36 Show that the number axioms become inconsistent when we add the axiom $-\infty < y < \infty \implies x/y \times y = x$

After trying the question, scroll down to the solution.

↑	$-\infty < y < \infty \implies x/y \times y = x$ $-\infty < 0 < \infty \implies 1/0 \times 0 = 1$ $1/0 \times 0 = 1$ $0 \times (1/0) = 1$ $(0 \times 1)/0 = 1$ 0/0 = 1	instantiate direction, identity symmetry multiplication-division base
	$-\infty < y < \infty \implies x/y \times y = x$ $-\infty < 0 < \infty \implies 2/0 \times 0 = 2$ $2/0 \times 0 = 2$ $0 \times (2/0) = 2$ $(0 \times 2)/0 = 2$ 0/0 = 2	instantiate direction, identity symmetry multiplication-division base
	T $0/0 = 1 \land 0/0 = 2$ $1=2$ $(1-1)=(2-1)$ $0=1$ $0=1 \land -\infty < 0 < 1 < \infty$ $0=1 \land 0 < 1$ \bot	previous two results symmetry, transitivity transparency arithmetic direction specialization exclusivity (generic)

We have proven \perp so we have inconsistency.

§