
258 Let n be a natural variable. Add time according to the recursive measure, and find a
finite upper bound on the execution time of

P ⇐ if n ≥ 2 then n:= n–2. P. n:= n+1. P. n:= n+1 else ok f

After trying the question, scroll down to the solution.

§ To ensure that every loop includes a time increment, it is sufficient to put t:= t+1 just
before the first call. (But the question isn't any harder, and the time bound isn't
significantly different, if we put t:= t+1 before both calls.) Because of the two calls,
each at approximately the original value of n , I guess the time might be exponential.
Actually, it looks just like Fibonacci: the first call is at n–2 , the second is at n–1 . Let's
try

P = tʹ ≤ t + 2n
The proof of the refinement will be by cases. First case:

n≥2 ∧ (n:= n–2. t:= t+1. P. n:= n+1. P. n:= n+1)
= n≥2 ∧ (tʹ ≤ t + 1 + 2n–2. tʹ ≤ t + 2n+1. nʹ=n+1 ∧ tʹ=t)
= n≥2 ∧ ∃nʹʹ, tʹʹ, nʹʹʹ, tʹʹʹ· tʹʹ ≤ t + 1 + 2n–2 ∧ tʹʹʹ ≤ tʹʹ + 2nʹʹ+1 ∧ nʹ=nʹʹʹ+1 ∧ tʹ=tʹʹʹ
= n≥2
Oops. The final time seems to be completely arbitrary. The problem is that the first call
of P allows n to change arbitrarily, so the last call of P allows t to change arbitrarily.
Let's try again.

P = nʹ=n ∧ tʹ ≤ t + 2n
The proof of the refinement will be by cases. First case:

n≥2 ∧ (n:= n–2. t:= t+1. P. n:= n+1. P. n:= n+1)
= n≥2 ∧ nʹ=n ∧ tʹ ≤ t + 1 + 2n–2 + 2n–1

= n≥2 ∧ nʹ=n ∧ tʹ ≤ t + 1 + 3×2n–2 when n≥2 , 1 ≤ 2n–2

⇒ n≥2 ∧ nʹ=n ∧ tʹ ≤ t + 2n–2 + 3×2n–2 specialize and simplify
⇒ nʹ=n ∧ tʹ ≤ t + 2n
Last case:

n<2 ∧ ok
= n<2 ∧ nʹ=n ∧ tʹ=t and 0 ≤ 2n
⇒ nʹ=n ∧ tʹ ≤ t + 2n

