. (Re-
call that a formula is considered positive if every atomic subformula appears within
the scope of an even number of ¬ symbols, and negative if every atomic subformula
appears within the scope of an odd number of ¬ symbols.)

5. Show that every propositional formula is logically equivalent to its Blake canonical
form.



13 Tractable Reasoning

In the previous chapter, we introduced the idea of tractable belief, where it would always
be computationally feasible for an agent to decide whether or not it believed something.
This was motivated by the observation that the general problem of determining whether or
not something is believed in KL or OL is computationally intractable (undecidable in the
first-order case, and co-NP complete in the propositional case). This is because, among
other things, our model of belief includes full logical reasoning: an objective sentence φ is
believed given an objective knowledge base KB iff that KB logically entails φ.

In the previous chapter, we explored how this intractability could be avoided by lim-
iting the representation language, that is, by assuming that the KB and φ could be repre-
sented in a certain restricted form. In particular, we showed that when the KB is proper
and φ is positive, it would then be computationally feasible to determine whether or not
KB logically entails φ. What did we give up to get this result? Most obviously perhaps, we
had to give up only knowing disjunctions. Although proper knowledge bases do allow for
incomplete knowledge, it is incomplete knowledge of a certain form only. For example,
there is no proper knowledge base where (p ∨ q) is all that is known.

However useful proper knowledge bases might turn out to be, there may be cases where
an agent has to deal with a knowledge base that is not proper. For example, an agent might
simply be told that some non-proper φ is true. What should the agent do in this case?
Perhaps the most obvious thing is to keep φ in the knowledge base, but somehow limit
the reasoning that must be done with it. In other words, for cases of this sort, we want
to consider a new form of belief where the agent is not required to believe all the logical
consequences of its knowledge base. This is the direction we pursue in this chapter.

13.1 The approach

Perhaps the simplest story to tell about what should be believed when an objective KB
might contain arbitrary sentences of L is to arrange things so that φ is believed iff φ ∈ KB.
This would certainly give us a sound notion of belief (in the sense that everything believed
would be logically entailed by the KB). It would also be computationally tractable, in that
a procedure could determine if something was believed by simply looking for it in the KB.

The problem is that this version of belief is much too syntactic: it checks for member-
ship of a certain syntactic expression in the KB. If ∀x .P(x) is in the KB, then ∀x .P(x)
will indeed be believed, but ∀y.P(y) will not be believed, even though this really amounts
to the same belief. Furthermore, perfectly obvious sentences like (#7 = #7) will not be
believed unless they are explicitly placed in the KB to be retrieved later.
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This suggests that even with a very minimal notion of belief, we may want to go beyond
membership in the KB. But what additional sentences should be believed? If we perform
all logically permissible manipulations on the sentences in the KB, we will end up doing
full logical reasoning, and belief will once again be computationally intractable.

In this chapter, we want to consider a notion of belief where what is believed goes
beyond membership in the KB, but not so far as full logical entailment. To do so, we will
formalize a family of belief operators B0, B1, B2, and so on, which include more and more
of those logical entailments. The idea is that B0 will include the “obvious” beliefs given
the KB, including those sentences that are members of the KB. Then B1 will include some
additional less obvious beliefs, B2 even more, and so on.

13.1.1 Desiderata

At the highest level, the properties of limited reasoning we are looking for are these:

• expressiveness: unlike in the previous chapter, for any sentence φ of L, the sentence
Oφ will be satisfiable, and moreover |H(Oφ ⊃ B0φ).

• cumulativity: for any k and any φ, |H(Bkφ ⊃ Bk+1φ).

• soundness: for any k, any KB and φ, if |H(OKB ⊃ Bkφ), then |H(KB ⊃ φ).
• eventual completeness: for any KB and any φ, if |H (KB ⊃ φ), then there will be

some k such that |H(OKB ⊃ Bkφ).

• tractability: for any k, KB, and α, the question as to whether |H (OKB ⊃ Bkα) will
be decidable (and have polynomial data complexity in cases of interest).

So while it will be computationally feasible to determine if Bkα is true (with an effort that
depends on the k), if an agent really needs to determine whether or not α is true, it may
have to look at higher and higher values of k. Because of the undecidability of first-order
logic, it will be undecidable to determine if there exists a k such that Bkα is true.

One possible way to satisfy the above requirements might be to start with a sound and
complete logical reasoning procedure (like Resolution, say), but cut it off after k steps. In
other words, we could arrange the semantics so that Bkφ is true iff φ can be derived from
the KB by the reasoning procedure in k or fewer steps. While this is better than the basic
syntactic approach, it still has some drawbacks. For one thing, we need to worry about the
fact that equality and standard names have a special status in L not seen in standard first-
order logic (or in procedures like Resolution). For example, (#3 6= #5) is valid in L, but not
in first-order logic. We might also want to define Bk in such a way that that Bk(α∧β) holds
iff Bk(β ∧α) holds, even when the reasoning procedure might need some extra steps to go
from one conjunction to the other. To obtain these and other desirable closure properties
like commutativity (as part of the desiderata, in other words), we prefer to define belief not
in terms of a reasoning procedure, but using some notion of epistemic state, as before.
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13.1.2 Two sources of intractability

If we think of how intractability arises in trying to determine whether or not KB logically
entails φ, there are really two sources:
1. It can be too hard to make full use of the information provided by the KB.
2. It can be too hard to see if φ should be believed because of its own properties.

For the first item, consider, for example, a KB consisting of a set of ground clauses
(that is, clauses with no variables) and where φ is some ground atom p. Determining
whether KB |H φ in this case is the same as determining if KB ∪ {¬p} is unsatisfiable.
This task is co-NP-hard and is believed to require a number of steps that is exponential in
the number of clauses in the worst case.

For the second item, consider the case where the KB is empty. Determining whether
KB |H φ in this case is the same as determining if φ is logically valid. In the propositional
case, this is not too hard when φ is small (relative to the size of the KB): we can convert φ
to CNF and ensure that each resulting clause is a tautology. But for the full language with
quantifiers, the task is unsolvable.

To deal with these two items, we will be proposing a new model of belief in this
chapter with two separate mechanisms to keep the reasoning tractable. For the first item
above, we will generalize the notion of epistemic state to be sets of what we will call
“extended” worlds; for the second item, we will preprocess the KB and the query φ using
Skolemization and term substitution. The exact details will be presented beginning in the
next section, but here is an informal outline of those two ideas.

13.1.3 Using extended worlds

In previous chapters, when we talked about an epistemic state, we meant a set of worlds:
the epistemic state where a given KB was all that is known was defined as the set of all
worlds w such that w |H KB. For tractable reasoning however, this notion of epistemic
state is too coarse, as it lumps all logically equivalent knowledge bases together. For
example, for KB = {p, (p ⊃ q)}, we want an epistemic state where B0(q) is false, but for
the logically equivalent KB = {p, (p ⊃ q), q}, we want an epistemic state where B0(q) is
true.

In this chapter, we will be using a finer-grained notion of epistemic state based on sets
of extended worlds. An extended world will be defined as one where atomic sentences are
mapped to one of three values, {0, 1, *}. A world that assigns p to * is taken to support
both the truth and the falsity of p. Such a world will then be able to support the truth of
both p and (p ⊃ q) without also supporting the truth of q. So the epistemic state e1 made
up of all extended worlds where p and (p ⊃ q) are supported is a superset of an e2 where
q is also supported. In this way, in e1 we can end up believing p and (p ⊃ q) without
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believing q , whereas in e2, the sentence q is believed as well.
In going from belief at level k to belief at level k + 1, we will be moving from an

epistemic state e to another one, S(e), that has fewer extended worlds and where more
sentences are believed. As we will see, the idea is to eliminate some of the worlds where
an atom is assigned *. In the case of e1 above, we will end up eliminating all the worlds
where p is assigned *, which means that S(e1) will be e2. More generally, if the epistemic
state is the set of all extended worlds that support {(p ∨ q), (¬p ∨ r), (¬q ∨ r)}, then the
clauses (p ∨ q) and (s ∨ ¬s) and their supersets will be believed at levels 0, the clause
(p ∨ r) and its supersets will believed at level 1 (after one application of S), and finally,
the clause r and its supersets will be believed at level 2 (after two applications of S).

13.1.4 Using Skolemization

The idea of epistemic states as sets of extended worlds works fine for beliefs that do
not involve quantifiers, but as noted above, it cannot be the whole story. The logic for
beliefs involving quantifiers goes further. As we will see, the semantics of O will use
Skolemization to eliminate existential variables, and the semantics of Bk will first use the
dual of Skolemization (also called Herbrandization) to eliminate universal variables, and
then use a bounded form of term substitution to produce a ground sentence. (Skolemization
involves replacing any existentially quantified variable in a formula by a new function sym-
bol used nowhere else whose arguments are the universally quantified variable it appears
within the scope of. Dual-Skolemization involves replacing any universally quantified vari-
able in a fomula by a new function symbol whose arguments are the existentially quantified
variable it appears within the scope of.) Overall, we will get reductions like the following:

1. Oφ will hold iff O∀Ex .ψ holds (where the formula ψ is a Skolemized version of φ with
no quantifiers);

2. Bkφ will hold iff Bk∃Exψ holds (where ψ is a dual-Skolemized version of φ with no
quantifiers) iff there are terms Et0, . . . , Etk such that Bk(ψ

Ex
Et0
∨ · · · ∨ ψ Ex

Etk
) holds.

The second item above is a bounded application of what is known as Herbrand’s Theo-
rem, a way of going from unsatisfiablility in classical first-order logic to its propositional
counterpart. Here is the relevant theorem from classical logic:

Proposition 13.1.1: [Herbrand] Let 8 be a set of formulas with no quantifiers. If the
set 8 is first-order unsatifiable (with the free variables interpreted universally) then so is
some finite subset of {φ Ex

Et | φ ∈ 8 and Et is ground }.

As a special case (mirroring item 2 above), we have the following:
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Corollary 13.1.2: If φ is first-order valid, then there is a number k and terms Et0, . . . , Etk
such that the sentence (ψ Ex

Et0
∨ · · · ∨ ψ Ex

Etk
) is first-order valid, where ψ is a dual-Skolemized

version of φ.

To get a sense of how these reductions avoid the problem of having to believe all
classically valid sentences, consider for example ∃x∀y(P(y) ∨ ¬P(x)). This sentence is
valid in first-order logic and so is supported by all extended worlds, as is ∃x .ψ , where ψ is
its dual-Skolemized version, (P( f (x))∨¬P(x)). However, there is no single term t such
that ψ x

t is supported by all extended worlds. Because of this, B0∃x .ψ need not be true,
according to the reduction above. (However, B1∃x .ψ will be true in this case since there
are two terms t and u such that (ψ x

t ∨ ψ
x
u ) is supported by all extended worlds, namely

t = a and u = f (a). Other first-order valid sentences will require higher levels of belief.)
But having made this move to term substitution in beliefs, we need to do something

related in the KB using Skolemization. Consider the sentence ∃x .P(x). This will be
believed in an epistemic state e at level 0 only if there is a t such that P(t) is supported by
all the extended worlds in e. This means that it is not sufficient that the extended worlds
in e support an existential; they must all agree on some term t . So an epistemic state
where say O∃x[P(x)∧ Q(x)] is true should be the set of extended worlds that support the
Skolemized version of this KB, that is, something like [P(a) ∧ Q(a)], for some Skolem
constant a to ensure that ∃x .P(x) is believed. In general, the Skolemization of the KB is
needed to guarantee the existence of the terms now required for believing existentials. (It
will be necessary to ensure that the choice of Skolem constants is irrelevant so that, for
example, O∃y[Q(y) ∧ P(y)] also comes out true even if it uses a different constant.)

These are the main ideas of this chapter. The technical details are somewhat involved
since we are dealing with what amounts to a new form of logical entailment. For this
reason, we will be taking things slowly, one step at a time. In Section 13.2, we begin by
considering formulas Bk∃Exφ and O∀Exφ where k = 0 and φ is what we call a qfree formula,
a quantifier-free objective formula. (We will write ∃φ and ∀φ to mean the existential or
universal closure of φ, respectively.) In Section 13.3, we will consider Bk when k > 0.
Finally, in Section 13.4, we will consider Bkφ and Oφ when φ is an arbitrary objective
formula. (For simplicity, this chapter deals with objective belief only. The case where a
Bk operator can appear in the scope of another Bk′ is left as an exercise.)

13.2 A first logic of limited reasoning

The language we will be using in this chapter is like OL except using Bkα instead of Kα.
(In this section, we have k = 0.) We follow our usual naming conventions: α and β for
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arbitrary formulas, φ and ψ for objective ones, σ for subjective ones. We use p to refer to
ground atomic formulas (that is, atomic formulas including equalities without variables),
and ρ and τ to refer to literals, with ρ̄ as the complement of ρ. We let b and d refer to
clauses, as finite sets of literals. Finally, we use θ to refer to ground substitutions. For any
formula φ, φθ is the sentence that results from replacing all free variables x in φ by θ(x)
and GND(φ) is the set of φθ sentences over all θ .

13.2.1 Extended worlds and epistemic states

As noted above, the semantics of the logic relies on a notion of extended world:

Definition 13.2.1 : [World] An extended world w is a function from ground atoms to
{0, 1, *}. (When the context is clear in this chapter, we will just call them “worlds.”) An
extended world w is called standard if there is a two-valued world w′ from L such that for
every p, w[p] = 1 iff w′ |H p, and w[p] = 0 iff w′ |H ¬p.

Note that an extended world maps all ground atoms including equalities to values, not just
the primitive ones as in L. So, for example, we can have w[P(n)] = 1 for every standard
name n, and still have w[P(a)] = 0 for some constant a. Similarly, there are extended
worlds where w[n = n] = 0.

Since worlds can support both the truth and falsity of sentences, we use two separate
support relations, |HT and |HF defined as follows:

Definition 13.2.2: [World support] For any world w and qfree sentence φ, the relations
w |HT φ and w |HF φ are defined recursively as follows:

1. w |HT p iff w[p] 6= 0;
w |HF p iff w[p] 6= 1.

2. w |HT ¬φ iff w |HF φ;
w |HF ¬φ iff w |HT φ.

3. w |HT (φ ∨ ψ) iff w |HT φ or w |HT ψ ;
w |HF (φ ∨ ψ) iff w |HF φ and w |HF ψ .

For a set of qfree sentences 8, w |HT 8 means that w |HT φ for every φ ∈ 8.

It is useful to define a notion of strong entailment based on the idea of extended worlds:

Definition 13.2.3: Let φ and ψ be qfree sentences. Then φ ⇒ ψ iff for all extended
worlds w, if w |HT φ then w |HT ψ.
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Note that strong entailment is a subset of logical entailment (that is, if φ ⇒ ψ then the
sentence (φ ⊃ ψ) is valid in L), but it is a proper subset: (p∧(¬p∨q)) 6⇒ q, for example.
This is because there is an extended world w where w |HT (p ∧ (¬p ∨ q)) but w 6|HT q,
namely one where w[p] = * and w[q] = 0. There is, in fact, a close connection between
the two notions:

Proposition 13.2.4: Let φ and ψ be qfree sentences that use atomic sentences p0, . . . , pk .
Then (φ ⊃ ψ) is valid in L iff φ ⇒ (ψ ∨

∨
(pi ∧ ¬pi )).

Turning now to epistemic states, here is their definition:

Definition 13.2.5: [Epistemic state] An extended epistemic state is any set of extended
worlds. (When the context is clear in this chapter, we drop the word “extended.”)

13.2.2 Equality and standard names

Extended worlds, while defined for all ground atoms, have no special provisions for equal-
ity sentences or for the denotations of terms. These are handled in the logic by highlighting
two special sets of formulas:

Definition 13.2.6: UNA = {(n 6= n′) | n and n′ are distinct standard names}.

Definition 13.2.7: Let EQ be the following infinite set of formulas:

1. (x = x),

2. ¬(x = y) ∨ (y = x),

3. ¬(x = y) ∨ ¬(y = z) ∨ (x = z),

4. ¬(x1 = y1) ∨ · · · ∨ ¬(xk = yk) ∨ ( f (x1, . . . , xk) = f (y1, . . . , yk)),
for every k-ary function symbol f ,

5. ¬(x1 = y1) ∨ · · · ∨ ¬(xk = yk) ∨ ¬P(x1, . . . , xk) ∨ P(y1, . . . , yk),
for every k-ary predicate symbol P.

We let GEQ = UNA ∪ GND(EQ).

The main property of L we will be using is this:

Theorem 13.2.8: A sentence φ is valid in L iff {¬φ}∪UNA∪EQ is first-order unsatisfiable.

This is a direct corollary of Theorem 2.8.6.
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13.2.3 Truth and validity

We are now ready to define validity in this logic, where we only consider subformulas
B0∃φ and O∀φ, where φ is qfree.

Definition 13.2.9: [Validity] For any extended world w, extended epistemic state e and
sentence α, the relation e, w |H α is defined recursively as follows:

1. e, w |H p iff w |HT p for ground atom p;
2. e, w |H ¬α iff e, w 6|H α;
3. e, w |H(α ∨ β) iff e, w |H α or e, w |H β;

4. e, w |H ∃xα iff for some n, e, w |H αx
n ;

5. e, w |H B0∃φ iff there is a substitution θ such that for all w′ ∈ e, w′ |HT φθ .
6. e, w |H O∀φ iff for all w′, w′ ∈ e iff w′ |HT GND(φ) ∪ GEQ.

We can write w |H α when α is objective, and e |H α when α is subjective. We say that
e is representable iff e |H Oφ for some sentence φ. Finally, for any sentence α, we write
|H α and say that α is valid iff e, w |H α for every representable e and every standard w.

Rules (1)-(4) are the usual ones (like in L). Note that validity is defined wrt standard
worlds only, so that the logic is two-valued except within a belief. Rules (5) and (6) define
belief in terms of sets of worlds analogously to what was done in KL and OL.

Notice there is no special rule for equality in this logic. Outside of belief, standard
worlds deliver all the expected properties from L. Within belief, the ground instances of
the axioms of equality (including UNA) are conceptually added to the knowledge base via
Rule (6) to be reasoned with like anything else. So although there are extended worlds w
where w 6|HT (n = n) and w 6|HT (n′ 6= n) for distinct names n and n′, both B0(n = n) and
B0(n′ 6= n) end up being valid, since the equality and inequality sentences are in GEQ.
Similarly, even when B0(a = n) is true (for some constant a), B0(n = a) can still be false.
(However, as we will see later, the sentence B1(n = a) will be true because the sentence
(a = n ⊃ n = a) ∈ GEQ.)

13.2.4 Properties of limited belief

Before going on to extended notions of belief, let us consider how B0 compares to K as
seen in previous chapters. The main observation is that B0 is closed under strong entail-
ment, but not under logical entailment:

Theorem 13.2.10: For any qfree sentences φ and ψ, if φ ⇒ ψ , then |H (B0φ ⊃ B0ψ).
However, there is a φ and ψ such that |H(φ ⊃ ψ), but 6|H(B0φ ⊃ B0ψ).
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Proof: For the first part, note that if e |H B0φ, then for all w′ ∈ e, w′ |HT φ, which
implies that for all w′ ∈ e, w′ |HT ψ , since φ ⇒ ψ . For the second part, let p and q be
distinct atomic sentences. Let φ = (p ∧ (¬p ∨ q)) and ψ = (φ ∧ q). Then |H (φ ≡ ψ).
Now suppose that e |H Oφ. Then e |H B0φ but e 6|H B0ψ. So 6|H(B0φ ⊃ B0ψ).

Corollary 13.2.11: Let φ and ψ be qfree formulas. Suppose that that for every θ , φθ ⇒
ψθ . Then |H(B0∃φ ⊃ B0∃ψ).

Proof: Suppose e |H B0∃φ. Then there is a θ such that e |H B0φθ . Since φθ ⇒ ψθ , by
Theorem 13.2.10, e |H B0ψθ . Therefore e |H B0∃ψ .

As a result of this closure under strong entailment, we get the expected belief equivalences:

Corollary 13.2.12: [Equivalent beliefs] For any qfree sentences φ, ψ, and χ , the following
sentences are valid:

B0φ ≡ B0(φ ∧ φ);

B0φ ≡ B0(φ ∨ φ);

B0φ ≡ B0¬¬φ;

B0(φ ∧ ψ) ≡ B0(ψ ∧ φ);

B0(φ ∨ ψ) ≡ B0(ψ ∨ φ);

B0(φ ∧ (ψ ∧ χ)) ≡ B0((φ ∧ ψ) ∧ χ));

B0(φ ∨ (ψ ∨ χ)) ≡ B0((φ ∨ ψ) ∨ χ));

B0(φ ∧ (ψ ∨ χ)) ≡ B0((φ ∧ ψ) ∨ (φ ∧ χ));

B0(φ ∨ (ψ ∧ χ)) ≡ B0((φ ∨ ψ) ∧ (φ ∨ χ));

B0(¬(φ ∧ ψ)) ≡ B0(¬φ ∨ ¬ψ);

B0(¬(φ ∨ ψ)) ≡ B0(¬φ ∧ ¬ψ).

Among other things, this corollary shows that a sentence is believed iff its conversion into
CNF (defined in the next subsection) is believed. For the same reason, we get this:

Corollary 13.2.13: [Combinations of beliefs] For any qfree sentences φ, and ψ, the fol-
lowing sentences are valid:

(B0φ ∨ B0ψ) ⊃ B0(φ ∨ ψ);
B0(φ ∧ ψ) ⊃ (B0φ ∧ B0ψ).

All these nice closure properties of belief will continue to hold when we move to higher
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levels of k and to more general belief sentences. However, one property here that will not
carry over is the following:

Theorem 13.2.14: For any qfree sentences φ and ψ , |H(B0φ ∧ B0ψ) ⊃ B0(φ ∧ ψ).

Proof: The theorem follows from the following observation: if every w ∈ e satisfies
w |HT φ and w |HT ψ , then every w ∈ e satisfies w |HT (φ ∧ ψ).

13.3 Higher levels of belief and satisfying the desiderata

Let us now turn our attention to Bkφ where k > 0. The idea, as mentioned in Section 13.1
is the following: we start with e for B0, but we use a subset S(e) for B1, and a further
subset S(S(e)) for B2, and so on. Here are the definitions:

Definition 13.3.1: [Unsupported literals] U (w) = {p | w[p] = 0} ∪ {¬p | w[p] = 1}.

The unsupported literals of w are the literals that w says cannot be true (allowing for *).

Definition 13.3.2: [Eliminated world] e eliminates world w iff there is a ground atom p
such that for every world w′ ∈ e, if U (w) ⊆ U (w′), then w′[p] = *.

Intuitively, e eliminates w if there is some p such that the claims made by w (in terms of
what literals cannot be true) depend on p having value *. In other words, if we only kept
worlds in e where p had value 0 or 1, no worlds would support the claims made by w.

Definition 13.3.3: [Successor epistemic state] S(e) = e − {w | e eliminates w}.

Note that if w is standard, it is never eliminated since for no p do we have w[p] = *. In
other words, if w ∈ e and w is standard, then for every k, w ∈ Sk(e).

Intutitively, S gives us a semantic version of what is known as propositional Resolution.
Multiple applications of S will correspond to multiple steps of Resolution (and is what will
lead to eventual completeness). We can make this precise as follows:

Definition 13.3.4: For any set of ground clauses C , RP(C) is the set of clauses defined by

RP(C) = C ∪ {(b ∪ d) | for some p, ({p} ∪ b) ∈ C, ({¬p} ∪ d) ∈ C}.
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Notice that RP applies one step of propositional Resolution to C , and in general, RPk

applies k steps. Then we have the following correspondence between RP and S:

Lemma 13.3.5: Let C be any set of ground clauses and let e = {w | w |HT C}. Then
Sk(e) = {w | w |HT RPk(C)}.

Proof: The lemma holds by induction on k. It suffices to show that if e = {w | w |HT C}
then S(e) = {w | w |HT RP(C)}.

(⇒) We show that if w 6|HT RP(C) then e eliminates w, and so w 6∈ S(e). Since
w 6|HT RP(C), there is ({p} ∪ b) ∈ C, ({¬p} ∪ d) ∈ C, such that w 6|HT (b ∪ d). So
(b ∪ d) ⊆ U (w). Therefore, for any w′ ∈ e such that U (w) ⊆ U (w′), it follows that
w′ 6|HT (b ∪ c) and therefore w′[p] = *. Hence e eliminates w.

(⇐) We show that if w |HT RP(C) then e does not eliminate w, and so w ∈ S(e). To
do so, we show that for every p, there is a w′ ∈ e such that U (w) ⊆ U (w′) and where
w′[p] 6= *. First, suppose that w[p] 6= *; then let w′ = w and the claim is satisfied.
Otherwise, if w[p] = *, define w′ to be like w except on p, where w′[p] = 1 if for some
({p} ∪ b) ∈ C , w 6|HT b, and 0 otherwise. So U (w) ⊆ U (w′) and w′[p] 6= *. To show that
w′ ∈ e, we show that for any d ∈ C , w′ |HT d. There are three cases.
1. If d does not include p or ¬p, then w′ |HT d since w |HT d .
2. If d = ({p} ∪ d ′) then there are two subcases: if w 6|HT d ′, then w′[p] = 1 and so
w′ |HT d; if w |HT d ′, then w′ |HT d.

3. If d = ({¬p} ∪ d ′) then there are two subcases: if w′[p] = 0, clearly, w′ |HT d; if
w′[p] = 1, then there is an ({p} ∪ b) ∈ C where w 6|HT b. Since w |HT RP(C),
w |HT (b ∪ d ′) and so w |HT d ′. It follows that w′ |HT d.

Given this definition of S, the change to the logic to handle Bk is small. We generalize
the rule for B0 in the semantics as follows:
5. e, w |H Bk∃φ iff there are substitutions θ0, . . . , θk such that for all w′ ∈ Sk(e),

w′ |HT (φθ0 ∨ · · · ∨ φθk).
So, for example, e |H B2∃x .P(x) iff there are ground terms t0, t1 and t2 (not necessarily
standard names) such that e |H B2(P(t0) ∨ P(t1) ∨ P(t2)) iff there are ground terms t0, t1
and t2 such that for every w ∈ S(S(e)), w |HT P(t0) or w |HT P(t1) or w |HT P(t2).

Before looking at the general properties of this new logic, let us consider a simple
example involving equality:

We show that |H O∀x[x 6= #5 ⊃ P(x)] ⊃ B1 P(#7).

Let φ = (x 6= #5 ⊃ P(x)), C = GND(φ) ∪ GEQ, and e = {w | w |HT C}. If e′ |H O∀xφ,
then e′ = e and so to prove the validity, it is sufficient to show that e |H B1 P(#7). We have that
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(#7 = #5 ∨ P(#7)) ∈ C from the grounding of φ, and (#7 6= #5) ∈ C from UNA. So P(#7) ∈ RP(C).
It then follows from Lemma 13.3.5 that e |H B1 P(#7).

13.3.1 Satisfying the desiderata

Let us now return to the desiderata from Section 13.1. (The property of expressiveness,
however, will have to wait to the next section where we can use the same sentence, possibly
with quantifiers, as an argument to both O and Bk .)

Cumulativity

Theorem 13.3.6: For any qfree formula ψ , |H(Bk∃ψ ⊃ Bk+1∃ψ).

Proof: This follows from the fact that Sk+1(e) ⊆ Sk(e).

Soundness and eventual completeness

The proof of soundness and eventual completeness uses the Herbrand Theorem and the
following property of propositional Resolution.

Proposition 13.3.7: Let C be a a set of ground clauses and d a non-tautologous ground
clause. Then C ∪ {¬d} is first-order unsatisfiable iff for some k and d ′ ⊆ d, d ′ ∈ RPk(C).

As a special case of this proposition, we have the usual refutation completeness of Resolu-
tion: C is first-order unsatisfiable iff for some k, [] ∈ RPk(C).

To make the connection with believed sentences, we need to be able to convert a qfree
formula into CNF:

Definition 13.3.8: Assume that φ is qfree and has been rewritten so that it does not use ∨,
⊃, or ≡. Then CNF(φ) is a finite set of clauses defined inductively by:

1. CNF(φ) = {{φ}}, when φ is a literal;

2. CNF(φ ∧ ψ) = CNF(φ) ∪ CNF(ψ);

3. CNF(¬¬φ) = CNF(φ);

4. CNF(¬(φ ∧ ψ)) = {a ∪ b | a ∈ CNF(¬φ), b ∈ CNF(¬ψ)}.

Note that for any w and any qfree sentence φ, w |HT φ iff for every b ∈ CNF(φ), w |HT b.
We are now ready to prove the soundness and eventual completeness properties.
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Lemma 13.3.9: Let ψ be a qfree sentence, C a set of ground clauses, e = {w | w |HT C}.
Then C ∪ {¬ψ} is first-order unsatisfiable iff there is a k such that e |H Bkψ .

Proof: (⇒) Suppose C∪{¬ψ} is first-order unsatisfiable and let d be any non-tautologous
clause in CNF(ψ). Then C ∪ {¬d} is first-order unsatisfiable and by Proposition 13.3.7,
there is an i and a d ′ ∈ RPi (C) such that d ′ ⊆ d. So for any w such that w |HT

RPi (C), w |HT d. By Lemma 13.3.5, w |HT RPi (C) iff w ∈ Si (e). So e |H Bi d . Now let
k be the maximum of these i values over all clauses of CNF(ψ). Then e |H Bkψ .

(⇐) Suppose C ∪{¬ψ} is first-order satisfiable. Then there is a world w ∈ e such that
w |HT ¬ψ and w[p] 6= * for every p, and so w 6|HT ψ . Then for every k, w ∈ Sk(e) and
therefore for every k, e 6|H Bkψ .

Theorem 13.3.10: Let φ and ψ be qfree formulas. Then |H(∀φ ⊃ ∃ψ) iff there is a k such
that |H(O∀φ ⊃ Bk∃ψ).

Proof: Let C = GND(CNF(φ)) ∪ GEQ and e = {w | w |HT C}. Note that e |H O∀φ,
and so it is sufficient to show that |H(∀φ ⊃ ∃ψ) iff e |H Bk∃ψ . We have that |H(∀φ ⊃ ∃ψ)

iff {∀φ ∧ ∀¬ψ} ∪ UNA ∪ EQ is first-order unsatisfiable by Theorem 13.2.8
iff (by Proposition 13.1.1) there exist a k′ and substitutions θ0, . . . , θk′ such that

{∀φ,¬ψθ0, . . . ,¬ψθk′} ∪ GEQ is first-order unsatisfiable
iff C ∪ {¬ψ∗} is first-order unsatisfiable, where ψ∗ =

∨
ψθi

iff (by Lemma 13.3.9) there is a k∗, such that e |H Bk∗ψ
∗

iff e |H Bk∃ψ , where k is the maximum of k′ and k∗.

Tractability

Looking over the details of the proof of soundness and eventual completeness above, we
see the following:

|H(O∀φ ⊃ Bk∃ψ) iff there are substitutions θ0, . . . , θk

such that for all non-tautologous d ∈ CNF(ψθ0 ∨ · · · ∨ ψθk)

there is d ′ ∈ RPk(GND(CNF(φ)) ∪ GEQ) such that d ′ ⊆ d.

Now we want to show that under certain reasonable assumptions, it will be possible to
efficiently decide if |H(O∀φ ⊃ Bk∃ψ). The problem with this is is that we cannot simply
calculate RPk(GND(CNF(φ))∪GEQ) since this is an infinite set of clauses. To get around
this, we use a finite restriction of UNA ∪ EQ and we replace RP by RQ, the first-order
version of Resolution that handles clauses with variables (defined below). We will end up
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using something like this:

|H(O∀φ ⊃ Bk∃ψ) iff there are substitutions θ0, . . . , θk

such that for all non-tautologous d ∈ CNF(ψθ0 ∨ · · · ∨ ψθk)

there is d ′ ∈ RQk(CNF(φ) ∪ EQ′) and a θ such that d ′θ ⊆ d.

where EQ′ is UNA∪EQ restricted to the function and predicate symbols appearing in φ or
ψ, with UNA restricted to a finite set of standard names. Here we will be able to calculate
RQk(CNF(φ)∪ EQ′), and the rest will involve guessing the appropriate substitutions. The
precise definitions are as follows:

Definition 13.3.11: For any two literals ρ and τ, MGU[ρ, τ ] is the set of most general
unifiers of ρ and τ (empty if the two literals do not unify).

Definition 13.3.12: For any set C of clauses, F(C) is union of F(b) for all b ∈ C , where

F(b) = {b} ∪ F({bθ | {ρ, τ } ⊆ b, ρ 6= τ, θ ∈ MGU[ρ, τ ]}).

Definition 13.3.13: For any set C of clauses, RQ(C) is defined by:

RQ(C) = C ∪ {(b ∪ d)θ | {ρ} ∪ b ∈ F(C), {τ } ∪ d ∈ F(C), θ ∈ MGU[ρ̄, τ ]}.

In the definitions of F and RQ, we assume the clauses in C use distinct variables, and
that just one θ is chosen (if one exists) so that the new clauses also have distinct vari-
ables. The main property of this first-order Resolution is the following generalization of
Proposition 13.3.7:

Proposition 13.3.14: Let C be a a set of clauses and d a non-tautologous ground clause.
Then C ∪ {¬d} is first-order unsatisfiable iff for some k, θ , and d ′ ∈ RQk(C), d ′θ ⊆ d.

We now prove that calculating whether or not |H (O∀φ ⊃ Bk∃ψ) can be done efficiently
under the following assumptions: the k is small, the query ψ is small, and if the KB φ

itself is large, it is only because it is a large conjunction of sentences that are themselves
small:

Theorem 13.3.15: There is a procedure for deciding if |H (O[φ1 ∧ · · · ∧ φN ] ⊃ Bkψ)

that runs in time that is polynomial in N under the assumption that for some constant c,
k ≤ c, |φi | ≤ c, and |ψ | ≤ c.
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Proof: Here is a sketch of the procedure. First, calculate Ci = CNF(φi ). Then calcu-
late EQ′ from the given φi and ψ . Here the main complication is to limit the number of
elements from UNA to a finite subset UNA′. It can be shown that UNA′ can be restricted to
those elements from UNA which mention the names in φ and ψ plus max{2k, (k+1)∗|ψ |}
new names. (The size of UNA′ is polynomial since k and ψ are bounded.)

Having a finite EQ′ in hand, we calculate C = RQk(C1 ∪ . . .∪CN ∪ EQ′), which will
be polynomial since k is bounded. Next, guess at the (k + 1) substitutions θ j and calculate
D = CNF(

∨
ψθ j ). (Again, the k and ψ are bounded. The “guessing” of appropriate

substitutions can be made determinate by trying all potential MGUs between terms in ψ
and terms in RQk(C ∪ EQ′), of which there are only polynomially many.)

Finally, check that for each non-tautologous d ∈ D, there is a d ′ ∈ C such that d ′θ ⊆ d
for some θ . (This is a special case of what is called theta-subsumption.)

13.4 Handling arbitrary objective beliefs

So far we have investigated the logic of belief for formulas Bk∃ψ and O∀ψ where ψ is a
qfree formula. In this section, we want to generalize the model to deal with Bkφ and Oφ
where φ is any arbitrary objective sentence. To be more precise, we want to consider cases
where φ is an arbitrary objective formula that does not use Skolem symbols. While we will
be using Skolem constants and functions throughout this section, they will be playing an
auxilliary role to support our handling of the Skolem-free formulas, which are the ones
we care about. We assume that apart from the usual function symbols, we have an infinite
supply of Skolem function symbols of every arity in the language.

The actual mathematics for carrying out Skolemization is complicated and messy, so
we will present the material more informally. Here is the main idea. The logic stays the
same except that we generalize the two rules for belief as follows:

5. e, w |H Bkφ iff there is a dual-Skolemization ψ of φ and substitutions θ0, . . . , θk

such that for all w′, if w′ ∈ Sk(e), then w′ |HT (ψθ0 ∨ · · · ∨ ψθk);

6. e, w |H Oφ iff there is a Skolemization ψ of φ such that for all w′,
w′ ∈ e iff w′ |HT GND(ψ) ∪ GEQ.

Note that this reduces to the definitions of the previous sections when the argument to
Bk is of the form ∃φ and the argument to O is of the form ∀φ (where φ is qfree); no
Skolemization or dual-Skolemization is then required.

But now consider a case where Skolemization is needed: only knowing an existential.
Suppose O∃x .P(x) is true. What we expect when ∃x .P(x) is the only sentence in a knowl-
edge base is that ∃z.P(z) should be believed, but P(t) should not be believed for any t .



222 Chapter 13

This is indeed what we get from the rule above, but only when t is Skolem-free. There will
be a Skolem constant a such that OP(a) is true and so BP(a) is true.

Similarly, consider a case of a belief with a universal quantifier. With the rule above,
we have that Bk∀x .P(x) is true iff Bk P(a) is true, where a is a Skolem constant. The
assumption here is that the a is a new symbol, used nowhere else. In particular, if e is
representable and e |H Oφ, then a appears nowhere in φ (or in any Skolemization resulting
from φ). So the only way this Bk P(a) can be true is if φ entails P(t) for every term t , as
when φ is something like ∀z(P(z) ∧ Q(z)).

Let us consider some of the properties of this generalized notion of belief. We can no
longer use Theorem 13.2.10 to prove belief implications and equivalences since the beliefs
can now involve quantifiers. However, there is a analogous theorem we can use.

Theorem 13.4.1: Let φ and ψ be Skolem-free sentences. Suppose that for every dual-
Skolemization φ′ of φ there is a dual-Skolemization ψ ′ of ψ such that for every θ , φ′θ ⇒
ψ ′θ . Then |H(Bkφ ⊃ Bkψ).

Proof: Suppose e |H Bkφ. Then there is a dual-Skolemization φ′ of φ and substitutions
θ0,. . . ,θk such that e |H Bk

∨
φ′θi . Moreover, there is a dual-Skolemization ψ ′ of ψ such

that for every θ , φ′θ ⇒ ψ ′θ . It follows that
∨
φ′θi ⇒

∨
ψ ′θi . So by Theorem 13.2.10,

e |H Bk
∨
ψ ′θi . Therefore e |H Bkψ .

The corollaries of Theorem 13.2.10 now follow immediately. This again justifies the con-
version to CNF within a belief. We can also justify the conversion to prenex form, where
the quantifiers all appear at the front of a sentence with the following:

Theorem 13.4.2: Let φ be a Skolem-free sentence and let ψ be its equivalent sentence in
prenex form. Then |H(Bkφ ≡ Bkψ).

Proof: Every dual-Skolemization of φ is also a dual-Skolemization of ψ .

We can also prove the failure of closure under conjunction mentioned in Section 13.2.4.

Theorem 13.4.3: There is a k, a representable state e, and Skolem-free sentences φ and ψ
such that such that e |H Bkφ, e |H Bkψ but e 6|H Bk(φ ∧ ψ).

Proof: Let e = {w | w |HT {(P(#1)∨P(#2)), (Q(#1)∨Q(#2))}∪GEQ}. Let φ = ∃x .P(x)
and ψ = ∃y.Q(y). Then e |H B1φ, e |H B1ψ but e 6|H B1(φ ∧ ψ).
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The problem here informally is that B1∃x .P(x) is true because of the first two disjuncts,
and B1∃y.Q(y) is true because of the other two disjuncts, but for their conjunction, we
would need to consider four disjuncts, for all combinations of the two variables.

Let us now return to the desiderata from Section 13.1. We can now consider the ex-
pressiveness desiderata. We need the following property of Skolemization and its dual:

Proposition 13.4.4: Let φ be a Skolem-free sentence. For any Skolemization ψ of φ, there
is a dual-Skolemization ψ ′ of φ and a unifying substitution θ∗ such that ψθ∗ = ψ ′θ∗.

Theorem 13.4.5: [Expressiveness] For any Skolem-free sentence φ, there is an epistemic
state e such that e |H Oφ, and moreover |H(Oφ ⊃ B0φ).

Proof: Clearly Oφ is satisfiable: Let e = {w | w |HT GND(ψ) ∪ GEQ}, where ψ is
a Skolemization of φ. Then e |H Oφ. Now to show that |H (Oφ ⊃ B0φ), suppose that
e |H Oφ. Then e = {w | w |HT GND(ψ) ∪ GEQ} for some Skolemization ψ of φ. Let ψ ′

and θ∗ be as in Proposition 13.4.4 and suppose w is any element of e. Then w |HT ψθ
∗

and so w |HT ψ
′θ∗. It follows that e |H B0ψ

′θ∗ and therefore e |H B0φ.

Turning now to the other desiderata, we clearly continue to have the property of cumu-
lativity. As for soundness, eventual completeness, and tractability, these continue to hold
because of the following key property of Skolemization:

Proposition 13.4.6: Let φ be a Skolem-free sentence and ψ be any of its Skolemizations.
Then {φ} ∪UNA∪ EQ is first-order unsatisfiable iff {ψ} ∪UNA∪ EQ is first-order unsat-
isfiable.

So to check whether |H (Oφ ⊃ Bkψ), it is sufficient to check if |H (O∀φ′ ⊃ Bk∃ψ
′),

where φ′ is a Skolemized version of φ, and ψ ′ is a dual-Skolemized version of ψ (with
distinct Skolem symbols, of course). We omit the remaining details.

One final issue to consider involves the interactions between quantifiers and belief op-
erators. These are complicated by the fact that quantifiers outside of belief are interpreted
in the normal way using standard names (as in previous chapters), whereas quantifiers in-
side of belief are interpreted by Skolemization and substitution of arbitrary terms. The
existential case is easy:

Theorem 13.4.7: For any k and any Skolem-free formula φ with one free variable x, the
sentence (∃x Bkφ ⊃ Bk∃xφ) is valid, but its converse is not valid.
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Proof: For the first part, suppose e |H ∃x Bkφ. Then for some n, e |H Bkφ
x
n so that there

is a dual-Skolemization φ′ of φx
n and substitutions θi such that e |H Bk

∨
φ′θi . But then

φ′ = ψ x
n where ψ is a dual-Skolemization of φ. So e |H Bk∃xφ. For the second part, let

e = {w | w |HT {(P(#1) ∨ P(#2))} ∪ GEQ}. Then e |H B1∃x .P(x), but e 6|H ∃x B1 P(x).

For the universal case, let us begin with the non-closure property:

Theorem 13.4.8: There is a Skolem-free formula φ with one free variable x such that
(∀x Bkφ ⊃ Bk∀xφ) is not valid.

Proof: Let e = {w | w |HT GEQ} and let φ = (x 6= #1 ∨ x 6= #2). Then for every n,
e |H B0φ

x
n , and so e |H ∀x B0φ. But for any constant a, e 6|H B0φ

x
a , and so e 6|H B0∀x .φ.

For the closure part, we need some new notation and two lemmas:

Definition 13.4.9: For any extended world w, any standard name n, and any constant a,
let wa

n be the extended world defined by wa
n [p] = w[p

a
n ].

Lemma 13.4.10: For any qfree sentence φ, wa
n |HT φ iff w |HT φ

a
n .

Proof: The proof is by induction on the length of φ.

Lemma 13.4.11: Let e be an epistemic state such that e |H O∀φ for some qfree φ that
does not mention constant a. Then for any qfree sentence ψ and any standard name n, if
e |H Bkψ then e |H Bkψ

a
n .

Proof: Here we prove the case only for k = 0. First observe that we are using a here as
a constant (nullary function), so that a does not appear in EQ. So w ∈ e iff w |HT UNA
and for every θ , w |HT EQθ and w |HT φθ . Now assume that e |H B0ψ . We will show
that e |H B0ψ

a
n by showing that if w ∈ e then w |HT ψ

a
n . So suppose that w ∈ e and let

θ be any substitution. Then (θa
n ) is also a substitution and therefore w |HT EQ(θa

n ) and
w |HT φ(θ

a
n ). Since neither EQ nor φ mention a, w |HT (EQθ)an and w |HT (φθ)

a
n . By

Lemma 13.4.10, wa
n |HT EQθ andwa

n |HT φθ . Since this holds for any θ, andwa
n |HT UNA,

wa
n ∈ e. Because e |H Bkψ, w

a
n |HT ψ and therefore w |HT ψ

a
n by Lemma 13.4.10.

Theorem 13.4.12: For any k and any Skolem-free formula ψ with one free variable x, the
sentence (Bk∀x .ψ ⊃ ∀x Bkψ) is valid.



Tractable Reasoning 225

Proof: Assume e |H Bk∀x .ψ. Then there is a Skolem constant a such that e |H Bkψ
x
a .

Let n be any standard name. Since a is a constant used nowhere else, by Lemma 13.4.11,
e |H Bk(ψ

x
a )

a
n, and so e |H Bkψ

x
n . Since this holds for any n, e |H ∀x Bkψ .

13.5 Bibliographic notes

The notion of tractable reasoning developed in this chapter is the culmination of a long line
of research that started with [130]. This early work used as semantic primitive a (possibly
infinite) set of ground clauses called setups instead of a set of possible worlds. The idea was
that these clauses, together with simple derivations such as weakening of clauses in a setup
or conjunctions of clauses, formed the beliefs at level 0. In addition, setups were closed
under unit propagation, which is resolution restricted to the case where one of the input
clauses consists of a single literal, thus adding another simple form of inference at level 0.
(Since unit propagation is in general undecidable, function symbols were not considered.)
At higher levels additional beliefs were obtained by splitting cases. Believing φ at level
i ≥ 0 amounted to showing that for a given setup s there is a literal l such that φ is believed
at level i−1 at both the setup s∪{l} and s∪{l}. For a certain class of knowledge bases called
proper+, which consisted essentially of first-order sentences without existential quantifiers,
it was shown that reasoning was decidable using an evaluation procedure that was first
introduced in [96] and which itself was inspired by a procedure for proper KBs discussed
in Chapter 13. The complexity of reasoning in this framework was further studied in [132].

The idea of defining belief levels in terms of setups and case splitting was later refined
to account for introspection [102], function symbols [105, 171], and actions [103]. A pre-
cursor of the approach in this chapter, again using clauses as semantic primitive, appeared
in [106].

A possible-world approach to tractable reasoning that differs from ours was proposed
in [73]. Here epistemic states are sets of three-valued worlds using a variant of neighbor-
hood semantics [145, 173]. Belief levels are again defined in terms of splitting on literals,
and tractability obtains at every level. However, the work is limited to the propositional
case. Earlier work [112, 30, 153, 91] on tractable reasoning makes use of four-valued
worlds, which are also the semantic basis of tautological entailment [37], a fragment of
relevance logic [2]. While some of this work considers the first-order case, for exam-
ple [153, 91], it remains limited as even simple inferences such as from p and (p ⊃ q)
infer q are ruled out.

Beginning with [26], there has also been work on tractable entailment relations of in-
creasing complexity, again limited to a propositional language. Perhaps the most advanced
such proposal is [25], which is based on a three-valued nondeterministic semantics first
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considered in [24]. The author defines a k-consequence relation, which features splitting
on arbitrary formulas and closure under unit propagation. The k-consequence relation is
eventually complete and a proof-theoretic account is also provided.

13.6 Where do we go from here

The logic of belief proposed in this chapter is weaker than the more traditional epistemic
logic considered in the rest of the book. But it does have a number of desirable properties,
such as the desiderata from Section 13.1 and the equivalences noted in Corollary 13.2.12.
One unexpected limitation is the failure of this notion of belief to be closed under conjunc-
tion and universal quantification:

• 6|H (Bkφ ∧ Bkψ ⊃ Bk(φ ∧ ψ));

• 6|H (∀x Bkφ ⊃ Bk∀xφ).

These two items are related. In fact, it is possible to show that there is a form of “eventual
closure” that does hold:

• If e |H (Bkφ ∧ Bkψ), then there is a k′ ≥ k such that e |H Bk′(φ ∧ ψ));

• If e |H ∀x Bkφ. then there is a k′ ≥ k such that e |H Bk′∀xφ;

For the example used in the proof of Theorem 13.4.3, we have e |H B1φ and e |H B1ψ and
e 6|H B1(φ ∧ ψ), but e |H B3(φ ∧ ψ).

Of course, the logic of belief presented here is not the only one that would satisfy
the desiderata listed in Section 13.1. Assuming we can preserve tractability, we might
want a version of e |H Bkφ that holds for fewer φ (as long as we do not lose eventual
completeness) but is easier to compute, or we might want a version that holds for additional
φ (as long as we do not lose soundness) even if it were somewhat harder to compute. To
see one way these two options might work out, let us consider the quantifier-free version
of the logic and the close correspondence between Sk and RPk as given by Lemma 13.3.5.

For the first option, if the KB is in clausal form and the query φ is a non-tautologous
clause, then the k in Bkφ can be thought of as an upper bound on the depth of a Resolution
proof (of a subclause of φ), taken as a tree. This is because RP is performing all its
Resolution steps in parallel. It may be more practical to have the k be an upper bound on
the size of a Resolution proof. This would push belief in clauses up to higher values of k,
thus making the lower values of k easier to compute. To achieve this effect, we can replace
RPk by a set of clauses RPk defined as follows:

Definition 13.6.1: For any set of ground clauses C , the sets of clauses RPi (C) are defined
inductively by:
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1. RP0(C) = C ;

2. RPi+1(C) = RPi (C) ∪
{(b ∪ d) | for some p, {p} ∪ b ∈ RPr (C), {¬p} ∪ d ∈ RPs(C), r + s = i}.

Of course we would need a new definition of sets of worlds Sk to keep the correspondence
with RPk (analogous to Lemma 13.3.5). With this in place, however, it should be possible
to prove eventual completeness as before.

Regarding the second option, note that if KB = {{p}, {¬p, q}, {¬q, r}, {¬r, s}}, we
get that |H (OKB ⊃ Bks) only for k ≥ 3. We might prefer to have this easy form of linear
reasoning separate from the more general application of Resolution (which is more like
the difficult process of splitting cases). In the propositional case, this can be achieved by
replacing RPk by a set of clauses RPk now defined as follows:

Definition 13.6.2: For any set of clauses C , the sets of clauses RPk(C) are defined as
UP(RPk(C)), where UP(C) is the least set of clauses C ′ such that C ⊆ C ′ and if {ρ} ∈ C ′

and ({ρ̄} ∪ b) ∈ C ′, then b ∈ C ′.

The UP operation here is what does the linear reasoning. We would again need a new
definition of sets of worlds Sk to keep the correspondence with this version of RPk . With
this in place, for the example above, we would get that |H (OKB ⊃ B0s)

Note that UP is a special case of Resolution (with unit clauses) and so is guaranteed
to preserve soundness. In the propositional case, it is also tractable: there is a linear time
procedure for deciding if a clause is in UP(C). In the first-order case, however, the unre-
stricted application of Resolution to unit clauses is undecidable. (The Prolog programming
language is based on Resolution with unit clauses, and its halting problem is undecidable.)
This means we need a more restricted definition of UP.

One possibility is to restrict UP so that it only applies to literals ρ whose arguments
are variables or standard names. This would be enough to preserve tractability and still
allow linear chains of reasoning with explicitly named individuals. For example, if we
have KB = {{p(#3)}, {¬p(x) ∨ q(x)}, {¬q(x), p( f (x))}}, then we would get as a result
|H (OKB ⊃ B0 q(#3)) and |H (OKB ⊃ B0 p( f (#3))), but not |H (OKB ⊃ B0 q( f (#3))).
Another possibility is to allow terms in ρ that use function symbols, but only apply the
unit Resolution if the depth of nesting of functions in the resulting clause is no higher than
what it was in ρ. This would allow certain linear chains of reasoning even with individuals
that are not identified. For example, if KB = {{p( f (a))}, {¬p(x), q(x)}}, then we would
get |H (OKB ⊃ B0 q( f (a))). Allowing the terms to get arbitrarily nested is what appears
to lead to undecidability.
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13.7 Exercises

1. Prove |H O∃x∀y P(x, y) ⊃ Bk∀y∃x P(x, y) but 6|H O∀y∃x P(x, y) ⊃ Bk∃x∀y P(x, y).
2. Prove that if φ and ψ are quantifier-free, then |H Bk(φ ∧ ψ) ≡ (Bkφ ∧ Bkψ).

3. Prove that if k = 0 then |H Bk(φ ∧ ψ) ≡ (Bkφ ∧ Bkψ).

4. Prove that for any qfree sentences φ and ψ , if B0φ ⊃ B0ψ then φ ⇒ ψ . (This is the
converse to Theorem 13.2.10.)

5. Define nested belief by using a modified version of RES to reduce it to objective belief.
6. Define nested belief in the more advanced way so that B2(...B5...) does not require

determining level 5 beliefs.



14 Knowledge and Action

In previous chapters, we considered representing and reasoning with knowledge, where
an epistemic state was characterized as a set of world states. Although we dealt with an
uncountably infinite set of world states, these were intended as models of the different
ways the world might be imagined to be at some point in time. The epistemic state of the
system might change of course, as the result of a TELL operation, for example, but the
underlying world state (and which sentences were actually true or false) was taken to be
unchanging. What we never considered, in other words, was the possibility that the world
itself might also be changing from one state to another. In this chapter, we want to consider
what it would mean to represent knowledge about a changing world and, in particular, one
that changes as the result of actions we might also have some separate knowledge about.

Consider a robot operating in the world. When a robot performs the action of moving,
for example, this causes its location (and that of any object it is carrying) to change in
the world itself. Obviously such actions should also affect what a robot knows about the
world: after moving, the robot should know that its current location is no longer what it
was. Here we have an example of a robot acquiring new beliefs not as a result of a TELL
operation (at least not directly), but as a result of performing an action. We will also see
that there are sensing actions, whose effect is not to change the world, but only to change
what the system knows about the world. For example, a robot might perform the action of
looking inside a room and thereby find out if there is anything inside.

To be able to describe how knowledge changes as the result of actions in the world,
we need to first be clear about how the world itself changes as the result of those actions.
One popular way of representing actions and their effects is to use the language of the
situation calculus. What we will present in Section 14.1 is a new language called ES
which integrates portions of the situation calculus with OL. This gives us a language for
talking about action, as well as knowing and only-knowing. We illustrate the properties
of ES with a simple robotic example in Section 14.2. In Section 14.3, we discuss the
general principles that allow us to determine what is known after performing an action
(including sensing actions) in terms of what was true before. Ultimately, what is known
after a sequence of actions will reduce to some function of what was known initially.
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14.1 The language ES

The language ES is a generalization of the language OL that includes additional facilities
for talking about actions and their effects.1 Specifically, we assume three main additions:
objects vs. actions There are two sorts of terms in ES: ordinary objects and actions. The

object terms are the variables, standard names, and function applications, as before.
We will continue to use N for the standard names of objects. For actions, we start
with an infinite collection of symbols called action types each of which has an arity
(just like a function or predicate). For simplicity we assume that the arguments of an
action type are of type object. The action terms are either action variables or of the
form A(t1, . . . , tk) where A is an action type, the ti are object terms, and the k is the
arity of A. (As usual, we leave out the parentheses when k = 0.) The standard names
for actions are the terms A(t1, . . . , tk) where the ti are standard object names.

dynamic formulas In addition to the formulas of OL, we assume there are two new spe-
cial formulas in ES. If t is a term of sort action and α is a formula, then [t]α is a
formula that can be read as “after action t , α is true.” Similarly, the expression �α is a
formula that can be read as “after every sequence actions, α is true”.

binary sensing Each action gets to return a binary sensing result after it is executed. There
is a distinguished unary predicate SF which takes an action as argument and where
SF(t) can be read as “action t returns a binary sensing result of 1,” so that ¬SF(t) can
be read as “action t returns a binary sensing result of 0.”2

To give a preview of how the dynamic formulas of ES can be used, consider the following
sentence (where cup5 is a constant, Broken is a predicate,3 and drop is an action type):

¬Broken(cup5) ∧ [drop(cup5)]Broken(cup5).

This says that the object cup5 is not broken (currently) but that it will be broken after the
action of dropping it. To draw conclusions about what will or will not hold as actions take
place, a sentence like the following might be believed:

∀a∀x .�([a]Broken(x) ≡
(a = drop(x) ∧ Fragile(x)) ∨
(Broken(x) ∧ a 6= repair(x)))

1 It is common to also want to talk about the preconditions of actions, that is, the conditions under which an action
can be executed. These present no special problems and for simplicity, we omit them here. See Section 14.4 for
how these can be incorporated into ES.
2 For simplicity, we are assuming that sensing involves obtaining a binary reading only from the surrounding
environment. We leave the more general case of sensing results as an exercise.
3 To emphasize that functions or predicates may be changed as the result of actions, they are sometimes called
fluents in the context of ES.
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In English: after every sequence of actions, an object x will be broken after doing action a
iff a is the dropping of x when x is fragile or x was already broken and a is not the action of
repairing it. Sentences like this are called successor state axioms (SSAs), as they describe
precisely how a predicate or function changes in the successor state after an action. For
predicates that never change, we might have an SSA like this:

∀a∀x .�([a]Fragile(x) ≡ Fragile(x))

This says that whether or not an object is fragile is unaffected by any action. As we will
see later, SSAs play an important role in specifying the dynamics of a domain.

To see how sensing can be used in ES, consider the following sentence (where examine
is an action type):

¬KBroken(cup5) ∧ ¬K¬Broken(cup5) ∧ [examine(cup5)] K¬Broken(cup5).

This says that initially it is not known whether or not cup5 is broken, but that after examin-
ing it, it is then known to be unbroken. Note that the examine action does not cause the cup
to be unbroken, like the repair action mentioned above; instead of changing the world state,
it changes the epistemic state to one where the true state of the cup is known. The connec-
tion between properties (like Broken) and sensing actions (like examine) is formalized in
what are called sensed fluent axioms), described later in Section 14.2.

In what follows, we will use the following terminology: a formula with no � operators
is called bounded; a formula with no � or [t] operators is called static; a formula with
no K, O, �, [t], or SF is called a fluent formula; a formula with no K, or O is called an
objective formula; a formula where every function, predicate, �, and [t] occurs within the
scope of a K or O is called a subjective formula.

14.1.1 The semantics

As we saw above, a sentence can say that something holds at one point in time but fails
to hold at another. So the semantics needs to specify not only what is true initially, but
what is true after any sequence of actions. We will use the notation e, w, z |H α (with the
additional argument z) to mean that α is true after the sequence of actions z, given an initial
epistemic state e and initial world state w.

More precisely, let Z be the set of all finite sequences of standard action names, in-
cluding 〈 〉, the empty sequence. Then

• a world w ∈ W is any function from the primitive sentences and Z to {0, 1}, and from
the primitive object terms and Z to standard names of objects;

• an epistemic state e ⊆ W is any set of worlds.
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Note that the worlds and epistemic states of OL can be thought of as special cases of their
counterparts in ES by ignoring actions and all action sequences other than the empty one.

The idea of coreferring standard names in ES works almost exactly the same as in L
except that we need to take into account both a world and a sequence of actions: given any
term t without variables, a world w, and an action sequence z, we define |t |zw (read: the
coreferring standard name for t given w and z) inductively by:

1. If t ∈ N , then |t |zw = t ;

2. When h is a function, |h(t1, . . . , tk)|zw = w[h(n1, . . . , nk), z], where ni = |ti |zw;

3. When A is an action type, |A(t1, . . . , tk)|zw = A(n1, . . . , nk), where ni = |ti |zw.

To interpret what is known or only-known after a sequence of actions has taken place, we
define w′ 'z w (read: w′ agrees with w agree on the sensing throughout action sequence
z) inductively by the following:

1. w′ '〈 〉 w for all w and w′;

2. w′ 'z·n w iff w′ 'z w and w′[SF(n), z] = w[SF(n), z].

Note that'z is an equivalence relation and will be used in the specification of Kα and Oα.
(This is the only place in the semantics where the SF predicate is used.)

Putting all these parts together, here is the semantic definition of truth. Given a sen-
tence α of ES, an epistemic state e ⊆ W and a world w ∈ W , we define e, w |H α (read: α
is true at e and w) as e, w, 〈 〉 |H α, where for any z ∈ Z we have:

1. e, w, z |H P(t1, . . . , tk) iff w[P(n1, . . . , nk), z] = 1, where ni = |ti |zw;

2. e, w, z |H (t1 = t2) iff n1 and n2 are identical, where ni = |ti |zw;

3. e, w, z |H ¬α iff e, w, z 6|H α;

4. e, w, z |H (α ∨ β) iff e, w, z |H α or e, w, z |H β;

5. e, w, z |H ∃xα iff e, w, z |H αx
n , for some std. name n of the right sort for x ;

6. e, w, z |H [t]α iff e, w, z · n |H α, where n = |t |zw;

7. e, w, z |H �α iff e, w, z · z′ |H α, for every z′ ∈ Z;

8. e, w, z |H Kα iff for every w′ such that w′ 'z w, if w′ ∈ e then e, w′, z |H α;

9. e, w, z |H Oα iff for every w′ such that w′ 'z w, w′ ∈ e iff e, w′, z |H α.

As before, when α is objective, we can leave out the e and write w |H α. Similarly, when
α is subjective, we can leave out the w and write e |H α.

A set of sentences 0 is said to be satisfiable in ES iff for some world w and epistemic
state e, we have that e, w |H α for all α ∈ 0. The notions of logical implication and
validity in ES are then defined in the usual way.
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14.1.2 Properties of ES

It is easy to see that ES, when restricted to static sentences not mentioning action terms, is
exactly the same as OL, since the semantic rules of ES are essentially the same as those of
OL for the static fragment of the language.

Theorem 14.1.1: Let α be a static sentence that does not mention action terms. Then α is
valid in ES iff α is valid in OL.

The proof is left as an exercise.
Let us now consider the dynamic aspects of the new logic, beginning with the operator

[·]. The first property of the following theorem says that [·] is closed under Modus ponens.
The others result from the fact that the effects of an action are deterministic, allowing us to
freely move Boolean connectives and quantifiers in and out of [·].

Theorem 14.1.2: Let n be an action standard name and α and β arbitrary sentences and
γ a formula with at most one free variable x.

1. |H [n]α ∧ [n](α ⊃ β) ⊃ [n]β;

2. |H [n]¬α ≡ ¬[n]α);

3. |H [n](α ∨ β) ≡ ([n]α ∨ [n]β);

4. |H [n]∃xγ ≡ ∃x[n]γ .

Proof:
1. Let e, w |H [n]α ∧ [n](α ⊃ β) for any epistemic state e, world w. Then e, w, n |H
α ∧ (α ⊃ β). Hence e, w, n |H β and thus e, w |H [n]β.

2. e, w |H [n]¬α iff e, w, n |H ¬α iff e, w, n |6= α iff e, w |6= [n]α iff e, w |H ¬[n]α.
3. e, w |H [n](α ∨ β) iff e, w, n |H (α ∨ β) iff e, w, n |H α or e, w, n |H β iff e, w |H
[n]α ∨ [n]β.

4. e, w |H ∃x[n]γ iff e, w |H [n]γ x
m for some name m iff e, w, n |H γ x

m for some name m
iff e, w, n |H ∃xγ iff e, w |H [n]∃xγ .

For � we get the following properties:

Theorem 14.1.3:
1. |H �α ∧�(α ⊃ β) ⊃ �β;

2. |H �α ⊃ α;

3. |H �(α ∧ β) ≡ �α ∧�β;
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4. |H ∀x�α ≡ �∀xα;

5. |H ∃x�α ⊃ �∃xα;

6. |H �α ⊃ ��α;

7. |H �α ≡ α ∧ ∀a[a]�α;

8. |H α ∧�(α ⊃ ∀a[a]α) ⊃ �α.

Proof:
1. Let e, w |H �α ∧ �(α ⊃ β). Then e, w, z |H α ∧ (α ⊃ β) for an arbitrary action

sequence z. Hence e, w, z |H β and thus e, w |H �β.

2. Let e, w |H �α. Thus, in particular, e, w, 〈 〉 |H α and we are done.

3. e, w |H �(α∧β) iff e, w, z |H (α∧β) for all z iff e, w, z |H α for all z and e, w, z |H β
for all z iff e, w |H �α and e, w |H �β iff e, w |H �α ∧�β.

4. e, w |H ∀x�α iff e, w, z |H αx
n for all z and all n iff e, w |H �∀xα.

5. Let e, w |H ∃x�α. Then for some n and for all z, e, w, z |H αx
n . Therefore, for all z

there is an n such that e, w, z |H αx
n and, hence, e, w |H �∃xα.

6. Let e, w |H �α, that is, e, w, z |H α for all z. But then for all z and all z′, e, w, z · z′ |H
α. Therefore e, w, z |H �α for all z and hence e, w |H ��α.

7. This property, known as Iteration in Dynamic Logic, easily follows from the definition
of �.

8. This property, also known as the Induction Axiom in Dynamic Logic, is left as an
exercise.

It is not hard to show that the converse of (5.) does not hold in general. Consider a worldw
with the following property for unary fluent P: if |z| is even thenw[P(n), z] = 1 iff n = #1,
and if |z| is odd then w[P(n), z] = 1 iff n = #2. Then clearly, w |H �∃x P(x) (choose
either #1 or #2), but there is no single name that works for all z. Hence w |6= ∃x�P(x).

While property (6.) of the above theorem is the analogue of positive introspection, an
analogue of negative introspection does not hold for �: let p be a primitive atom and let w
be a world such that w[p, 〈 〉] = 0 and w[p, z] = 1 for all z 6= 〈 〉. Then clearly w |H ¬�p
since w, 〈 〉 |H ¬p, yet for all z 6= 〈 〉 we have w, z |H �p. Therefore, |6= ¬�p ⊃ �¬�p.

KNOWLEDGE

The interpretation of knowledge in ES is quite similar to KL. One subtle difference worth
noting is that we do not simply require truth in all elements of e, the given set of “possible
worlds.” In fact, e represents the initial state of knowledge, and as knowledge is acquired
through action, some of those initial worlds will no longer be considered possible. This is
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reflected in the 'z relation. In a nutshell, we look for truth in all elements of e that agree
with the real world w in terms of sensing. It will then follow that after doing a sequence of
actions, the agent will know the correct values of the sensing results in the real world (and
everything it can conclude from that).

Apart from this it is not hard to see that knowledge in ES inherits all the properties
from KL, not just initially, but after any sequence of actions.

Theorem 14.1.4:

1. |H �(Kα ∧ K(α ⊃ β) ⊃ Kβ);
2. |H �(Kα ⊃ KKα);
3. |H �(¬Kα ⊃ K¬Kα);
4. |H �(∀x .Kα ⊃ K∀x .α);
5. |H �(∃x .Kα ⊃ K∃x .α).

Proof:

1. Let e, w, z |H Kα ∧ K(α ⊃ β). Then for all w′ 'z w, if w′ ∈ e then e, w′, z |H α and
e, w′, z |H (α ⊃ β). Hence, e, w′, z |H β and, therefore, we have that e, w, z |H Kβ.

2. Let e, w, z |H Kα. Let w′ and w′′ be worlds in e such that w′ 'z w and w′′ 'z w
′.

Since 'z is an equivalence relation, we have w′′ 'z w and, therefore, e, w′′, z |H α by
assumption. As this is true for all w′′ ∈ e with w′′ 'z w

′, we have e, w′, z |H Kα and,
hence, e, w, z |H KKα.

3. Let e, w, z |H ¬Kα. Thus for some w′, w′ 'z w, w′ ∈ e and e, w′, z 6|H α. Let w′′ be
any world such that w′′ 'z w

′ and w′′ ∈ e. Clearly, e, w′′, z |H ¬Kα. Since w′′ 'z w,
e, w, z |H K¬Kα follows.

4. Let e, w, z |H ∀x .Kα. Hence for all names n of the right sort, e, w, z |H Kαx
n and thus

for all w′ 'z w, if w′ ∈ e then for all names n of the right sort, e, w, z |H αx
n , from

which e, w, z |H K(∀x .α) follows.

5. Let e, w, z |H ∃x .Kα. Then e, w, z |H Kαx
n for some name n. By the definition of K,

it follows that e, w, z |H K∃x .α.

The fact that the properties of K hold after any sequence of actions is no coincidence.
It can be shown, with some effort, that any valid sentence of ES remains valid if we put a
� in front of it.

Lemma 14.1.5: If for all e, w, e, w, 〈 〉 |H α then for all e, w, z, e, w, z |H α.
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The proof is left as an exercise.

Theorem 14.1.6: If |H α then |H �α.

Proof: Assume |H α. Then by the lemma, for all e, w, z, e, w, z |H α. Therefore, for
all e, w, z, z′, e, w, z · z′ |H α. So for all e, w, z, e, w, z |H �α.

In the following sections we will make use of only-knowing, but only in a very special
way to characterize what an agent in a dynamic world knows initially, before any actions
have occurred.

14.2 Basic action theories

Let us now turn to the more pragmatic issue of how to use the logic to model an agent’s
knowledge about a dynamic world.

Definition 14.2.1: Given a set of fluents F , a set 6 ⊆ ES of sentences is called a
basic action theory over F iff 6 = 60 ∪ 6post ∪ 6sense where 6 mentions only fluents
in F and

1. 60 is any set of fluent sentences not mentioning any actions;

2. 6post is a set of sentences of the form
∀a∀Ex .�[a]F(Ex) ≡ γF or ∀a∀y∀Ex .�[a] f (Ex) = y ≡ γ f ,

one for each relational fluent F and functional fluent f , respectively, and where γF

and γ f are fluent formulas.4

3. 6sense is a singleton sentence of the form ∀a.�SF(a) ≡ ϕ, where ϕ is a fluent formula.

The idea here is that60 expresses what is true initially (in the initial situation) and6post

is a set of successor state axioms, one per fluent. 6sense then captures the outcome of sensing
actions. For actions like drop(x), which do not return any useful sensing information, SF
can be defined to be vacuously true (see below for an example).

Since an agent’s beliefs may differ from what is true, we will, in general, need two basic
action theories: 6 for what is true in the world, including its dynamics, and6′ for what the
agent believes to be true. The two are allowed to differ arbitrarily and even contradict each
other to allow for false beliefs. A state of affairs can then be characterized by sentences of

4 We assume that � has lower syntactic precedence than the logical connectives and [t] has higher precedence.
So �[a]F(Ex) ≡ γF abbreviates �(([a]F(Ex)) ≡ γF ).
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Figure 14.1: A simple robot

the form6 to denote what is actually true, and O6′ to denote what the agent only-believes
to be true.5 We will be interested in the what is entailed by such theories.

As an example, imagine a robot that lives in a 1-dimensional world, and that can move
towards or away from a fixed wall. The robot also has a sonar sensor that tells it when it
gets close to the wall, say, less than 10 units away. See Figure 14.1. So we might imagine
three actions, forward and backward which move the robot one unit towards and away from
the wall, and a sonar sensing action which tells the robot if it is close to the wall but has
no effect on the world. We have a single fluent, distance, which gives the actual distance
from the robot to the wall.6

Let us consider informally how sensing relates knowledge to truth here. We start in
some initial epistemic state e and world w. Initially, before any actions have taken place,
the action sequence z is 〈 〉. We might suppose that w[distance, 〈 〉] = 6 as in the diagram,
that is, e, w, 〈 〉 |H (distance < 10). If the robot does not know where it is, there may
be a w∗ ∈ e where w∗[distance, 〈 〉] = 13 and hence e, w, 〈 〉 |H ¬K(distance < 10).
Now suppose the robot performs a sonar action. In this case, we would expect that
w[SF(sonar), 〈 〉] = 1, but w∗[SF(sonar), 〈 〉] = 0. In other words, if the sonar is do-
ing its job, in w it would tell us that the robot is close to the wall and in w∗ it would tell
us that the robot is far from the wall. So if we now let z = 〈sonar〉, we see that w∗ 6'z w,
since they disagree on the SF value. In fact, for every w′ such that w′ 'z w, we will have
that w′[SF(sonar), 〈 〉] = 1. Since the definition of K uses ', when we consider what is
known after doing the sonar action, the robot will believe (correctly) that it is close to the

5 As usual, when we use 6 as part of a sentence we mean the conjunction of all the finitely many sentences
contained in 6.
6 Here and below, we assume that simple arithmetic involving <, +, and − is given to us for free.
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wall: e, w, 〈sonar〉 |H K(distance < 10).
Let us now make all this precise. We begin our formalization by defining the sensing

results for the actions:

∀a� SF(a) ≡
a = forward ∧ TRUE ∨

a = backward ∧ TRUE ∨

a = sonar ∧ distance < 10.

Since backward and forward are not expected to return any useful sensing information, SF
is vacuously true for them, while SF(sonar) says that the sonar returns 1 precisely when
the distance to the wall is less than 10. All that is left to do is defining a successor state
axiom for our only fluent:

∀a∀x .� [a](distance = x) ≡
a = forward ∧ distance = x ∧ x = 0 ∨

a = forward ∧ distance = x + 1 ∨

a = backward ∧ distance = x − 1 ∨

a 6= forward ∧ a 6= backward ∧ distance = x .

In other words, the distance to the wall increases or decreases by 1 depending on whether
backward or forward is executed, or it remains as before for all other actions.

Now we are ready to consider some specifics having to do with what is true initially by
defining an action theory. Let Close stand for the formula “distance < 10.” Let φ denote
the conjunction of the sentences above. We assume that φ is true and the robot knows it.
We also assume the robot is located initially 6 units away from the wall, but that the robot
has no idea where it is. So, we let 6 = {φ} ∪ {distance = 6} and 6′ = {φ}. Then we get
this:

Example 14.2.2: The following are logical entailments of

6 ∧ O6′:
1. Close ∧ ¬KClose ∧ [forward] ¬KClose

the robot is close to the wall, but does not know it, and continues not to know it after
moving forward;

2. [sonar] (KClose ∧ [forward]KClose)
after reading the sonar, the robot knows it is close, and continues to know it after
moving forward;

3. [sonar] [backward] ¬KClose
after reading the sonar and then moving backward, the robot no longer knows that it is
close to the wall;
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4. [backward] [sonar] KClose
after moving backward and then reading the sonar, the robot knows that it is close to
the wall;

5. [sonar] [forward] [backward] KClose
after reading the sonar, moving forward, and then backward, the robot knows that it is
still close to the wall;

6. [sonar] K([forward]Close)
after reading the sonar, the robot knows that it will remain close after moving forward;

7. ¬K([sonar] KClose)
the robot does not know initially that it will know that it is close after reading the sonar;

8. K([sonar] (KClose ∨ K¬Close))
the robot does know initially that after reading the sonar, it will then know whether or
not it is close to the wall;

9. K(¬�¬(KClose ∨ K¬Close))
the robot does know initially that after some action sequence it will know whether or
not it is close to the wall;

10. K([sonar] [backward] ¬KClose)
the robot knows initially that it will not know that it is close after reading the sonar and
moving backwards.

Proof: The proofs of these are similar. Here we will only do item 3. Let z = 〈sonar ·
backward〉, and suppose that e, w |H 6 ∧ O6′; we must show that e, w, z |H ¬KClose.
Because e |H O6′, the robot has no idea how far from the wall it is; in particular, we
have that e |H ∀x .¬K(distance 6= x), that is, there exists w′ ∈ e such that w′ '〈 〉
w and w′[distance, 〈 〉] = 9. Since 9 < 10, we also have that w′ 'z w. However,
w′[distance, z] = 10. So there exists w′ ∈ e such that w′ 'z w and w′, z |H ¬Close.
Therefore, e, w, z |H ¬KClose.

14.3 Projection by regression

The examples of the previous section all involve projection as a fundamental reasoning
task, that is, determining what holds after a number of actions have occurred, as in

6 ∧ O6′ |H [sonar] [backward] ¬KClose.

When we are not concerned with knowledge, things are somewhat simpler as we only need
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a single basic action theory as in

6 |H [forward] [backward]Close.

We will start by considering this simpler version of the projection problem, before
looking at the general case involving knowledge. But first, why is projection problematic?
It is because it seems to require non-standard forms of reasoning as both sides of the en-
tailment mention modal operators, which need to be dealt with. In a way, the situation
is not unlike the one in Chapter 7, where we addressed the problem of reasoning about
knowledge, which at first sight seemed to require heavy doses of modal reasoning involv-
ing (nested) beliefs. The solution there was to reduce the problem to classical first-order
reasoning with the help of the Representation Theorem. While the technique to solve the
projection problem is quite different, the general idea is the same in that we transform the
projection problem into one where only classical reasoning is needed. The only restriction
is that the query needs to be a bounded objective sentence, that is, no � operators are al-
lowed on the query side. The core idea is, roughly, to successively replace all fluents in a
query by the right-hand side of their successor state axioms until there are no more actions
left. This form of regression transforms the query into a fluent formula, which in the end
needs to be evaluated against the description of the initial situation (60), again a purely
classical reasoning task.

As we will see, regression can also be extended to deal with queries involving knowl-
edge, resulting in a static formula mentioning K-operators. These can then be dealt with
as before by applying the Representation Theorem.

14.3.1 Regressing objective formulas

Here we consider regression to determine entailments of the form6 |H α, where6 is a ba-
sic action theory and α is any bounded objective sentence. To start with, we assume, from
now on, that all basic action theories and queries are rectified, that is, that each quantifier
has a distinct variable. This is needed for regression to work properly.7 To simplify the
formal details, we will define regression only for formulas in the following normal form
NF.

Definition 14.3.1: A sentence α is in NF if it is rectified and every function symbol f in
α occurs only in equality expressions of the form ( f (n1, . . . , nk) = n), where the ni and
n here are either variables or standard names.

It is easy to show that every sentence can be transformed into an equivalent one in NF and
the transformation is linear in the size of the original sentence. For example, the normal

7 See also the proof of Lemma 14.3.8 below, where this is needed to establish the induction for ∀.
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form of F( f (b)) is ∃x∃y.(b = x) ∧ ( f (x) = y) ∧ F(y). Note that, for any formula in
NF, if a term t appears in [t] or as an argument to a function or predicate, then t is either a
variable or a standard name. In the following we will make use of sequences which consist
of action variables or action standard names. We will reserve the symbol r to denote such
sequences. (We continue to use z to denote the special case where all elements of the
sequence are standard names.)

In our account, any bounded, objective sentence α in NF is considered regressable.
By the transformation above any bounded, objective sentence becomes regressable by first
converting it into NF and then applying regression to the result.

Definition 14.3.2: Let α be in NF and 6 a basic action theory. We define R[α], the
regression of α wrt 6, to be R[〈 〉, α], where for any sequence r consisting of action vari-
ables or standard names, R[r, α] is defined inductively on α by:

1. R[r,∀xα] = ∀xR[r, α];
2. R[r, (α ∧ β)] = (R[r, α] ∧R[r, β]);
3. R[r,¬α] = ¬R[r, α];
4. R[r, [t]α] = R[r · t, α];
5. R[r, SF(t)] = R[r, ϕa

t ];

6. R[r, F(t1, . . . , tk)] for relational fluent F is defined inductively on r by:

(a) R[〈 〉, F(t1, . . . , tk)] = F(t1, . . . , tk));

(b) R[r · t, F(t1, . . . , tk)] = R[r, (γF )
a
t

x1
t1 . . .

xk
tk ];

7. R[r, (t1 = t2)] = (t1 = t2) if t1 and t2 do not mention functional fluents;

8. R[r, ( f (n1, . . . , nk) = n)] for functional fluent f is defined inductively by:

(a) R[〈 〉, ( f (n1, . . . , nk) = n)] = ( f (n1, . . . , nk) = n);

(b) R[r · t, ( f (n1, . . . , nk) = n)] = ∃y.(γ f )
a
t

x1
n1 . . .

xk
nk ∧ (y = n).

Note that this definition uses the right-hand sides of the successor state, and sense condition
axioms from 6.

It is not hard to show that R always transforms a bounded objective formula into a
fluent formula.

Lemma 14.3.3: Let α be a bounded objective formula and r a sequence of action variables
or standard names. Then there is a unique fluent formula φ such that R[r, α] = φ.

Proof: The proof is simple but tedious and we will skip the details here. Perhaps the
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only interesting aspect is the structure of the proof itself, which is also used in other proofs
of properties of regression below. First, the lemma is proved for static formulas only. This
is achieved by an induction on the length of r and a sub-induction on the length of α,
counting the number of logical operators and where occurrences of SF(t) are counted as
the length of ϕa

t + 1, respectively. Note, in particular, that the induction is well-behaved
because the formulas ϕ, γF , and γ f are themselves fluent formulas, that is, they are static
and do not mention SF.

Having proved the lemma for static α, the case of bounded formulas is established by
another simple induction on the number of [t]-operators in α.

Using the semantics of ES, we will now prove the regression theorem for objective
sentences, that is, show that it is possible to reduce reasoning with formulas that contain
[t] operators to reasoning with fluent formulas in the initial state.

We begin by defining for any world w and basic action theory 6 another world w6

which is like w except that it satisfies the 6sense and 6post sentences of 6.

Definition 14.3.4: Let w be a world, z ∈ Z , and 6 a basic action theory with fluents F .
Then w6 is a world satisfying the following conditions:

1. for h 6∈ F (predicate or function), w6[h(n1, . . . , nk), z] = w[h(n1, . . . , nk), z];

2. for predicate F ∈ F , w6[F(n1, . . . , nk), z] is defined inductively:

(a) w6[F(n1, . . . , nk), 〈 〉] = w[F(n1, . . . , nk), 〈 〉];

(b) w6[F(n1, . . . , nk), z · m] = 1 iff w6, z |H (γF )
a
m
v1
n1 . . .

vk
nk .

3. for function f ∈ F , w6[ f (n1, . . . , nk), z] is defined inductively:

(a) w6[ f (n1, . . . , nk), 〈 〉] = w[ f (n1, . . . , nk), 〈 〉];

(b) w6[ f (n1, . . . , nk), z · m] = n iff w6, z |H (γ f )
a
m

y
n
v1
n1 . . .

vk
nk .

4. w6[SF(n), z] = 1 iff w6, z |H ϕa
n .

Note that this again uses the γ , and ϕ formulas from 6. Then we get the following simple
lemmas:

Lemma 14.3.5: For any w, w6 exists and is uniquely defined.

Proof: w6 clearly exists. The uniqueness follows from the fact that ϕ is a fluent formula
and that for all fluents in F , once their initial values are fixed, then the values after any
number of actions are uniquely determined by 6post.



Knowledge and Action 243

Lemma 14.3.6: If w |H 60 then w6 |H 6.

Proof: The lemma follows directly from the definition of w6 , we have that w6 |H

∀a�SF(a) ≡ ϕ , w6 |H ∀a∀Ex�[a]F(Ex) ≡ γF , and w6 |H ∀a∀Ex∀y�[a] f (Ex) = y ≡ γ f .

Lemma 14.3.7: If w |H 6 then w = w6 .

Proof: If w |H 6, that is, w |H ∀a�SF(a) ≡ ϕ, w |H ∀a∀Ex�[a]F(Ex) ≡ γ f , and
w |H ∀a∀Ex∀y�[a] f (Ex) = y ≡ γ f , then w satisfies the definition of w6 .

The following property of regression is used to prove the main lemma needed for the
Regression Theorem. Given a sequence of action variables or standard names r , let r x

n
denote r with all occurrences of variable x replaced by standard name n.

Lemma 14.3.8: For any bounded objective formula α and sequence of action variables
or standard names r , R[r, α]xn = R[r x

n , α
x
n ].

Proof: The proof is long but simple and follows the structure of the proof of Lemma 14.3.3.
Here we only consider static α and three cases: fluent predicates, assuming that the lemma
holds for |r | = k − 1 and ∀, assuming in the sub-induction that the lemma holds for
formulas of length m − 1.

1. Let r = r ′ · t . Then R[r, F(Et)]xn = R[r ′, γF
a
t
Eu
Et ]

x
n (def. of R) = R[r ′xn , (γF

a
t
Eu
Et )

x
n] (by

induction) = R[r ′xn , (γF
a
t x
n
Eu
Et x
n
)] (since x not in γF ) = R[(r ′ · t)xn, F(Et)xn].

2. R[r,∀y.α]xn = (∀y.R[r, α])xn = ∀y.R[r, α]xn (since x 6= y) = ∀y.R[r x
n , α

x
n ] (by induc-

tion on |α|) = R[r x
n , (∀y.α)xn].

Lemma 14.3.9: Let α be any bounded, objective sentence in NF and z ∈ Z .
Then w |H R[z, α] iff w6, z |H α.

Proof: As before, the proof is rather straightforward and uses the same induction scheme
as Lemma 14.3.3. Assuming the lemma holds for z of length k − 1, we only consider two
cases, atoms with functional fluents and ∀.

1. Note that, by the definition of NF, ground atoms mentioning functional fluents have
the form f (n1, . . . , nk) = n, where n and ni are standard names. Then: w6, z · m |H
f (n1, . . . , nk) = n iff (by definition of w6),
w6, z |H ∃y.(γ f )

a
m
v1
n1 . . .

vk
nk ∧ y = n iff (by induction),
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w |H R[z, ∃y.(γ f )
a
m
v1
n1 . . .

vk
nk ∧ y = n] iff (by definition of R),

w |H R[z · m, f (n1, . . . , nk) = n].

2. w |H R[z,∀x .α] iff w |H ∀x .R[z, α] iff w |H R[z, α]xn for all n of the right sort iff (by
Lemma 14.3.8), w |H R[z, αx

n ] for all n iff (by sub-induction on |α|), w6, z |H αx
n for

all n iff w6, z |H ∀x .α.

Theorem 14.3.10: [Objective Regression] Let 6 = 60 ∪ 6post ∪ 6sense be a basic action
theory and let α be an objective, bounded sentence. Then R[α] is a fluent sentence and
satisfies

6 |H α iff 60 |H R[α].

Proof: Suppose 60 |H R[α]. We prove that 6 |H α. Let w be any world such that w |H
6. Then, w |H 60, and so w |H R[α]. By Lemma 14.3.9, w6 |H α. By Lemma 14.3.7,
w6 = w, and so w |H α.

Conversely, suppose 6 |H α. We need to prove that 60 |H R[α]. Let w be any world
such that w |H 60. From Lemma 14.3.6, w6 |H 6, and so w6 |H α. By Lemma 14.3.9,
w |H R[α].

14.3.2 Regressing knowledge

Let us now turn to the more general case of regression for bounded sentences which may
refer to the agent’s knowledge. As we discussed in Section 14.2, this means that we need
to consider two basic action theories 6 and 6′ for what is true in the world and for what
the agent believes, respectively.

The following theorem can be thought of as a successor-state axiom for knowledge,
which will allow us to extend regression to formulas containing K. Note that, in contrast
to the successor state axioms for fluents, this is a theorem of the logic not a stipulation as
part of a basic action theory:

Theorem 14.3.11: |H ∀a.�[a]Kα ≡ SF(a) ∧ K(SF(a) ⊃ [a]α) ∨
¬SF(a) ∧ K(¬SF(a) ⊃ [a]α).

Proof: For both directions of the equivalence we will only consider the case where
¬SF(n) holds for an arbitrary action name n. The other case is completely analogous.

To prove the only-if direction, let e, w, z |H [n]Kαa
n for action name n. We write α′ for

αa
n . Suppose e, w, z |H ¬SF(n). It suffices to show that e, w, z |H K(¬SF(n) ⊃ [n]α′). So

suppose w′ 'z w, w′ ∈ e, and w′[SF(n), z] = 0. Thus w′[SF(n), z] = w[SF(n), z] and,
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hence, w′ 'z·n w. Since e, w, z |H [n]Kα′ by assumption, e, w′, z · n |H α′, from which
e, w′, z |H [n]α′ follows.

Conversely, let e, w, z |H ¬SF(n) ∧ K(¬SF(n) ⊃ [n]α′). We need to show that
e, w, z |H [n]Kα′, that is, e, w, z · n |H Kα′. Let w′ 'z·n w and w′ ∈ e. Then
w′[SF(n), z] = w[SF(n), z] = 0 by assumption. Hence e, w′, z |H ¬SF(n). Therefore, by
assumption, e, w′, z · n |H α′, from which e, w, z |H [n]Kα′ follows.

We consider this a successor state axiom for knowledge in the sense that it tells us
for any action a what will be known after doing a in terms of what was true before. In
this case, knowledge after a depends on what was known before doing a about what the
future would be like after doing a, contingent on the sensing information provided by a.
For example, if after doing sonar the robot knows it is close to the wall, then before doing
sonar, the robot already knew a conditional: if the sonar returns a 1 on completion, then
this indicates that the robot will be close to the wall.

We are now ready to extend regression to deal with knowledge. More precisely, we are
interested in regressing bounded basic formulas in NF. Instead of being defined relative to
a basic action theory6, the regression operator R will be defined relative to a pair of basic
action theories 〈6′, 6〉 where, as above, 6′ represents the beliefs of the agent. We allow
6 and 6′ to differ arbitrarily and indeed to contradict each other, so that agents may have
false beliefs about what the world is like, including its dynamics. The idea is to regress wrt
6 outside of K operators and wrt 6′ inside. To be able to distinguish between these cases,
R now carries the two basic action theories with it as extra arguments.

Rule 1–10 of the new regression operator R are exactly as before (Definition 14.3.2)
except for the extra arguments 6′ and 6. Then we add the following:

11. R[6′, 6, r, Kα] is defined inductively on r by:

(a) R[6′, 6, 〈 〉, Kα] = K(R[6′, 6′, 〈 〉, α]);
(b) R[6′, 6, r · t, Kα] = R[6′, 6, r, βa

t ], where β is the right-hand side of the
equivalence in Theorem 14.3.11.

For simplicity, we write R[α] instead of R[6′, 6, 〈 〉, α]. Next we extend Lemma 14.3.6
to knowledge, where e6 = {w6 | w ∈ e} for a given epistemic state e and basic action
theory 6:

Lemma 14.3.12: If e |H O60 then e6 |H O6.

Proof: Let e |H O60, that is, for all w, w ∈ e iff w |H 60. We need to show that for all
w, w ∈ e6 iff w |H 6.

Let w ∈ e6 . By definition, there is a w′ ∈ e such that w = w′
6

. Since w′ |H 60, by
Lemma 14.3.6, w′

6
|H 6, that is, w |H 6.
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Conversely, let w |H 6. Then w |H 60 and hence, by assumption, w ∈ e. By
Lemma 14.3.7, w = w6 and thus w ∈ e6 .
We now turn to the generalization of Lemma 14.3.9 for knowledge.

Lemma 14.3.13: Let α be any bounded basic sentence in NF. Then e, w |H R[6′, 6, z, α]
iff e6′ , w6, z |H α.

Proof: The proof is by induction on z with a sub-induction on α.
Let z = 〈 〉. The proof for SF, atoms, and the connectives ¬, ∧, and ∀ is exactly

analogous to Lemma 14.3.9.
For formulas Kα we have: e6′ |H Kα iff
for all w ∈ e6′ , e6′ , w |H α iff (by definition of e6′ ),
for all w ∈ e, e6′ , w6′ |H α iff (by induction),
for all w ∈ e, e, w, |H R[6′, 6′, 〈 〉, α] iff
e |H K(R[6′, 6′, 〈 〉, α]) iff (by definition of R),
e |H R[6′, 6, 〈 〉, Kα].
This concludes the base case z = 〈 〉.

Now consider the case of z · n, which again is proved by a sub-induction on α. The
proof is exactly like the sub-induction for the base case except for K, for which we have
the following: e6′ , w6, z · n |H Kα iff (by Theorem 14.3.11),
e6′ , w6, z |H βa

n (where the β is from Theorem 14.3.11)
iff (by the main induction),

e, w |H R[6′, 6, z, βa
n ] iff (by definition of R),

e, w |H R[6′, 6, z · n, Kα], which completes the proof.

Finally, here is the general regression theorem:

Theorem 14.3.14: [Generalized Regression] Let 6 and 6′ be basic action theories, and
α be a bounded basic sentence in NF. Then R[α] is a static sentence and satisfies

6 ∧ O6′ |H α iff 60 ∧ O6′0 |H R[α].

Proof: To prove the only-if direction, let us suppose that 6 ∧ O6′ |H α and that
e, w |H 60 ∧ O6′0. Thus w |H 60 and, by Lemma 14.3.6, w6 |H 6. Also, e |H O6′0 and
thus, by Lemma 14.3.12, e6′ |H O6′. Therefore, e6′ , w6 |H 6 ∧ O6′. By assumption,
e6′ , w6 |H α and, by Lemma 14.3.13, e, w |H R[α].

Conversely, suppose 60 ∧ O6′0 |H R[α] and let e, w |H 6 ∧ O6′. Then w |H 60 and
e |H O6′0. Then, by assumption, e, w |H R[α]. Then e6′ , w6 |H α by Lemma 14.3.13. By
Lemma 14.3.7, w6 = w and, since e |H O6′, e6′ = e. Therefore, e, w |H α.
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This theorem shows that determining what is true and what is known after any (bounded)
number of actions have occurred can always be reduced to reasoning about what is true
and known in the initial state.

Note that if action terms t within α only occur inside action operators, then R[α] does
not mention any action terms, that is, R[α] is in the language of OL because the regres-
sion operator removes action terms from the formula (see Rule 4 of Definition 14.3.2).
In such cases, regression-based reasoning can then be reduced to reasoning in OL using
Theorem 14.1.1:

Corollary 14.3.15: Let 60 and 6′0 be defined as above. Let α be a regressable sentence
where action terms only occur inside action operators. Then

6 ∧ O6′ |H α iff 60 ∧ O6′0 logically implies R[α] in OL.

With that we can now go a step further and leverage the Representation Theorem from
Chapter 7 to reduce the problem to one about reasoning in L alone:

Corollary 14.3.16: 6 ∧ O6′ |H α iff 60 logically implies ||R[α]||6′0 in L.

14.4 Bibliographic notes

This chapter is based on [100], where ES was introduced as a fragment of the situation
calculus, which itself dates back to John McCarthy [139] and was later re-formulated by
Ray Reiter [162]. Perhaps the main difference between our treatment and the original sit-
uation calculus is that in ES situations are only part of the semantics, whereas they are
explicitly referred to in the situation calculus. For example, [drop(cup5)]Broken(cup5)
could be expressed as Broken(cup5, do(drop(cup), s)), where s is the current situation and
do(drop(cup5), s) refers to the situation that results from dropping cup5. Having access
to situations within the language makes the situation calculus more expressive than ES.
However, as we saw, ES is still strong enough to address the projection problem, which
is one of the main uses of action formalisms. As mentioned earlier, it is easy to incor-
porate explicit action preconditions into ES. In [100] this was done by adding a special
fluent predicate Poss to the language with a single argument of type action. Basic action
theories are then extended by adding a sentence of the form �Poss(a) ≡ π , where π is a
fluent formula expressing the preconditions of the various actions considered in the BAT.
Regression can then be adapted by replacing any occurrence of Poss(t) in a regressable
sentence by πa

t . The situation calculus is also the basis for the action programming lan-
guage Golog [121, 98], which has been employed for the control of robots [44]. In [97] we
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showed how to define Golog using ES as the base logic.
While the situation calculus has received a lot of attention in the reasoning about action

community over the years, there are, of course, a number of alternative formalisms, includ-
ing close relatives like the fluent calculus [68, 182] and more distant cousins like [80, 52,
169].

ES is also closely related to dynamic logic [63]. For example, De Giacomo and Lenz-
erini [28] and later Demolombe et al. [32] show how to express successor state axioms
in an extension of dynamic logic. There are also epistemic extensions of dynamic logic
such as [64] and [31]. In the language of [64], it is possible to express things like
[forward][sonar]KClose using an almost identical syntax and where K also has a possible-
world semantics. While most approaches remain propositional, there are some first-order
treatments such as [31, 32], which, like ES, are inspired by the desire to capture fragments
of the situation calculus in modal logic.

ES itself has also been used and extended in various ways. In [103], we considered
a form of limited belief with actions, where reasoning can be shown to be decidable for
a variant of proper+ knowledge bases discussed in the bibliographic notes of Chapter 13.
In [99], we explored only-knowing after actions with forgetting. The same paper also in-
cluded Moore-style default reasoning in the presence of actions. Finally, ES was extended
in order to express temporal properties over possibly infinite action sequences, which then
served as the basis for the verification of Golog programs [21, 22].

14.5 Where do we go from here?

The reader may have noticed that in our examples and the discussion about regression
we only considered only-knowing for initial situations, that is, before any actions have
occurred. While the semantics of O is well defined for arbitrary situations, it may not
be all that useful for non-initial situations. For example, suppose an agent only-knows a
basic action theory and then performs action A. A reasonable question to ask is what the
agent should only-know after the action occurred. Clearly, we would expect the agent to
still know the successor state axioms and the sensed-fluent axiom as they are situation-
independent. The description of the initial situation (60) would likely have to change as A
may have affected fluents mentioned in 60. And what about knowledge of the past? After
all, the agent just performed A and it seems reasonable to expect the agent to know that and
perhaps what was true in the past. The trouble is that we could not even express such things
as we have no way to refer to the past. When we assume that an agent forgets everything
about the past, things become a little easier and we explored a suitable modification of
only-knowing for that case elsewhere. The story without forgetting still needs to be told.



Knowledge and Action 249

Having laid out a framework for handling knowledge and action opens the door to try
and generalize other topics from the book as well. In the case of defaults, a natural question
to ask is how they should behave when actions are performed? Or what does it mean for
actions themselves to have default effects? Tractable reasoning also offers new challenges
when actions are involved. One approach would be to first use regression to reduce a query
about the future to a query about the initial situation, and then simply use the ideas we
presented for the static case. A downside of this view is that regression is an inherently
syntactic operation. The hard question is what a semantic account, perhaps along the lines
of some form of extended worlds, would look like.

14.6 Exercises

1. Prove Theorem 14.1.1.
2. Prove that the induction axiom is valid (Theorem 14.1.3, item 8).
3. Prove Lemma 14.1.5.
4. Prove Theorem 14.1.1
5. Modify the definition of SF to allow for sensing arbitrary values such as the actual

distance to a wall.
6. Prove statements 2 and 8 of Example 14.2.2 semantically.
7. Prove statement 3 of Example 14.2.2 using regression.
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