339	(Boole's binaries) If $\top = 1$ and $\perp = 0$, express
(a)	$\neg a$
(b)	$a \wedge b$
(c)	$a \vee b$
(d)	$a \Rightarrow b$
(e)	a⇔b
(f)	a=b
(g)	$a \neq b$
	using only the following symbols (in any quantity)
(i)	$0 1 a b() + - \times$
(ii)	$0 1 a b () - \uparrow \downarrow$
	That's $7 \times 2 = 14$ questions.

After trying the question, scroll down to the solution.

§		(i)	(ii)
(a)	$\neg a$	$\equiv 1 - a$	$\equiv 1 - a$
(b)	$a \wedge b$	$\equiv a \times b$	$= a \downarrow b$
(c)	$a \vee b$	$\equiv a + b - a \times b$	$= a \uparrow b$
(d)	$a \Rightarrow b$	$\equiv 1 - a + a \times b$	$\equiv (1-a)\uparrow b$
(e)	a ⇔ b	$= 1 - b + a \times b$	$= a \uparrow (1-b)$
(f)	a=b	$\equiv 1 - a - b + 2 \times a \times b$	$\equiv (a \uparrow (1-b)) \downarrow ((1-a) \uparrow b)$
(g)	$a \neq b$	$= a + b - 2 \times a \times b$	$= (a \downarrow (1-b)) \uparrow ((1-a) \downarrow b)$