
258 Let  n  be a natural variable.  Add time according to the recursive measure, and find a 
finite upper bound on the execution time of

P   ⇐   if n ≥ 2 then n:= n–2.  P.  n:= n+1.  P.  n:= n+1 else ok f

After trying the question, scroll down to the solution.



§ To ensure that every loop includes a time increment, it is sufficient to put  t:= t+1  just 
before the first call.  (But the question isn't any harder, and the time bound isn't 
significantly different, if we put  t:= t+1  before both calls.)  Because of the two calls, 
each at approximately the original value of  n , I guess the time might be exponential.  
Actually, it looks just like Fibonacci:  the first call is at  n–2 , the second is at  n–1 .  Let's 
try

P   =   tʹ ≤ t + 2n
The proof of the refinement will be by cases.  First case:

n≥2 ∧ (n:= n–2.  t:= t+1.  P.  n:= n+1.  P.  n:= n+1)
= n≥2  ∧  (tʹ ≤ t + 1 + 2n–2.  tʹ ≤ t  + 2n+1.  nʹ=n+1  ∧  tʹ=t)
= n≥2 ∧ ∃nʹʹ, tʹʹ, nʹʹʹ, tʹʹʹ·  tʹʹ ≤ t + 1 + 2n–2 ∧ tʹʹʹ ≤ tʹʹ  + 2nʹʹ+1 ∧ nʹ=nʹʹʹ+1 ∧  tʹ=tʹʹʹ
= n≥2
Oops.  The final time seems to be completely arbitrary.  The problem is that the first call 
of  P  allows  n  to change arbitrarily, so the last call of  P  allows  t  to change arbitrarily.  
Let's try again.

P   =   nʹ=n  ∧  tʹ ≤ t + 2n
The proof of the refinement will be by cases.  First case:

n≥2 ∧ (n:= n–2.  t:= t+1.  P.  n:= n+1.  P.  n:= n+1)
= n≥2  ∧  nʹ=n  ∧  tʹ ≤ t + 1 + 2n–2 + 2n–1

= n≥2  ∧  nʹ=n  ∧  tʹ ≤ t + 1 + 3×2n–2 when  n≥2 ,  1 ≤ 2n–2

⇒ n≥2  ∧  nʹ=n  ∧  tʹ ≤ t + 2n–2 + 3×2n–2 specialize and simplify
⇒ nʹ=n  ∧  tʹ ≤ t + 2n
Last case:

n<2 ∧ ok
= n<2 ∧ nʹ=n ∧ tʹ=t and  0 ≤ 2n
⇒ nʹ=n  ∧  tʹ ≤ t + 2n


