- 12 Formalize each of the following statements. For each of the ten pairs of statements, either prove they are equivalent or prove they differ.
- (a) Don't drink and drive.
- (b) If you drink, don't drive.
- (c) If you drive, don't drink.
- (d) Don't drink and don't drive.
- (e) Don't drink or don't drive.

After trying the question, scroll down to the solution.

(a) §	Don't drink and drive. $\neg(drink \land drive)$	
(b) §	If you drink, don't drive. $drink \Rightarrow \neg drive$ Proof that (a)=(b): $\neg (drink \land drive)$ $= \neg drink \lor \neg drive$ $= \neg \neg drink \Rightarrow \neg drive$ $= drink \Rightarrow \neg drive$ $= drink \Rightarrow \neg drive$ $= drink \Rightarrow \neg drive$	1)
(c) §	If you drive, don't drink. $drive \Rightarrow \neg drink$ Proof that (b)=(c): $drink \Rightarrow \neg drive$ $\equiv \neg \neg drive \Rightarrow \neg drink$ $\equiv drive \Rightarrow \neg drink$ double negation	
(d) §	Don't drink and don't drive. $\neg drink \land \neg drive$ Let $drink$ be \top and let $drive$ be \bot . Then (a) $\equiv \neg(drink \land drive) \equiv \neg(\top \land \bot) \equiv \neg \bot \equiv \top$ (d) $\equiv \neg drink \land \neg drive \equiv \neg \top \land \neg \bot \equiv \bot \land \top \equiv \bot$	
(e) §	Don't drink or don't drive. $\neg drink \lor \neg drive$ Proof that (a)=(e): $\neg (drink \land drive)$ $= \neg drink \lor \neg drive$ duality	y

We have proved (a)=(b) and (b)=(c) and (a)=(e), so (a), (b), (c), and (e) are all equal. We have proved (a) differs from (d), so (d) differs from (b), (c), and (e) as well.