142 (square) Let s and n be natural variables. Find a specification P such that both the following refinements can be proven:

$$s' = n^2 \iff s := n. P$$

 $P \iff \text{if } n=0 \text{ then } ok \text{ else } n:=n-1. s:=s+n+n. P \text{ fi}$

This program squares using only addition, subtraction, and test for zero.

After trying the question, scroll down to the solution.

Looking at the last refinement, I see that it's a loop, and n gets decreased each iteration, until it is 0. Also, s gets increased each iteration. So P should have the form s' = s + something

In other words, P says that the final value of s is the current value plus something more. When I am proving the first refinement,

 $s' = n^2 \iff s := n$. s' = s +something I will use the Substitution Law, making it

 $s' = n^2 \iff s' = n + \text{something}$

Now I see that "something" has to get rid of n and supply n^2 . So I'll try $P = s' = s + n^2 - n$

Proof of first refinement, starting with its right side:

	s := n. P	replace P
=	$s:=n. \ s'=s+n^2-n$	substitution law
=	$s' = n + n^2 - n$	arithmetic
=	$s' = n^2$	

Proof of last refinement, starting with its right side:

if n=0 **then** ok **else** n:=n-1. s:=s+n+n. *P* **fi** replace P and okif n=0 then $s'=s \land n'=n$ else n:=n-1. s:=s+n+n. $s'=s+n^2-n$ fi substitution law = **if** n=0 **then** $s'=s \land n'=n$ **else** n:=n-1. $s' = s + n^2 + n$ **fi** substitution law = **if** n=0 **then** $s'=s \land n'=n$ **else** $s' = s + (n-1)^2 + n - 1$ **fi** = arithmetic if n=0 then $s'=s \land n'=n$ else $s' = s + n^2 - n$ fi = context in then-part = **if** n=0 **then** $s' = s + n^2 - n \land n' = n$ **else** $s' = s + n^2 - n$ **fi** specialize then-part and monotonicity \implies if n=0 then $s' = s + n^2 - n$ else $s' = s + n^2 - n$ fi generic case idempotent = $s' = s + n^2 - n$ _ Р

I could have used Refinement by Cases to prove the last refinement.

§