covariance and contravariance

covarianceandcontravariancevaries directly asandvaries inversely as

covariance	and	contravariance
varies directly as	and	varies inversely as
nondecreasing	and	nonincreasing

covariance	and	contravariance
varies directly as	and	varies inversely as
nondecreasing	and	nonincreasing
sorted	and	sorted backwards

covariance	and	contravariance
varies directly as	and	varies inversely as
nondecreasing	and	nonincreasing
sorted	and	sorted backwards

 $x \le y \implies f x \le f y \qquad \qquad x \le y \implies f x \ge f y$

covariance	and	contravariance
varies directly as	and	varies inversely as
nondecreasing	and	nonincreasing
sorted	and	sorted backwards

 $x \leq y \implies f x \leq f y \qquad \qquad x \leq y \implies f x \geq f y$

number:

binary:

number: $x \le y$

binary: $x \Rightarrow y$

number: $x \le y$

x is less than or equal to y

binary: $x \Rightarrow y$

x implies y

number: $x \le y$

x is less than or equal to y

binary: $x \Rightarrow y$

x implies y x is falser than or equal to y

number: $x \le y$

x is less than or equal to y

binary: $x \rightarrow y$ x implies y x is stronger than or equal to y

number:	x≤y	x is less than or equal to y	
	$-\infty \le +\infty$ $0 \le 1$	smaller ≤ larger	

binary: $x \Rightarrow y$ x implies y x is stronger than or equal to y $\bot \Rightarrow \top$ stronger \Rightarrow weaker

number:	$x \leq y$	x is less than or equal to y
	$-\infty \le +\infty$ $0 \le 1$	smaller \leq larger
	$x {\leq} y \implies f x {\leq} f y$	f is monotonic

binary: $x \Rightarrow y$ x implies y x is stronger than or equal to y $\bot \Rightarrow \top$ stronger \Rightarrow weaker $x \Rightarrow y \Rightarrow fx \Rightarrow fy$ f is monotonic

number:	x≤y	x is less than or equal to y
	$-\infty \le +\infty$ $0 \le 1$	smaller \leq larger
	$x {\leq} y \implies f x {\leq} f y$	f is monotonic
		as x gets larger, fx gets larger (or equal)

binary: $x \Rightarrow y$ x implies y x is stronger than or equal to y $\bot \Rightarrow \top$ stronger \Rightarrow weaker $x \Rightarrow y \Rightarrow fx \Rightarrow fy$ f is monotonic as x gets weaker, fx gets weaker (or equal)

number:	$x \leq y$	x is less than or equal to y
	$-\infty \le +\infty$ $0 \le 1$	smaller ≤ larger
	$x {\leq} y \implies f x {\leq} f y$	f is monotonic
		as x gets larger, fx gets larger (or equal)
	$x \le y \implies f x \ge f y$	f is antimonotonic
		as x gets larger, fx gets smaller (or equal)
binary:	$x \Rightarrow y$	x implies y x is stronger than or equal to y
	$\bot \Rightarrow \top$	stronger \Rightarrow weaker
	$x \!$	f is monotonic
		as x gets weaker, fx gets weaker (or equal)
	$x \Rightarrow y \Rightarrow fx \Leftarrow fy$	f is antimonotonic
		as x gets weaker, fx gets stronger (or equal)

antimonotonic in a

 $\neg a$

 $\neg a$ antimonotonic in a

 $a \wedge b$ monotonic in a

monotonic in b

$\neg a$	antimonotonic in a	
anb	monotonic in a	monotonic in b
avb	monotonic in a	monotonic in b

	antimonotonic in a	$\neg a$
monotonic in b	monotonic in a	anb
monotonic in b	monotonic in a	$a \vee b$
monotonic in b	antimonotonic in a	$a \Rightarrow b$

	antimonotonic in	$\neg a$
monotonic in b	monotonic in	anb
monotonic in b	monotonic in	avb
monotonic in b	antimonotonic in	$a \Rightarrow b$
antimonotonic in b	monotonic in	a ⇔ b

if a then b else c fi	monotonic in <i>l</i>	b monotonic in c
a ⇐ b	monotonic in a	a antimonotonic in b
$a \Rightarrow b$	antimonotonic in a	a monotonic in b
$a \vee b$	monotonic in a	a monotonic in b
$a \wedge b$	monotonic in a	a monotonic in b
$\neg a$	antimonotonic in a	a

$\neg a$	antimonotonic in	a	
$a \wedge b$	monotonic in	a	monotonic in b
$a \lor b$	monotonic in	a	monotonic in b
$a \Rightarrow b$	antimonotonic in	a	monotonic in b
a⇐b	monotonic in	a	antimonotonic in b
if a then b else c fi	monotonic in	b	monotonic in c

 $\neg(a \land \neg(a \lor b))$

$\neg a$	antimonotonic in		
$a \wedge b$	monotonic in		monotonic in b
$a \lor b$	monotonic in		monotonic in b
$a \Rightarrow b$	antimonotonic in		monotonic in b
a⇐b	monotonic in	an	timonotonic in b
if a then b else c fi	monotonic in		monotonic in c

$$\neg (a \land \neg (a \lor b))$$
$$\neg (a \land \neg a)$$

$\neg a$	antimonotonic in α	a
$a \wedge b$	monotonic in a	a monotonic in b
$a \lor b$	monotonic in a	a monotonic in b
$a \Rightarrow b$	antimonotonic in a	a monotonic in b
a⇐b	monotonic in a	a antimonotonic in b
if a then b else c fi	monotonic in <i>l</i>	b monotonic in c

$$\neg (a \land \neg (a \lor b)) \\ \downarrow \\ \neg (a \land \neg a)$$

$\neg a$	antimonotonic in α	a
$a \wedge b$	monotonic in a	a monotonic in b
$a \lor b$	monotonic in a	a monotonic in b
$a \Rightarrow b$	antimonotonic in a	a monotonic in b
a⇐b	monotonic in a	a antimonotonic in b
if a then b else c fi	monotonic in <i>l</i>	b monotonic in c

$$\neg (a \land \neg (a \lor b)) \\ \downarrow \\ \neg (a \land \neg a)$$

$\neg a$	antimonotonic in α	a
$a \wedge b$	monotonic in a	a monotonic in b
$a \lor b$	monotonic in a	a monotonic in b
$a \Rightarrow b$	antimonotonic in a	a monotonic in b
a⇐b	monotonic in a	a antimonotonic in b
if a then b else c fi	monotonic in <i>l</i>	b monotonic in c

$$\neg (a \land \neg (a \lor b))$$

$$\uparrow$$

$$\neg (a \land \neg a)$$

if a then b else c fi	monotonic in b	monotonic in c
a ⇐ b	monotonic in a	antimonotonic in b
$a \Rightarrow b$	antimonotonic in a	monotonic in b
$a \vee b$	monotonic in a	monotonic in b
$a \wedge b$	monotonic in a	monotonic in b
$\neg a$	antimonotonic in a	

 $\neg(a \land \neg(a \lor b))$ use the Law of Generalization $a \Rightarrow a \lor b$

 $\Leftarrow \neg (a \land \neg a)$

$\neg a$	antimonotonic in a	
$a \wedge b$	monotonic in a	monotonic in b
$a \lor b$	monotonic in a	monotonic in b
$a {\Rightarrow} b$	antimonotonic in a	monotonic in b
a ⇐ b	monotonic in a	antimonotonic in b
if a then b else c fi	monotonic in b	monotonic in c

use the Law of Generalization $a \Rightarrow a \lor b$	$\neg(a \land \neg(a \lor b))$	
now use the Law of Noncontradiction	$\neg(a \land \neg a)$	¢
	Т	=

=

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

$$\neg(a \land \neg(a \lor b))$$

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

$$= \neg (a \land \neg (a \lor b))$$
$$\downarrow \\ \neg (a \land \neg (\top \lor b))$$

context a in $\neg(a \lor b)$

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

$$\neg (a \land \neg (a \lor b))$$

$$= \neg (a \land \neg (\top \lor b))$$

$$= \neg (a \land \neg \top)$$

context *a* in $\neg(a \lor b)$

Symmetry Law and Base Law for v

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

=

$$\neg (a \land \neg (a \lor b)) \qquad \text{context } a \text{ in } \neg (a \lor b)$$

$$= \qquad \neg (a \land \neg (\top \lor b)) \qquad \text{Symmetry Law and Base Law for } \lor$$

$$= \qquad \neg (a \land \neg \top) \qquad \text{Theorem Table for } \neg$$

$$= \qquad \neg (a \land \bot)$$

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

	$\neg(a \land \neg(a \lor b))$	context a in $\neg(a \lor b)$
=	$\neg(a \land \neg(\top \lor b))$	Symmetry Law and Base Law for v
=	$\neg(a \land \neg \top)$	Theorem Table for \neg
=	$\neg(a \land \bot)$	Base Law for \wedge
=	$\neg \bot$	Binary Axiom, or Theorem Table for \neg
=	Т	

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

	$\neg(a \land \neg(a \lor b))$	context a in $\neg(a \lor b)$
=	$\neg(a \land \neg(\top \lor b))$	Symmetry Law and Base Law for \vee
=	$\neg(a \land \neg \top)$	Theorem Table for \neg
=	$\neg(a \land \bot)$	Base Law for \land
=	$\neg \bot$	Binary Axiom, or Theorem Table for \neg
=	Т	

If a is a theorem, then we can replace it with \top .

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

	$\neg(a \land \neg(a \lor b))$	context a in $\neg(a \lor b)$
=	$\neg(a \land \neg(\top \lor b))$	Symmetry Law and Base Law for \vee
=	$\neg(a \land \neg \top)$	Theorem Table for \neg
=	$\neg(a \land \bot)$	Base Law for \wedge
=	$\neg \bot$	Binary Axiom, or Theorem Table for \neg
=	Т	

If a is a theorem, then we can replace it with \top .

If a is an antitheorem, then $a \wedge anything$ is an antitheorem.

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

	$\neg(a \land \neg(a \lor b))$	context a in $\neg(a \lor b)$
=	$\neg(a \land \neg(\top \lor b))$	Symmetry Law and Base Law for v
=	$\neg(a \land \neg \top)$	Theorem Table for \neg
=	$\neg(a \land \bot)$	Base Law for \land
=	$\neg \bot$	Binary Axiom, or Theorem Table for \neg
=	Т	
	$x=y \land x=z$	context $x=y$ in $x=z$
=	$\begin{array}{c} \downarrow \\ x=y \land y=z \end{array}$	

In $exp0 \land exp1$, exp0 is a local axiom within exp1. In $exp0 \land exp1$, exp1 is a local axiom within exp0.

In $exp0 \land exp1$, exp0 is a local axiom within exp1. In $exp0 \land exp1$, exp1 is a local axiom within exp0.

use right conjunct as context in left conjunct

In $exp0 \land exp1$, exp0 is a local axiom within exp1. In $exp0 \land exp1$, exp1 is a local axiom within exp0.

In $exp0 \land exp1$, exp0 is a local axiom within exp1. In $exp0 \land exp1$, exp1 is a local axiom within exp0.

In $exp0 \land exp1$, exp0 is a local axiom within exp1.

In $exp0 \land exp1$, exp1 is a local axiom within exp0.

In $exp0 \lor exp1$, exp0 is a local antiaxiom within exp1.

In $exp0 \lor exp1$, exp1 is a local antiaxiom within exp0.

In $exp0 \Rightarrow exp1$, exp0 is a local axiom within exp1.

In $exp0 \Rightarrow exp1$, exp1 is a local antiaxiom within exp0.

In $exp0 \leftarrow exp1$, exp0 is a local antiaxiom within exp1.

In $exp0 \leftarrow exp1$, exp1 is a local axiom within exp0.

In if exp0 then exp1 else exp2 fi, exp0 is a local axiom within exp1.

In if a then b else c fi, exp0 is a local antiaxiom within exp2.

In if a then b else c fi, exp1=exp2 is a local antiaxiom within exp0.

number expressions represent quantity

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10 ∞

$$-x \quad x+y \quad x-y \quad x \times y \quad x/y \quad \frac{x}{y} \quad x^y \quad x \uparrow y \quad x \downarrow y$$

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10
$$\infty$$

-x x+y x-y x×y x/y $\frac{x}{y}$ x^y x^{\uparrow}y x \downarrow y

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10
$$\infty$$

-x x+y x-y x×y x/y $\frac{x}{y}$ x^y x↑y x↓y

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10
$$\infty$$

-x x+y x-y x×y x/y $\frac{x}{y}$ x^y x\y x\y
 \uparrow \uparrow

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10
$$\infty$$

-x x+y x-y x×y x/y $\frac{x}{y}$ x^y x↑y x↓y

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10
$$\infty$$

-x x+y x-y x×y x/y $\frac{x}{y}$ x^y x↑y x↓y

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10
$$\infty$$

-x x+y x-y x×y x/y $\frac{x}{y}$ x^y x^{\uparrow}y x \downarrow y

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10 ∞

$$-x \quad x+y \quad x-y \quad x \times y \quad x/y \quad \frac{x}{y} \quad x^y \quad x \uparrow y \quad x \downarrow y$$

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10 ∞

$$-x \quad x+y \quad x-y \quad x \times y \quad x/y \quad \frac{x}{y} \quad x^y \quad x \uparrow y \quad x \downarrow y$$

if *a* then *x* else *y* fi

binary expressions

x=y $x\neq y$ x<y x>y $x\leq y$ $x\geq y$

succ pred **if then else fi**

= + < > ≤ ≥

= \pm < > \leq \geq

= \neq < > \leq \geq

= \neq < > \leq \geq

= \neq < > \leq \geq

= ≠ < > ≤ ≥ ←