
2020-9-20 0

Halting, the Power of Mathematics, and Religion

Eric C.R. Hehner

Department of Computer Science, University of Toronto
hehner@cs.utoronto.ca

Halting

The Halting Problem is this: there is a mathematical halting function that says, for each
computer program, whether its execution terminates; but there is no computer program to
implement this mathematical function. Here is the proof, as first proved by Turing [1], except
that I refer to the Pascal programming language instead of the Turing Machine language, and I
am using text (character string) parameters instead of numeric parameters.

Let MathHalt (p, x) be the mathematical halting function. Parameter p is a text representing
a Pascal procedure with one text parameter x .
• MathHalt (p, x) = true if execution of the procedure represented by p applied to input x

terminates
• MathHalt (p, x) = false if execution of the procedure represented by p applied to input x
 does not terminate

Suppose, in order to show a contradiction, that there is a Pascal function PascalHalt that
implements MathHalt . That is: PascalHalt (p, x) = MathHalt (p, x) for all p and x . We
provide a dictionary of Pascal procedure and function definitions so that p can be just the name
of a procedure, and then PascalHalt can look up the name, and any names of called
procedures and functions, and retrieve their definitions for analysis. Now consider this Pascal
procedure:

procedure twist (x: string); begin if PascalHalt ('twist', x) then twist (x) end

Execution of twist ('twist') begins by calling PascalHalt ('twist', 'twist') . If
PascalHalt ('twist', 'twist') returns true , then the execution of twist ('twist') calls twist ('twist')
and is nonterminating, so MathHalt ('twist', 'twist') = false , so

PascalHalt ('twist', 'twist') ≠ MathHalt ('twist', 'twist')
contrary to the supposition. If PascalHalt ('twist', 'twist') returns false , then the execution of
twist ('twist') terminates, so MathHalt ('twist', 'twist') = true , so again

PascalHalt ('twist', 'twist') ≠ MathHalt ('twist', 'twist')
contrary to the supposition. Either way, PascalHalt does not implement MathHalt .

The reason that MathHalt cannot be implemented as a program, according to standard
theoretical computer science, is the limited power of computation, compared to the (unlimited?)
power of mathematics. There is a field of research called hypercomputation that studies
computation strengthened by magical powers. There are many journal articles and books on the
subject. This field was begun by Turing in [2]; he strengthened the power of computation by
adding a magic oracle to determine halting. But, as Turing found out, this still does not solve
the problem.

Fortify Pascal with oracle , defined such that oracle ('MathHalt', p, x) = MathHalt (p, x) , and
simultaneously fortify MathHalt to apply to fortified-Pascal procedure twist , defined as

procedure twist (x: string); begin if oracle ('MathHalt', 'twist', x) then twist (x) end 

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca
https://en.wikipedia.org/wiki/Hypercomputation

2020-9-20 Halting, the Power of Mathematics, and Religion 1

Execution of twist ('twist') begins by calling oracle ('MathHalt', 'twist', 'twist') . If
oracle ('MathHalt', 'twist', 'twist') returns true , then the execution of twist ('twist') calls
twist ('twist') and is nonterminating, so MathHalt ('twist', 'twist') = false , so

oracle ('MathHalt', 'twist', 'twist') ≠ MathHalt ('twist', 'twist')
contrary to its definition. If oracle ('MathHalt', 'twist', 'twist') returns false , then the execution
of twist ('twist') terminates, so MathHalt ('twist', 'twist') = true , so again

oracle ('MathHalt', 'twist', 'twist') ≠ MathHalt ('twist', 'twist')
contrary to its definition.

There is an inconsistency. If we blame the inconsistency on the specification of MathHalt ,
then there is no mathematical halting function, so we cannot conclude that “the halting
function” is incomputable. So it is commonly agreed to blame the inconsistency on the
specification of oracle . We cannot consistently define, let alone implement, a magic oracle to
report on the mathematical halting function.

Let us now repeat the argument, but replacing the mathematical function MathHalt with a
Python function PythonHalt . Here is its header, followed by a comment that specifies the
result.

def PythonHalt (p, x):
"""Parameter p is a text representing a Pascal procedure with one text parameter x .
 PythonHalt (p, x) = true if execution of the procedure represented by p

 applied to input x terminates
 PythonHalt (p, x) = false if execution of the procedure represented by p

 applied to input x does not terminate"""

Thus PythonHalt is specified identically to MathHalt . Both are outside the set of Pascal
procedures they apply to. A Pascal procedure cannot call a Python function, so we translate
PythonHalt to Pascal. Let translate be a Pascal function such that

translate ('PythonHalt', p, x) = PythonHalt (p, x)
Now consider this Pascal procedure:

procedure twist (x: string); begin if translate ('PythonHalt', 'twist', x) then twist (x) end

Execution of twist ('twist') begins by calling translate ('PythonHalt', 'twist', 'twist') . If
translate ('PythonHalt', 'twist', 'twist') returns true , then the execution of twist ('twist') calls
twist ('twist') and is nonterminating, so PythonHalt ('twist', 'twist') = false , so

translate ('PythonHalt', 'twist', 'twist') ≠ PythonHalt ('twist', 'twist')
contrary to its definition. If translate ('PythonHalt', 'twist', 'twist') returns false , then the
execution of twist ('twist') terminates, so PythonHalt ('twist', 'twist') = true , so again

translate ('PythonHalt', 'twist', 'twist') ≠ PythonHalt ('twist', 'twist')
contrary to its definition.

It is commonly concluded that we cannot program PythonHalt because of the limited power of
computation, but if we could, we could translate PythonHalt into Pascal. In this argument,
PythonHalt plays the same role as MathHalt played previously, and translate plays the same
role as oracle played. The proof of inconsistency is identical to previously. Whereas
previously oracle , not MathHalt , was blamed, this time, inexplicably, the usual conclusion is
opposite to previously: PythonHalt is blamed, not translate .

In the next version of the argument, we keep the definition of PythonHalt , but instead of
translating it to Pascal, we write a Pascal function interpret that interprets Python functions, so
that interpret ('PythonHalt', p, x) = PythonHalt (p, x) . Now consider the Pascal procedure

2020-9-20 Halting, the Power of Mathematics, and Religion 2

procedure twist (x: string); begin if interpret ('PythonHalt', 'twist', x) then twist (x) end

Exactly the same argument as before leads to exactly the same contradiction. As with translate
and opposite to oracle , the usual conclusion is that PythonHalt , not interpret , is to blame. It
is commonly concluded that we cannot program PythonHalt because of the limited power of
computation, but if we could, we could interpret PythonHalt in Pascal.

All of these arguments can be simplified without loss. The parameter x played no role in the
arguments. It could have been instantiated with any text, and the arguments remain the same.
We could leave it out, and talk about the halting status of Pascal procedures that have no
parameters, and the arguments remain the same. Since we want to apply MathHalt and
PascalHalt and PythonHalt to only one procedure each, we can simplify them by removing
parameter p and defining them specifically for the one procedure we want to apply them to.
Likewise oracle , translate , and interpret can be defined specifically for the one instance
they are applied to. All of these parameters serve only to obfuscate. Here are the simplified
versions.

Define mathematical binary (boolean) value MathHalt as:
• MathHalt = true if execution of Pascal procedure twist terminates
• MathHalt = false if execution of Pascal procedure twist does not terminate
Since execution of twist (defined below) either terminates or does not terminate, but not both,
MathHalt is one of the two binary values.

Suppose, in order to show a contradiction, that there is a Pascal binary value PascalHalt that
implements MathHalt . That is: PascalHalt = MathHalt . Now define Pascal procedure
twist :

procedure twist; begin if PascalHalt then twist end

Execution of twist begins by evaluating PascalHalt . If PascalHalt = true , then the
execution of twist calls twist and is nonterminating, so MathHalt = false , so
PascalHalt ≠ MathHalt , contrary to the supposition. If PascalHalt = false , then the execution
of twist terminates, so MathHalt = true , so again PascalHalt ≠ MathHalt , contrary to the
supposition. Either way, PascalHalt does not implement MathHalt .

We have two equations. The first equation
(0) PascalHalt = MathHalt
is the definition of PascalHalt . The second equation:
(1) MathHalt = ¬PascalHalt
says that MathHalt is the negation of PascalHalt . It is obtained by examining twist : if
PascalHalt = false , twist 's execution terminates, and so, by the definition of MathHalt ,
MathHalt = true ; if PascalHalt = true , twist 's execution does not terminate, and so, by the
definition of MathHalt , MathHalt = false . The two equations (0) and (1) are inconsistent.

Is MathHalt an incomputable binary value? In other words, is MathHalt mathematically well
defined to be one of the two binary values, but we are unable to compute which one? And is
this because mathematics is powerful enough to define MathHalt , but computation is too weak
to compute it?

Let us fortify Pascal with a magic binary value oracle , defined as oracle = MathHalt , and
simultaneously fortify MathHalt to tell us about fortified-Pascal procedure twist :
• MathHalt = true if execution of fortified-Pascal procedure twist terminates
• MathHalt = false if execution of fortified-Pascal procedure twist does not terminate

2020-9-20 Halting, the Power of Mathematics, and Religion 3

And here is fortified-Pascal procedure twist :

procedure twist; begin if oracle then twist end

Now the two equations are:
(2) oracle = MathHalt (by definition of oracle)
(3) MathHalt = ¬oracle (by examination of twist and definition of MathHalt)
The inconsistency of (2) and (3) is the same as the inconsistency of (0) and (1). Using magic
doesn't help. The standard way out of the inconsistency is to say that there is no magic oracle .

We can simplify further by leaving out oracle , and just suppose that fortified-Pascal can use
the mathematical binary value MathHalt directly. Procedure twist becomes:

procedure twist; begin if MathHalt then twist end

Now we have only one equation:
(4) MathHalt = ¬MathHalt (by examination of twist and definition of MathHalt)
Equation (4) is inconsistent all by itself, and we have no oracle to blame. We might blame
the fact that we cannot use a mathematically defined name in a program. But in the definition
of twist , can't we replace the name MathHalt with its value, true or false , which is part of
Pascal? We don't need to fortify Pascal with magic or with mathematics, and we don't need to
suppose there is a Pascal function PascalHalt , in order to arrive at the same inconsistency.

Replacing mathematics with Python, but leaving out the obfuscating parameters, define:

def PythonHalt: """PythonHalt = true if execution of the Pascal procedure twist terminates
 PythonHalt = false if execution of the Pascal procedure twist

 does not terminate"""

Let translate be the Pascal binary value, true or false , that translates the Python binary value
PythonHalt into Pascal: translate = PythonHalt . Define:

procedure twist; begin if translate then twist end

These definitions are the two equations:
(5) translate = PythonHalt (by definition of translate)
(6) PythonHalt = ¬translate (by examination of twist and definition of PythonHalt)

If you think there is a difference between translation and interpretation of a binary value, then
let interpret be the Pascal interpretation of PythonHalt . That is: interpret = PythonHalt .
Define:

procedure twist; begin if interpret then twist end

These definitions are the two equations:
(7) interpret = PythonHalt (by definition of interpret)
(8) PythonHalt = ¬interpret (by examination of twist and definition of PythonHalt)
We have the same inconsistency.

It makes no difference to the inconsistency argument whether we have a mathematically defined
binary value (MathHalt) or a program-defined binary value (PythonHalt). All that matters is
that the binary value be defined outside Pascal. And it makes no difference to the inconsistency
argument whether we use magic (oracle) or a program (translate , interpret) to represent,
inside Pascal, that binary value defined outside Pascal. 

2020-9-20 Halting, the Power of Mathematics, and Religion 4

Mathematics and Religion

There are two kinds of mathematician: idealists and realists. Idealist (usually called Platonist)
mathematicians are like religious people, and realist (often called formalist) mathematicians are
like atheists. Idealists believe that mathematical objects, like numbers and sets and functions,
exist, even if you can't see them or hear them or sense them in any way; religious people
believe that god(s) and souls exist, even if you can't see them or hear them or sense them in any
way. Idealist mathematicians believe there are mathematical truths, which they discover;
religious people believe there are religious truths, which are revealed to them. When idealists
are confronted by an inconsistency between a mathematical function (MathHalt) and a
computational function (PascalHalt), they maintain faith in the existence of the mathematical
function, which they believe is not a human creation, and deny the existence of the
computational function, which clearly would be a human creation. Idealist mathematicians
believe that mathematics is all-powerful, and computation has limited power, just as religious
people believe that God is all-powerful, and humans have limited power.

An atheist denies the existence of gods and souls, and a realist mathematician denies the
existence of mathematical objects. To realists, mathematics is a language, and numbers, sets,
functions, and so on, are expressions in the language of mathematics. You can see them: ink on
paper, or pixels on a screen. A realist mathematician believes that mathematics is a human
creation. Applied mathematics is invented for the purpose of modeling and reasoning about real
objects and phenomena. We can judge a mathematical creation by how well it models and aids
understanding and helps us to reason about reality. There are no mathematical truths, but
mathematical expressions can be used to represent real truths. (Pure mathematics is invented by
mathematicians for their own amusement. It is sometimes justified by saying that it may find
applications later.)

To a realist, mathematics is a language not very different from a programming language. There
are rules to say which sequences of symbols are mathematical expressions and which are not,
and a computer can check a sequence of symbols for syntactic correctness, just as it does for
programs. (The rules change from context to context, and they change over time with each new
mathematical invention, just as they do from programming language to programming language.
But in any given context, at any given moment, there are rules.) There are axioms and proof
rules to say which mathematical expressions are theorems, and a computer can check a proof
for correctness. An idealist may imagine that their mathematical expressions are talking about a
rich world of mathematical objects, but the expressions are subject to syntax checks and proof
checks, and those are computational. To a realist, there is no reason to think that mathematics is
more powerful than computation (whatever that might mean). If there is a difference between
the power of mathematics and the power of computation, that difference was not used anywhere
in the halting problem inconsistency arguments, and so it is not the reason for the inconsistency.

An idealist says that a mathematical object exists exactly when a realist says that some
mathematical expressions are consistent. To the idealist, those expressions are a specification of
the object. Idealist existence is realist consistency. The only way to prove that the
mathematical halting function is consistently defined (exists) is to implement it.

[long aside] Architects, physicists, economists, civil engineers, neuroscientists,
computer scientists, climate modelers, and many other people, use models. To all of
them, a model is something simpler and more abstract than what it models. An architect
may create a balsa wood and paint model that shows the shape and color of a building,
but not what size it is, nor how much it weighs. The architect may create a blueprint
model that states the dimensions of the building but not its weight or color. An actual
building is an implementation of an architect's model; it is more detailed than the
model; it has a shape and size and weight and color. 

2020-9-20 Halting, the Power of Mathematics, and Religion 5

A mathematical theory is a model. For example, Newton's theory of motion allows us
to calculate the trajectory of a cannonball, but does not tell us what color the cannonball
is. A flying cannonball is an implementation of the theory; in addition to its trajectory,
it has a color. Computer scientists build a model to try to understand some software; to
be useful, the model has to be simpler than the software; the software implements the
model. Theories and specifications are models of reality.

Logicians are a peculiar kind of mathematician. They use the word “model” with the
opposite meaning from everyone else. To a logician, a model is more detailed, less
abstract, than the theory it models. Logicians use the word “model” to mean
implementation. Their preferred implementation language is set theory. I think
logicians have caused confusion by misusing the word “model”. [end of long aside]

The only way to prove that the mathematical halting function is consistently defined (exists) is
to implement it. The mathematical function that expresses halting of Pascal programs cannot be
implemented in Pascal; that's the Halting Problem. But perhaps it can be implemented in
Python (or any other programming language outside Pascal). If so, that Python (or other
language) program cannot be translated to (or interpreted in) Pascal. If we fail to implement the
mathematical halting specification (as a program or in set theory), then we do not know that the
mathematical specification is consistent; we do not know that there is a mathematical halting
function. If we succeed to implement it as a program, then the specification (definition) of
halting is consistent, there is such a function, and it is computable.

In 1931, Kurt Gödel proved [0] that the mathematics of Russell and Whitehead's Principia
Mathematica [3] (PM) is incomplete, assuming it is consistent. To do so, he defined in PM a
function (Bew) that, applied to any encoded sentence of PM, says whether that sentence is a
theorem of PM. In essence, Gödel used PM as a programming language, writing an interpreter
for PM. The program was written in a style that we call “functional” today. It wasn't
recognizable then, but Gödel was implementing mathematics as a computer program. We now
know:
• All of mathematics can be modeled implemented in standard set theory (for example,

Zermelo-Fraenkel set theory).
• Set theory can be implemented in a programming language (for example, any automated

prover).
• Therefore all of mathematics can be implemented in a programming language.
This implies that mathematics is Turing-Machine-Equivalent. Mathematics is not, in any sense,
more powerful than computing.

Character Judge

The following story is intended as an analogy to the Halting Problem.

A person might admire another person, or not. A person might admire themself, in which case
they are conceited, or they might not admire themself, in which case they are modest. A
character judge for a town admires the modest people of the town, and does not admire the
conceited people of the town. There is a town named Pascalville, and in it there is a person
named Blaise. Blaise cannot be a character judge for Pascalville because, if he admires himself,
he is conceited, and a character judge does not admire a conceited person, and if he does not
admire himself, he is modest, and a character judge admires a modest person.

Outside Pascalville there are two other communities. One is Heaven, where God lives, and the
other is Pythonville, where Monty lives. God is a character judge for Pascalville; he uses his
infinite wisdom to look deep into the souls of the people of Pascalville. Monty is also a
character judge for Pascalville; he is only human, but he is intelligent and a good judge of

2020-9-20 Halting, the Power of Mathematics, and Religion 6

character. It is just as consistent to say that Monty is a character judge for Pascalville as it is to
say that God is a character judge for Pascalville. The only attribute required for consistency is
that they do not live in Pascalville.

Blaise is unhappy; he can't see why both God and Monty can be character judges for
Pascalville, but he cannot. Blaise prays to God, and God answers, telling Blaise whom he
admires. So Blaise decides to do the same: whomsoever God admires, so shall Blaise admire.
But, try as he might, Blaise cannot do the same as God. The reason is that God admires Blaise
if and only if Blaise does not admire Blaise. But Blaise is baffled. He thinks the reason he
cannot do the same as God might be that he is not hearing God correctly. Most people believe
that Blaise cannot do the same as God because God is all powerful, and Blaise is not.

Blaise tries again. This time he talks to Monty. Monty tells Blaise whom he admires. Blaise
decides to do the same as Monty, admiring whoever Monty admires, not admiring whoever
Monty does not admire. But Blaise is still not a character judge for Pascalville. The reason is
the same as before: Monty admires Blaise if and only if Blaise does not admire Blaise. But
Blaise is still baffled. He is sure he hears Monty correctly. Most people believe that Blaise is
doing the same as Monty, but Monty isn't really a character judge for Pascalville.

The analogy to the Halting Problem is as follows:
• person: program
• Pascalville: the Pascal programming language
• person who lives in Pascalville: program in the Pascal programming language
• modest person: program whose execution halts
• conceited person: program whose execution does not halt
• character judge for a town: halting function for a programming language
• Blaise: an arbitrary Pascal program
• Heaven: mathematics
• God as character judge for Pascalville: the mathematical halting function for Pascal programs
• Pythonville: the Python programming language
• Monty as character judge for Pascalville: a Python program to compute halting for Pascal

programs
• infinite wisdom: the unlimited power of mathematics (or, at least, the greater power of

mathematics than the power of computation)
• soul of a person: text of a program
• human: the limited power of computation
• God speaks to Blaise: an oracle, as introduced by Turing
• Blaise does not hear God correctly: there is no such thing as an oracle
• most people believe: computer science textbooks say
• Blaise is doing the same as Monty: a Pascal program that is the translation of a Python

program, or a Pascal program that interprets a Python program; a Pascal program whose
execution does the same as the execution of a Python program

• Monty isn't really a character judge for Pascalville: there is no Python program to compute
halting for Pascal programs

Conclusion

The story is a faithful analogy. I am hoping the analogy makes clear that what “most people
believe” is unwarranted. If we believe that the mathematical halting function exists (has a
consistent specification), we can prove that it cannot be implemented in the programming
language to which it applies, but we cannot conclude that it cannot be implemented in another
programming language, so we cannot conclude that it is incomputable.

2020-9-20 Halting, the Power of Mathematics, and Religion 7

References

[0] K.Gödel: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I, Monatshefte für Mathematik und Physik v.38 p.173-198, Leipzig, 1931.

[1] A.M.Turing: on Computable Numbers with an Application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society s.2 v.42 p.230-265, 1936;
correction s.2 v.43 p.544-546, 1937

[2] A.M.Turing: Systems of Logic based on Ordinals, p.8, Ph.D. thesis, Princeton University,
1939

[3] A.N.Whitehead, B.Russell: Principia Mathematica volumes 1, 2, and 3, Cambridge
University Press, 1910, 1912, 1913

This paper was rejected by arXiv.org cs.LO on 2021-6-15.

Appendix added 2021-6-24

I have used the word “idealist” to describe a mathematician who believes that mathematical
objects exist, and the word “realist” to describe a mathematician who believes that there are no
mathematical objects, only mathematical expressions. Strangely, other people have used the
word “realist” where I have used the word “idealist”, and “anti-realist” where I have used the
word “realist”. It seems to me that each kind of mathematician, those who believe
mathematical objects exist and those who don't, want to say they are the “realists”, because that
makes their position sound like the right one.

other papers on halting

http://arXiv.org
http://www.cs.utoronto.ca/~hehner/halting.html

