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Halting

The Halting Problem is this:  there is a mathematical halting function that says, for each 
computer program, whether its execution terminates;  but there is no computer program to 
implement this mathematical function.  Here is the proof, as first proved by Turing [1], except 
that I refer to the Pascal programming language instead of the Turing Machine language, and I 
am using text (character string) parameters instead of numeric parameters.

Let  MathHalt (p, x)  be the mathematical halting function.  Parameter  p  is a text representing 
a Pascal procedure with one text parameter  x .
•  MathHalt (p, x)  =  true  if execution of the procedure represented by  p  applied to input  x

terminates 
•  MathHalt (p, x)  =  false  if execution of the procedure represented by  p  applied to input  x
                                            does not terminate 

Suppose, in order to show a contradiction, that there is a Pascal function  PascalHalt  that 
implements  MathHalt .  That is:  PascalHalt (p, x)  =  MathHalt (p, x )  for all  p  and  x .  We 
provide a dictionary of Pascal procedure and function definitions so that  p  can be just the name 
of a procedure, and then  PascalHalt  can look up the name, and any names of called 
procedures and functions, and retrieve their definitions for analysis.   Now consider this Pascal 
procedure:

procedure twist (x: string);  begin if PascalHalt ('twist', x) then twist (x) end

Execution of  twist ('twist')  begins by calling  PascalHalt ('twist', 'twist') .  If  
PascalHalt ('twist', 'twist')  returns  true , then the execution of  twist ('twist')  calls  twist ('twist')  
and is nonterminating, so  MathHalt ('twist', 'twist')  =  false , so  

PascalHalt ('twist', 'twist')  ≠  MathHalt ('twist', 'twist')
contrary to the supposition.  If  PascalHalt ('twist', 'twist')  returns  false , then the execution of  
twist ('twist')  terminates, so  MathHalt ('twist', 'twist')  =  true , so again  

PascalHalt ('twist', 'twist')  ≠  MathHalt ('twist', 'twist' )
contrary to the supposition.  Either way,  PascalHalt  does not implement  MathHalt .

The reason that  MathHalt  cannot be implemented as a program, according to standard 
theoretical computer science, is the limited power of computation, compared to the (unlimited?) 
power of mathematics.  There is a field of research called hypercomputation that studies 
computation strengthened by magical powers.  There are many journal articles and books on the 
subject.  This field was begun by Turing in [2];  he strengthened the power of computation by 
adding a magic oracle to determine halting.  But, as Turing found out, this still does not solve 
the problem.  

Fortify Pascal with  oracle , defined such that  oracle ('MathHalt', p, x)  =  MathHalt (p, x) , and 
simultaneously fortify  MathHalt  to apply to fortified-Pascal procedure  twist , defined as

procedure twist (x: string); begin if oracle ('MathHalt', 'twist', x) then twist (x) end 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Execution of  twist ('twist')  begins by calling  oracle ('MathHalt', 'twist', 'twist') .  If  
oracle ('MathHalt', 'twist', 'twist')  returns  true , then the execution of  twist ('twist')  calls  
twist ('twist')  and is nonterminating, so  MathHalt ('twist', 'twist')  =  false , so  

oracle ('MathHalt', 'twist', 'twist')  ≠  MathHalt ('twist', 'twist')
contrary to its definition.  If  oracle ('MathHalt', 'twist', 'twist')  returns  false , then the execution 
of  twist ('twist')  terminates, so  MathHalt ('twist', 'twist')  =  true , so again  

oracle ('MathHalt', 'twist', 'twist')  ≠  MathHalt ('twist', 'twist')
contrary to its definition.

There is an inconsistency.  If we blame the inconsistency on the specification of  MathHalt , 
then there is no mathematical halting function, so we cannot conclude that “the halting 
function” is incomputable.  So it is commonly agreed to blame the inconsistency on the 
specification of  oracle .  We cannot consistently define, let alone implement, a magic oracle to 
report on the mathematical halting function.

Let us now repeat the argument, but replacing the mathematical function  MathHalt  with a 
Python function  PythonHalt .  Here is its header, followed by a comment that specifies the 
result.

def PythonHalt (p, x):
"""Parameter  p  is a text representing a Pascal procedure with one text parameter  x .
     PythonHalt (p, x)  =  true  if execution of the procedure represented by  p

     applied to input  x  terminates 
     PythonHalt (p, x)  =  false  if execution of the procedure represented by  p

     applied to input  x  does not terminate"""

Thus  PythonHalt  is specified identically to  MathHalt .  Both are outside the set of Pascal 
procedures they apply to.  A Pascal procedure cannot call a Python function, so we translate  
PythonHalt  to Pascal.  Let  translate  be a Pascal function such that

translate ('PythonHalt', p, x)  =  PythonHalt (p, x)
Now consider this Pascal procedure:

procedure twist (x: string); begin if translate ('PythonHalt', 'twist', x) then twist (x) end

Execution of  twist ('twist')  begins by calling  translate ('PythonHalt', 'twist', 'twist') .  If  
translate ('PythonHalt', 'twist', 'twist')  returns  true , then the execution of  twist ('twist')  calls  
twist ('twist')  and is nonterminating, so  PythonHalt ('twist', 'twist')  =  false , so  

translate ('PythonHalt', 'twist', 'twist')  ≠  PythonHalt ('twist', 'twist')
contrary to its definition.  If  translate ('PythonHalt', 'twist', 'twist')  returns  false , then the 
execution of  twist ('twist')  terminates, so  PythonHalt ('twist', 'twist')  =  true , so again  

translate ('PythonHalt', 'twist', 'twist')  ≠  PythonHalt ('twist', 'twist')
contrary to its definition.

It is commonly concluded that we cannot program  PythonHalt  because of the limited power of 
computation, but if we could, we could translate  PythonHalt  into Pascal.  In this argument,  
PythonHalt  plays the same role as  MathHalt  played previously, and  translate  plays the same 
role as  oracle  played.  The proof of inconsistency is identical to previously.  Whereas 
previously  oracle , not  MathHalt , was blamed, this time, inexplicably, the usual conclusion is 
opposite to previously:  PythonHalt  is blamed, not  translate .

In the next version of the argument, we keep the definition of  PythonHalt , but instead of 
translating it to Pascal, we write a Pascal function  interpret  that interprets Python functions, so 
that  interpret ('PythonHalt', p, x)  =  PythonHalt (p, x) .  Now consider the Pascal procedure
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procedure twist (x: string); begin if interpret ('PythonHalt', 'twist', x) then twist (x) end

Exactly the same argument as before leads to exactly the same contradiction.  As with  translate  
and opposite to  oracle , the usual conclusion is that  PythonHalt , not  interpret , is to blame.  It 
is commonly concluded that we cannot program  PythonHalt  because of the limited power of 
computation, but if we could, we could interpret  PythonHalt  in Pascal.

All of these arguments can be simplified without loss.  The parameter  x  played no role in the 
arguments.  It could have been instantiated with any text, and the arguments remain the same.  
We could leave it out, and talk about the halting status of Pascal procedures that have no 
parameters, and the arguments remain the same.  Since we want to apply  MathHalt  and  
PascalHalt  and  PythonHalt  to only one procedure each, we can simplify them by removing 
parameter  p  and defining them specifically for the one procedure we want to apply them to.  
Likewise  oracle ,  translate , and  interpret  can be defined specifically for the one instance 
they are applied to.  All of these parameters serve only to obfuscate.  Here are the simplified 
versions.

Define mathematical binary (boolean) value  MathHalt  as:
•  MathHalt = true  if execution of Pascal procedure  twist  terminates 
•  MathHalt = false  if execution of Pascal procedure  twist  does not terminate 
Since execution of  twist  (defined below) either terminates or does not terminate, but not both,  
MathHalt  is one of the two binary values.

Suppose, in order to show a contradiction, that there is a Pascal binary value  PascalHalt  that 
implements  MathHalt .  That is:  PascalHalt = MathHalt .  Now define Pascal procedure  
twist :

procedure twist;  begin if PascalHalt then twist end

Execution of  twist  begins by evaluating  PascalHalt .  If  PascalHalt = true , then the 
execution of  twist  calls  twist  and is nonterminating, so  MathHalt = false , so  
PascalHalt ≠ MathHalt , contrary to the supposition.  If  PascalHalt = false , then the execution 
of  twist  terminates, so  MathHalt = true , so again  PascalHalt ≠ MathHalt , contrary to the 
supposition.  Either way,  PascalHalt  does not implement  MathHalt .

We have two equations.  The first equation
(0) PascalHalt = MathHalt
is the definition of  PascalHalt .  The second equation:
(1) MathHalt = ¬PascalHalt
says that  MathHalt  is the negation of  PascalHalt .  It is obtained by examining  twist :  if  
PascalHalt = false ,  twist 's execution terminates, and so, by the definition of  MathHalt ,  
MathHalt = true ;  if  PascalHalt = true ,  twist 's execution does not terminate, and so, by the 
definition of  MathHalt ,  MathHalt = false .  The two equations (0) and (1) are inconsistent.  

Is  MathHalt  an incomputable binary value?  In other words, is  MathHalt  mathematically well 
defined to be one of the two binary values, but we are unable to compute which one?  And is 
this because mathematics is powerful enough to define  MathHalt , but computation is too weak 
to compute it?

Let us fortify Pascal with a magic binary value  oracle , defined as  oracle = MathHalt , and 
simultaneously fortify  MathHalt  to tell us about fortified-Pascal procedure  twist :
•  MathHalt = true  if execution of fortified-Pascal procedure  twist  terminates 
•  MathHalt = false  if execution of fortified-Pascal procedure  twist  does not terminate 
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And here is fortified-Pascal procedure  twist :

procedure twist; begin if oracle then twist end

Now the two equations are:
(2) oracle = MathHalt (by definition of  oracle )
(3) MathHalt = ¬oracle (by examination of  twist  and definition of  MathHalt )
The inconsistency of (2) and (3) is the same as the inconsistency of (0) and (1).  Using magic 
doesn't help.  The standard way out of the inconsistency is to say that there is no magic  oracle .

We can simplify further by leaving out  oracle , and just suppose that fortified-Pascal can use 
the mathematical binary value  MathHalt  directly.  Procedure  twist  becomes:

procedure twist; begin if MathHalt then twist end

Now we have only one equation:
(4) MathHalt = ¬MathHalt (by examination of  twist  and definition of  MathHalt )
Equation (4) is  inconsistent all by itself, and we have no  oracle  to blame.  We might blame 
the fact that we cannot use a mathematically defined name in a program.  But in the definition 
of  twist , can't we replace the name  MathHalt  with its value,  true  or  false , which is part of 
Pascal?  We don't need to fortify Pascal with magic or with mathematics, and we don't need to 
suppose there is a Pascal function  PascalHalt , in order to arrive at the same inconsistency.

Replacing mathematics with Python, but leaving out the obfuscating parameters, define:

def PythonHalt:  """PythonHalt = true  if execution of the Pascal procedure  twist  terminates 
          PythonHalt = false  if execution of the Pascal procedure  twist

        does not terminate"""

Let  translate  be the Pascal binary value,  true  or  false , that translates the Python binary value  
PythonHalt  into Pascal:  translate = PythonHalt .  Define:

procedure twist; begin if translate then twist end

These definitions are the two equations:
(5) translate = PythonHalt (by definition of  translate )
(6) PythonHalt = ¬translate (by examination of  twist  and definition of  PythonHalt )

If you think there is a difference between translation and interpretation of a binary value, then 
let  interpret  be the Pascal interpretation of  PythonHalt .  That is:  interpret = PythonHalt .  
Define:

procedure twist; begin if interpret then twist end

These definitions are the two equations:
(7) interpret = PythonHalt (by definition of  interpret )
(8) PythonHalt = ¬interpret (by examination of  twist  and definition of  PythonHalt )
We have the same inconsistency.

It makes no difference to the inconsistency argument whether we have a mathematically defined 
binary value ( MathHalt ) or a program-defined binary value ( PythonHalt ).  All that matters is 
that the binary value be defined outside Pascal.  And it makes no difference to the inconsistency 
argument whether we use magic ( oracle ) or a program ( translate ,  interpret ) to represent, 
inside Pascal, that binary value defined outside Pascal. 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Mathematics and Religion

There are two kinds of mathematician:  idealists and realists.  Idealist (usually called Platonist) 
mathematicians are like religious people, and realist (often called formalist) mathematicians are 
like atheists.  Idealists believe that mathematical objects, like numbers and sets and functions, 
exist, even if you can't see them or hear them or sense them in any way;  religious people 
believe that god(s) and souls exist, even if you can't see them or hear them or sense them in any 
way.  Idealist mathematicians believe there are mathematical truths, which they discover;  
religious people believe there are religious truths, which are revealed to them.  When idealists 
are confronted by an inconsistency between a mathematical function ( MathHalt ) and a 
computational function ( PascalHalt ), they maintain faith in the existence of the mathematical 
function, which they believe is not a human creation, and deny the existence of the 
computational function, which clearly would be a human creation.  Idealist mathematicians 
believe that mathematics is all-powerful, and computation has limited power, just as religious 
people believe that God is all-powerful, and humans have limited power.

An atheist denies the existence of gods and souls, and a realist mathematician denies the 
existence of mathematical objects.  To realists, mathematics is a language, and numbers, sets, 
functions, and so on, are expressions in the language of mathematics.  You can see them:  ink on 
paper, or pixels on a screen.  A realist mathematician believes that mathematics is a human 
creation.  Applied mathematics is invented for the purpose of modeling and reasoning about real 
objects and phenomena.  We can judge a mathematical creation by how well it models and aids 
understanding and helps us to reason about reality.  There are no mathematical truths, but 
mathematical expressions can be used to represent real truths.  (Pure mathematics is invented by 
mathematicians for their own amusement.  It is sometimes justified by saying that it may find 
applications later.)

To a realist, mathematics is a language not very different from a programming language.  There 
are rules to say which sequences of symbols are mathematical expressions and which are not, 
and a computer can check a sequence of symbols for syntactic correctness, just as it does for 
programs.  (The rules change from context to context, and they change over time with each new 
mathematical invention, just as they do from programming language to programming language.  
But in any given context, at any given moment, there are rules.)  There are axioms and proof 
rules to say which mathematical expressions are theorems, and a computer can check a proof 
for correctness.  An idealist may imagine that their mathematical expressions are talking about a 
rich world of mathematical objects, but the expressions are subject to syntax checks and proof 
checks, and those are computational.  To a realist, there is no reason to think that mathematics is 
more powerful than computation (whatever that might mean).  If there is a difference between 
the power of mathematics and the power of computation, that difference was not used anywhere 
in the halting problem inconsistency arguments, and so it is not the reason for the inconsistency.

An idealist says that a mathematical object exists exactly when a realist says that some 
mathematical expressions are consistent.  To the idealist, those expressions are a specification of 
the object.  Idealist existence is realist consistency.  The only way to prove that the 
mathematical halting function is consistently defined (exists) is to implement it.

[long aside] Architects, physicists, economists, civil engineers, neuroscientists, 
computer scientists, climate modelers, and many other people, use models.  To all of 
them, a model is something simpler and more abstract than what it models.  An architect 
may create a balsa wood and paint model that shows the shape and color of a building, 
but not what size it is, nor how much it weighs.  The architect may create a blueprint 
model that states the dimensions of the building but not its weight or color.  An actual 
building is an implementation of an architect's model;  it is more detailed than the 
model;  it has a shape and size and weight and color. 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A mathematical theory is a model.  For example, Newton's theory of motion allows us 
to calculate the trajectory of a cannonball, but does not tell us what color the cannonball 
is.  A flying cannonball is an implementation of the theory;  in addition to its trajectory, 
it has a color.  Computer scientists build a model to try to understand some software;  to 
be useful, the model has to be simpler than the software;  the software implements the 
model.  Theories and specifications are models of reality.

Logicians are a peculiar kind of mathematician.  They use the word “model” with the 
opposite meaning from everyone else.  To a logician, a model is more detailed, less 
abstract, than the theory it models.  Logicians use the word “model” to mean 
implementation.  Their preferred implementation language is set theory.  I think 
logicians have caused confusion by misusing the word “model”. [end of long aside]

The only way to prove that the mathematical halting function is consistently defined (exists) is 
to implement it.  The mathematical function that expresses halting of Pascal programs cannot be 
implemented in Pascal;  that's the Halting Problem.  But perhaps it can be implemented in 
Python (or any other programming language outside Pascal).  If so, that Python (or other 
language) program cannot be translated to (or interpreted in) Pascal.  If we fail to implement the 
mathematical halting specification (as a program or in set theory), then we do not know that the 
mathematical specification is consistent;  we do not know that there is a mathematical halting 
function.  If we succeed to implement it as a program, then the specification (definition) of 
halting is consistent, there is such a function, and it is computable.

In 1931, Kurt Gödel proved [0] that the mathematics of Russell and Whitehead's Principia 
Mathematica [3] (PM) is incomplete, assuming it is consistent.  To do so, he defined in PM a 
function (Bew) that, applied to any encoded sentence of PM, says whether that sentence is a 
theorem of PM.  In essence, Gödel used PM as a programming language, writing an interpreter 
for PM.  The program was written in a style that we call “functional” today.  It wasn't 
recognizable then, but Gödel was implementing mathematics as a computer program.  We now 
know:
•  All of mathematics can be modeled implemented in standard set theory (for example, 

Zermelo-Fraenkel set theory).
•  Set theory can be implemented in a programming language (for example, any automated 

prover).
•  Therefore all of mathematics can be implemented in a programming language.
This implies that mathematics is Turing-Machine-Equivalent.  Mathematics is not, in any sense, 
more powerful than computing.

Character Judge

The following story is intended as an analogy to the Halting Problem.

A person might admire another person, or not.  A person might admire themself, in which case 
they are conceited, or they might not admire themself, in which case they are modest.  A 
character judge for a town admires the modest people of the town, and does not admire the 
conceited people of the town.  There is a town named Pascalville, and in it there is a person 
named Blaise.  Blaise cannot be a character judge for Pascalville because, if he admires himself, 
he is conceited, and a character judge does not admire a conceited person, and if he does not 
admire himself, he is modest, and a character judge admires a modest person.

Outside Pascalville there are two other communities.  One is Heaven, where God lives, and the 
other is Pythonville, where Monty lives.  God is a character judge for Pascalville;  he uses his 
infinite wisdom to look deep into the souls of the people of Pascalville.  Monty is also a 
character judge for Pascalville;  he is only human, but he is intelligent and a good judge of 
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character.  It is just as consistent to say that Monty is a character judge for Pascalville as it is to 
say that God is a character judge for Pascalville.  The only attribute required for consistency is 
that they do not live in Pascalville.

Blaise is unhappy;  he can't see why both God and Monty can be character judges for 
Pascalville, but he cannot.  Blaise prays to God, and God answers, telling Blaise whom he 
admires.  So Blaise decides to do the same:  whomsoever God admires, so shall Blaise admire.  
But, try as he might, Blaise cannot do the same as God.  The reason is that God admires Blaise 
if and only if Blaise does not admire Blaise.  But Blaise is baffled.  He thinks the reason he 
cannot do the same as God might be that he is not hearing God correctly.  Most people believe 
that Blaise cannot do the same as God because God is all powerful, and Blaise is not.

Blaise tries again.  This time he talks to Monty.  Monty tells Blaise whom he admires.  Blaise 
decides to do the same as Monty, admiring whoever Monty admires, not admiring whoever 
Monty does not admire.  But Blaise is still not a character judge for Pascalville.  The reason is 
the same as before:  Monty admires Blaise if and only if Blaise does not admire Blaise.  But 
Blaise is still baffled.  He is sure he hears Monty correctly.  Most people believe that Blaise is 
doing the same as Monty, but Monty isn't really a character judge for Pascalville.

The analogy to the Halting Problem is as follows:
• person:  program
• Pascalville:  the Pascal programming language
• person who lives in Pascalville:  program in the Pascal programming language
• modest person:  program whose execution halts
• conceited person:  program whose execution does not halt
• character judge for a town:  halting function for a programming language
• Blaise:  an arbitrary Pascal program
• Heaven:  mathematics
• God as character judge for Pascalville:  the mathematical halting function for Pascal programs
• Pythonville:  the Python programming language
• Monty as character judge for Pascalville:  a Python program to compute halting for Pascal

programs
• infinite wisdom:  the unlimited power of mathematics (or, at least, the greater power of 

mathematics than the power of computation)
• soul of a person:  text of a program
• human:  the limited power of computation 
• God speaks to Blaise:  an oracle, as introduced by Turing
• Blaise does not hear God correctly:  there is no such thing as an oracle
• most people believe:  computer science textbooks say
• Blaise is doing the same as Monty:  a Pascal program that is the translation of a Python 

program, or a Pascal program that interprets a Python program;  a Pascal program whose 
execution does the same as the execution of a Python program

• Monty isn't really a character judge for Pascalville:  there is no Python program to compute
halting for Pascal programs

Conclusion

The story is a faithful analogy.  I am hoping the analogy makes clear that what “most people 
believe” is unwarranted.  If we believe that the mathematical halting function exists (has a 
consistent specification), we can prove that it cannot be implemented in the programming 
language to which it applies, but we cannot conclude that it cannot be implemented in another 
programming language, so we cannot conclude that it is incomputable.
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Appendix added 2021-6-24

I have used the word “idealist” to describe a mathematician who believes that mathematical 
objects exist, and the word “realist” to describe a mathematician who believes that there are no 
mathematical objects, only mathematical expressions.  Strangely, other people have used the 
word “realist” where I have used the word “idealist”, and “anti-realist” where I have used the 
word “realist”.  It seems to me that each kind of mathematician, those who believe 
mathematical objects exist and those who don't, want to say they are the “realists”, because that 
makes their position sound like the right one.
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