
264 (edit distance) Given two lists, write a program to find the minimum number of item
insertions, item deletions, and item replacements to change one list into the other.

After trying the question, scroll down to the solution.

§ Here is the standard solution, which uses for-loops (Subsection 5.2.3), but for-loops are
never necessary. We will change list A into list B . Let D: [(#A+1) * [(#B+1) * nat]]
be an array-valued variable whose final value will be such that Dʹ i j = (the edit distance
from A[0;..i] to B[0;..j]) . So the final answer will be Dʹ (#A) (#B) .

(0) for i:= 0;..#A+1 do D i 0:= i od.
(1) for j:= 1;..#B+1 do D 0 j:= j od.
(2) for i:= 1;..#A+1 do
(3) for j:= 1;..#B+1 do
(4) D i j:= (D (i–1) (j–1) + if A i = B j then 0 else 1 fi)
(5) ↓ (D (i–1) j + 1)
(6) ↓ (D i (j–1) + 1) od od

Line 0 says A[0;..i] can be changed to [nil] by i deletions.
Line 1 says [nil] can be changed to B[0;..j] by j insertions.
Lines 2 and 3 fill in the interior of D .
On line 4, if we can transform A[0;..i–1] to B[0;..j–1] in D (i–1) (j–1) steps, and if
Ai=Bj , we have transformed A[0;..i] to B[0;..j] . But if A i ⧧ B j then we need to
replace A i by B j which takes 1 step.
On line 5, if we can transform A[0;..i–1] to B[0;..j] in D (i–1) j steps, then we can
transform A[0;..i] to B[0;..j] by deleting A i .
On line 6, if we can transform A[0;..i] to B[0;..j–1] in D i (j–1) steps, then we can
transform A[0;..i] to B[0;..j] by appending B j .
The shortest way to transform A[0;..i] to B[0;..j] is the minimum of the three ways
from lines 4, 5, and 6.

To prove the correctness of this solution, find invariants for the for-loops. Or eliminate
the for-loops and write specifications as in Chapter 4.

