327 (square) Let *n* be natural and let *s* be a natural variable. Using a **for**-loop, without using multiplication or exponentiation, write a program for $s'=n^2$.

After trying the question, scroll down to the solution.

A'll use the invariant form of **for**-loop. $s'=n^2 \iff s:=0. A \ 0 \Rightarrow A'n$ $A \ 0 \Rightarrow A'n \iff$ **for** $k:= 0;..n \$ **do** $k: 0,..n \land A \ k \Rightarrow A'(k+1) \$ **od** $k: 0,..n \land A \ k \Rightarrow A'(k+1) \iff s:= s +$ something To complete the final refinement, we need to define $A \ k$. Here's one way. $A \ k = s = k \times n$ Now to change $k \times n$ into $(k+1) \times n$ we need to add $(k+1) \times n - k \times n = n$ So we complete the solution:

$$k: 0, ... n \land A k \Rightarrow A'(k+1) \iff s:= s+n$$

Here's another way to define A k. $A k \equiv s = k^2$ Now to change k^2 into $(k+1)^2$ we need to add $(k+1)^2 - k^2 = k+k+1$ So we complete the solution: $k: 0, ..n \land A k \Rightarrow A'(k+1) \iff s:= s+k+k+1$

§