
Formal Methods of Software Design, Eric Hehner, segment 8 page out of 1 5

[talking head] We've now finished all the math we need for this course. Now it's time to
apply it to programming. But before we can write a program, we have to think a lot about
what the program is for. Maybe we have to talk to a lot of people and find out what their
needs are. And they might not agree with each other. Even one person might have
conflicting goals, and you can't satisfy all of them. Sorting all this out is called
Requirements Engineering. It's a great subject, and if you get the chance, you should take a
course on it. The end product of Requirements Engineering is a specification, and that's our
starting point.

Well, what's a specification? We can specify anything – cars, food, anything. And we
do all the time. Suppose I want you to go out and buy me – a table, let's say. So I tell you - it
should be wood, and it should be brown, and the height must be between 70 and 80 cm.

What I'm telling you is a binary expression. The variables are the color, the height,
whatever characteristics I'm interested in. Color equals brown and 70cm less than or equal
to height less than 80cm, and so on. Whenever you see a table, it instantiates the binary
expression. It provides values for the variables, so you can evaluate the expression, and if
you get true, you buy it, and if you get false, you keep on looking. And that's why we had to
review Binary Theory.

Ok, what are we specifying in this course? You might think it's programs. And we
could specify programs. I could say I want it to be in Java, and I want it to be no more than
20 pages long, and I don't want that stupid format that puts the left brackets way over on the
right and the right brackets on the left – I want the brackets lined up nicely, or whatever. But
that's not the kind of specification you get from Requirements Engineering. We're not
specifying what the program looks like. We're specifying what the screen looks like during
execution; what the outputs are for each input; what kind of performance we want. In other
words, we're specifying the computer behavior that we want – how the computer behaves
when executing the program.

[1] A computer has a memory, and [2] the memory has some contents called the
state, or state of memory, so the memory is also called the state space. For example, the state
space might be [3] this, which is a memory that can hold an integer, followed by an integer
in the range 0 to 20, followed by a character, followed by a rational number. And [4] here's
an example of a state of that memory. At the beginning of a computation, the state is called
the [5] prestate, and at the end it's called the poststate. Or we could say [6] initial and final
state. And we use the Greek [7] letter sigma for the prestate, and sigma prime for the
poststate. The little example memory has [8] 4 addresses, so in the initial state, [9] the
memory contents are sigma 0, sigma 1, sigma 2, and sigma 3. And in the final state they are
sigma prime 0, and so on. Referring to memory contents by address is very [10] low level,
so instead we talk about [11] state variables, which just means giving names to each item of
the state. Like maybe i, n, c, and x. And we just use those [12] same names for the initial
values of the state variables, and primed versions for the final values. So a state variable,
like i, which is really a memory location, is 2 mathematical variables, i and i prime. And
these are the variables that our specifications talk about. They are the nonlocal variables of
our specifications. We could specify [13] lots of other things about computations, and we
will, later. We will talk about execution time, and space requirements, and interactions and
communications. By the way, termination means the execution time is finite, and
nontermination means the execution time is infinite. So termination and nontermination are
timing issues, and we'll get to them later. But we're going to start out very simply, just
talking about the prestate and the poststate, not about timing, so not about termination. [14]

[15] For now, a low level specification of computer behavior is a binary expression
in variables sigma and sigma prime. [16] We provide a prestate, sigma, as input. The
computer makes a computation that satisfies a specification by creating a satisfactory
poststate as output. That means [17] the prestate and poststate must make the specification

Formal Methods of Software Design, Eric Hehner, segment 8 page out of 2 5

true. Now [18] the same again, but high-level. A specification is a binary expression in
unprimed and primed state variables. We provide values for the unprimed variables as input.
The computer provides values for the primed variables as output so that all values together
make the specification true.

[19] Here's some terminology about specifications, all about how many satisfactory
poststates there are. [20] Specification S is unsatisfiable for prestate sigma means the
number of satisfactory final states is 0. And it's [21] satisfiable if there's at least 1
satisfactory final state. The same specification could be unsatisfiable for one initial state, and
satisfiable for another initial state. [22] A specification is deterministic for some initial state
if there's at most 1 satisfactory final state. And it's [23] nondeterministic if there's more than
one satisfactory final state. [24] An equivalent way to define satisfiable for a prestate is –
there exists a satisfactory poststate. The most important definition [25] on this page is
implementability. A specification is implementable means for all prestates there exists a
poststate to satisfy the specification. The prestates are input, so the computer has no control
over that. We could provide any prestate. And the computer has to provide a poststate as
output to satisfy the specification. So for each input, there must be at least one satisfactory
output. If not, there's no way a computer can provide one, so the specification is
unimplementable.

[26] Let's look at some examples. Suppose the state space is integer variables x and
y. This example says: make the final value of x be 1 bigger than its initial value, and make
the final value of y be the same as its initial value. It says: increase x by 1, and leave y
unchanged. So whatever x and y we provide, the computer can make final values to satisfy
this specification. [27] It's implementable, and it's deterministic for all initial states, because
there's only 1 final state that satisfies the specification. If you're worried about overflow,
don't. By integer variable, I meant integer variable, not 32-bit 2's complement. Of course
overflow is a problem on real computers, but it's one problem I'm leaving out of this course.
That's because we'll have enough problems without it. [28] Here's another specification. It
says: make the final value of x be bigger than the initial value. It says: increase x, and I don't
care what happens to y. It says that last part by not saying anything about y prime. [29] It's
implementable, and it's nondeterministic because there are many choices for x prime and for
y prime. One way to satisfy this specification is to add 1 to x and leave y unchanged. And
there are many more ways to satisfy it. This specification is weaker than the first one. So it's
easier to implement. The [30] easiest specification to implement is true. All behavior
satisfies it, so it doesn't matter what the computer does. It's [31] implementable and
nondeterministic. And [32] the other extreme is false, which is not satisfied by anything. So
it's [33] unimplementable. Here's [34] a specification that says that initially x is nonnegative,
and finally y is 0. If we supply, say, 3 as input for x, the computer has to set y to 0, and the
specification is satisfied. If we supply minus 3 as input for x then the specification is false no
matter what the final values of x and y are. There's no way for the computer to satisfy the
specification so it's [35] unimplementable. But maybe we never want to have a negative
input. In that case, [36] here's the specification we should write. If we supply 3 as input to x,
then just like before, the computer has to set y to 0. We don't care what would happen if x
were negative, because we're not going to give x a negative value. And that's what this
specification says. It says: if x is negative, then anything is fine. [37] This specification is
implementable and nondeterministic.

There are 2 specification notations that are really useful. One is [38] ok, which
means do nothing, leave everything alone. Using the low level state, that's [39] sigma prime
equals sigma. Using the high level state variables, that's [40] x prime equals x and y prime
equals y and so on, whatever the variables may be. The other useful notation is [41]
assignment, x is assigned e, or x gets e, or set x to e, where x is a state variable and e is any
expression. For example, [42] x gets x plus 1. Notice that the assignment symbol is colon

Formal Methods of Software Design, Eric Hehner, segment 8 page out of 3 5

equals, not just equals. Now I know that in some programming languages it's just an equal
sign, and I know why, too. [43] The Fortran language was designed long ago, in 1955, by
John Backus, and he used an equal sign. And he told me that he regretted using the equal
sign for assignment. Writing x equals x plus 1 is just stupid, because x isn't equal to x plus 1
unless x is infinity. So in 1958, when John was one of the designers of Algol, he and the
others decided to use colon equals for assignment. And ever since then all well designed
programming languages have used it, like Pascal and Ada and Modula and Turing and
Eiffel, and so on. Poorly designed languages have copied the Fortran mistake. In this class,
never use just an equal sign for assignment. [44] [45] At the low level, it means sigma prime
is the same as sigma except at address x the value is e. [46] At the high level it means x
prime equals e and y prime equals y and so on, whatever the other variables are. For
example, if the variables are just x and y, then x gets x plus 1 means [47] x prime equals x
plus 1 and y prime equals y. Assignment means the variable being assigned has the right
final value, and all other variables are unchanged. Don't forget that last part.

One final example, with no new notations in it, is [48] this one. I guess the only
point here is that you can mix all the notations together any way you want. It says that if x
and y are initially equal, then the final value of x is the sum of the initial value of x and 1,
and the final value of y is unchanged. And if x and y are initially unequal, then their final
values should add up to 3. That's nondeterministic because there's some choice of final
values.

[49] If you have 2 specifications S and R, sequential composition is a way of
composing them into 1 specification, written S dot R. It describes sequential execution: first
behave according to specification S, and then according to specification R. Its definition is
[50] there exists x double prime, y double prime, and so on, whatever the state variables
happen to be. Those double prime variables stand for the intermediate values of the
variables in between execution of S and R. So the computation is described by S, except that
we replace its primed variables with double primed variables because the final values
according to S are really intermediate values, and then by R but replace its unprimed
variables with double primed variables because the intermediate values are the initial values
for R. I think an [51] example will help, and let's just have one integer state variable x. So
first, either leave x alone or increase it by 1. And then again, either leave it alone or increase
it by 1. Using the definition of sequential composition, [52] there exists x double prime, and
then we write the first specification, but everywhere there was a prime, we put a double
prime. And then, we change the dot to and. And then we write the second specification, but
everywhere there was no prime we put a double prime. [53] Now we distribute and over or.
That means we take [54] this and this, or'd with [55] this and this, or'd with [56] this and
this, or'd with [57] this and this. So we get [58] a disjunction of 4 things. And one of the
laws from the back of the book says [59] we can distribute the exists to each of the
disjuncts. Now the [60] hint says one-point law. If you look that up you find that it comes in
2 versions, the existential version and the universal version, and we want the existential
version. Which says: [61] if you have exists and a variable, and then you have an [62]
equation with that variable, and it's [63] conjoined to something, then you can [64] get rid of
the quantification, and get rid of the equation, and just write the rest down, but substituting
for the variable. [65] So the first disjunct says [66] x prime equals x. The second one says
[67] x prime equals x plus 1, the next one says x prime equals x plus 1 again, and there's no
need to write it again, and the [68] last disjunct says x prime equals x plus 1 plus 1, which is
x plus 2. So that's the resulting specification. It says either leave x alone, or increase it by 1,
or increase it by 2. Notice that the specification still just talks about the initial and final
values, not about the intermediate values. [69] Now let's look at a [70] picture of it. The [71]
leftmost column says that either x stays the same or is increased by 1. That's being
composed – see the dot – with [72] the same thing again. The definition of sequential

Formal Methods of Software Design, Eric Hehner, segment 8 page out of 4 5

composition says [73] there's an intermediate state. And the [74] final result shows that from
0 you can get to 0, 1, or 2. Actually, to get from 0 to 1 there are 2 routes, but the final answer
doesn't say anything about how many routes there are.

[75] Here's another example [76], this time using 2 integer variables x and y. x gets 3
and then y gets x plus y. x gets 3 means [77] x prime equals 3 and y is unchanged. y gets x
plus y means y prime equals x plus y and x is unchanged. The sequential composition means
[78] there exist intermediate values x double prime and y double prime, of type int, which I
often don't bother to write but it really is there, such that, now change final values to
intermediate values, so x double prime equals 3 and y double prime equals y, and now
change initial values to intermediate values, so x prime equals x double prime and y prime
equals x double prime plus y double prime. Now we can use one point twice because we
have exists with 2 variables, and each one has an equation. So leave out the exists, leave out
the equations, and write the [79] rest but replace the double prime variables with what
they're equal to. And so x ends up 3, and y ends up 3 plus the initial value of y. And that's
exactly what you knew the assignments said.

[80] Here are some laws about specifications. [81] The first one says that ok is both a
left and right identity for sequential composition. If you do nothing, and then do P, it's the
same as doing P. Also, if you do P, and then do nothing, that's just doing P. The [82] next one
says that sequential composition is associative. So we won't bother to write the parentheses.
The [83] next few laws are just laws of binary theory, but we can look at them again as
specification laws. The first two are laws that programmers know. The first one says that if
the then-part and else-part are the same, you might as well not have the if at all. And if you
negate the if-part, you switch the then-part and else-part. Then the case analysis laws which
give two ways to rewrite an if. [84] Now there's a distributive law. Let me read it to you. If
you do P or Q, and then you do R or S, that's the same as doing P and then R, or P and then
S, or Q and then R, or Q and then S. And then a few more laws. They're all in the back of
the book. But I want to pay special attention to the [85] last one, the substitution law. It says,
if you have an assignment followed by any specification, that's the same as that
specification, but with a substitution. Replace x with e in P.

[86] Here are some examples of it. First, [87] x gets y plus 1, and then y prime
greater than x prime. So replace x by y plus 1 in y prime greater than x prime. But there is
no x in y prime greater than x prime. There's x prime, but no x. So substitution does nothing,
and the [88] result is still y prime greater than x prime. That means the computer chooses
any final values for x and y such that y is greater than x. It could choose 3 for x and 5 for y.
If it's going to do that, then there was no point at all to the assignment x gets y plus 1. The
[89] next example says increase x by 1, and then make the final values of both y and x be
bigger than the initial value of x. Now be careful. The initial value of x means initial for the
second part, so that's after x is increased. Anyway, replace both occurrences of x with x plus
1, and the [90] result is that the final values of y and x must be bigger than the initial value
of x plus 1. In the [91] next example, the only point is that when you replace x by y plus 1,
you have to [92] add parentheses so the precedence doesn't go wrong. And the point [93] of
the next example is that you replace only the nonlocal x, not the local x. So you get [94] 1 is
greater than or equal to 1, and that can be simplified, so [95] the final result is that y has to
be even in the end. In the [96] next example, we're replacing x with y, and that x is nonlocal,
so we do have to replace it, but we can't put a nonlocal y in a place where it would look
local. So first we have to rename the local variable. Let's call it [97] k. And now [98] we can
make the substitution. The [99] next example says x gets 1, and then ok. The point here is
that you don't say there's no x to be replaced. You have to realize that ok stands for [100] x
prime equals x and y prime equals y, assuming the variables are x and y in these examples.
So there is an x to replace, and the result [101] is x prime equals 1 and y prime equals y. The
[102] next example is really the same thing again. In the second assignment, the occurrence

Formal Methods of Software Design, Eric Hehner, segment 8 page out of 5 5

of x is not apparent. But if we [103] rewrite it, we see the x, and then we [104] replace it,
and get x prime equals 1 and y prime equals 2, which is obviously the effect of those two
assignments.

There are still 2 more examples, so let's [105] clear some space for them. In the
[106] next example, we have 3 assignments in a row. We just did the first 2, but that's not the
smart way to do this one. The smart way is to rewrite the last assignment like [107] this, and
then use the substitution law for y gets 2 followed by the last part. So that's [108] x prime
equals x plus 2 and y prime equals 2. And then we use the substitution law again to get
[109] x prime equals 1 plus 2 and y prime equals 2. In a long string of assignments, it's best
to work from right to left, because that way you can keep using the substitution law. If you
go in the other direction, you get the same answer, but it's more work because you have to
keep using existential quantifications. In the [110] last example, there's only 1 assignment,
so we may as well use the substitution law where we can, replacing x by 1 in the middle
part. So we get [111] x prime greater than 1, and we still have the last part. And there's
nothing we can do but use the definition of sequential composition [112]. Now we have
exists x double prime and y double prime. The y double prime isn't actually used, so we can
get rid of that. [113] Good. Now to use the one point law, we need to see x double prime
equal something. So that's [114] easy to arrange. Now we replace x double prime with x
prime minus 1 in the first conjunct [115], and then simplify [116] to get x prime greater than
2.

All of these examples were small and easy to see what's happening, but the same
techniques work for large programs where it's not obvious what is being computed. And best
of all, it's possible to write a program to do these kinds of calculations automatically. That's
where we stop this lecture.

