- 361 (Tokieda's paradox)
- (a) Alice tosses a coin until she sees a head followed by a tail. How many times does she toss a coin on average?
- (b) Bob tosses a coin until he sees two heads in a row. How many times does he toss a coin on average?
- (c) Since the probability of a head is equal to the probability of a tail, the probability of a head followed by a tail is equal to the probability of two heads in a row; each is 1/4. So why do the answers to (a) and (b) differ?

After trying the question, scroll down to the solution.

- (a) Alice tosses a coin until she sees a head followed by a tail. How many times does she toss a coin on average?
- § Before presenting the formal analysis, here are 3 helpful lemmas.

```
Lemma 0: (\Sigma n: nat+1 \cdot 2^{-n}) = 1
Proof:
      \Sigma n: nat+1 \cdot 2^{-n}
                                                                                                       separate first term
= 1/2 + \Sigma n: nat + 2 \cdot 2^{-n}
                                                                                                      change of variable
= 1/2 + \Sigma n: nat+1 \cdot 2^{-(n+1)}
                                                                                                            factor out 1/2
= 1/2 + 1/2 \times \Sigma n: nat+1 \cdot 2^{-n}
Let x = \sum n: nat+1 \cdot 2^{-n}. Then x = 1/2 + 1/2 \times x. So x=1.
Lemma 1: (\Sigma n: nat+1 \cdot n \times 2^{-n}) = 2
Proof:
\Sigma n: nat+1 \cdot n \times 2^{-n}
                                                                                                       separate first term
= 1/2 + \Sigma n: nat + 2 \cdot n \times 2^{-n}
                                                                                                      change of variable
      1/2 + \Sigma n: nat+1 \cdot (n+1) \times 2^{-(n+1)}
                                                                                                            factor out 1/2
=
= 1/2 + 1/2 \times \Sigma n: nat+1 \cdot (n+1) \times 2^{-n}
                                                                                                              separate sum
= 1/2 + 1/2 \times ((\Sigma n: nat+1 \cdot n \times 2^{-n}) + (\Sigma n: nat+1 \cdot 2^{-n}))
                                                                                                                   Lemma 0
= 1/2 + 1/2 \times ((\Sigma n: nat + 1 \cdot n \times 2^{-n}) + 1)
Let x = \sum n: nat+1 \cdot n \times 2^{-n}. Then x = 1/2 + 1/2 \times (x+1). So x=2.
Lemma 2: (\Sigma n: nat+1 \cdot n^2 \times 2^{-n}) = 6
Proof:
      \Sigma n: nat+1 \cdot n^2 \times 2^{-n}
                                                                                                       separate first term
      1/2 + \Sigma n: nat + 2 \cdot n^2 \times 2^{-n}
                                                                                                      change of variable
=
      1/2 + \Sigma n: nat+1 \cdot (n+1)^2 \times 2^{-(n+1)}
                                                                                           square, and factor out 1/2
=
      1/2 + 1/2 \times \Sigma n: nat+1 \cdot (n^2 + 2 \times n + 1) \times 2^{-n}
                                                                                                              separate sum
=
      1/2 + 1/2 \times ((\Sigma n: nat+1 \cdot n^2 \times 2^{-n}) + (\Sigma n: nat+1 \cdot 2 \times n \times 2^{-n}) + (\Sigma n: nat+1 \cdot 2^{-n}))
=
                                                                                                         Lemmas 0 and 1
=
      1/2 + 1/2 \times ((\Sigma n: nat+1 \cdot n^2 \times 2^{-n}) + 2 \times 2 + 1)
Let x = \sum n: nat+1 \cdot n^2 \times 2^{-n}. Then x = 1/2 + 1/2 \times (x + 2 \times 2 + 1). So x=6.
```

Using binary variables x and y for the results of the coin tosses, and positive natural variable n to count the tosses, here is Alice's program.

- $A = \mathbf{if} 1/2 \mathbf{then} x := head \mathbf{else} x := tail \mathbf{fi}. n := 1. P$
- P = if 1/2 then y := head else y := tail fi. n := n+1.if x=head \land y=tail then ok else x := y. P fi

In the end, $x'=head \land y'=tail$, but we want the distribution of n'; henceforth we ignore x' and y'. Any execution of this program produces a sequence of coin results that looks like this: $tail^* head^+ tail$ where * means 0 or more, and + means 1 or more. There are n'-1 such sequences of length n', each occurring with probability $2^{-n'}$. So I propose

$$A = (n'-1) \times 2^{-n}$$

For example, n'=4 with probability $(4-1)\times 2^{-4}$ which is 3/16. I need to check that A is a distribution of n'; each value is a probability, so I must prove

 $(\Sigma n': nat+1 \cdot (n'-1) \times 2^{-n'})$ $= (\Sigma n': nat+1 \cdot n' \times 2^{-n'}) - (\Sigma n': nat+1 \cdot 2^{-n'})$ = 2-1 = 1

Now we need a hypothesis for P. If x=head then an execution of P produces a sequence of coin tosses that looks like this: $head^* tail$, and there is only 1 such sequence of length n'-n, with probability $2^{-(n'-n)}$. If x=tail then an execution of P produces a sequence of coin tosses that looks the same as an execution of A produces. So I propose

 $P = \text{if } x = head \text{ then } (n'-n \ge 1) \times 2^{-(n'-n)} \text{ else } (n'-n \ge 1) \times (n'-n-1) \times 2^{-(n'-n)} \text{ fi}$ The **then**-part sums to 1 by Lemma 0, and the **else**-part is the same distribution as A. We can simplify P by factoring:

 $P = (n'-n \ge 1) \times 2^{-(n'-n)} \times \text{if } x = head \text{ then } 1 \text{ else } n'-n-1 \text{ fi}$

Here is the proof of the A equation, starting with the right side.

	if $1/2$ then $x := head$ else $x := tail$ fi. $n := 1$. P		distribute
=	if 1/2 then <i>x</i> := <i>head</i> . <i>n</i> := 1. <i>P</i> else <i>x</i> := <i>tail</i> . <i>n</i> := 1. <i>P</i> fi repla	ace P and	l substitutions
=	if $1/2$ then $(n'-1 \ge 1) \times 2^{-(n'-1)} \times$ if head=head then 1 else $n'-1$	-1 fi	case base
	else $(n'-1 \ge 1) \times 2^{-(n'-1)} \times \text{if } tail=head \text{ then } 1 \text{ else } n'-1-1 \text{ fi fi}$		case base
=	if $1/2$ then $(n' \ge 2) \times 2^{-(n'-1)} \times 1$ else $(n' \ge 2) \times 2^{-(n'-1)} \times (n'-2)$ fi		factor
=	$(n' \ge 2) \times 2^{-(n'-1)} \times \text{if } 1/2 \text{ then } 1 \text{ else } n'-2 \text{ fi}$		arithmetize if
=	$(n' \ge 2) \times 2^{-(n'-1)} \times (1/2 + (n'-2)/2)$		arithmetic
=	$(n' \ge 2) \times 2^{-n'} \times (n' - 1)$	when n'	=1 result is 0
=	$(n' \ge 1) \times (n' - 1) \times 2^{-n'}$		
=	Α		
And	d now the P equation, starting with its right side.		
	if $1/2$ then <i>y</i> := <i>head</i> else <i>y</i> := <i>tail</i> fi . <i>n</i> := <i>n</i> +1.		
	if x =head \land y =tail then ok else x := y . P fi	repla	ice ok and P
=	if $1/2$ then <i>y</i> := <i>head</i> else <i>y</i> := <i>tail</i> fi . <i>n</i> := <i>n</i> +1.		
	if x =head \land y =tail then n' = n		
	else $x:=y$. $(n'-n \ge 1) \times 2^{-(n'-n)} \times \text{if } x=head \text{ then } 1 \text{ else } n'-n-1 \pm 2^{-(n'-n)} \times 1 \text{ else } n'-n-1 +$	f i fi su	bstitution law
=	if $1/2$ then <i>y</i> := <i>head</i> else <i>y</i> := <i>tail</i> fi . <i>n</i> := <i>n</i> +1.		
	if x =head \land y =tail then n' = n		
	else $(n'-n \ge 1) \times 2^{-(n'-n)} \times \text{if } y = head \text{ then } 1 \text{ else } n'-n-1 \text{ fi fi}$		distribute
=	if $1/2$ then $y := head$. $n := n+1$.	substitut	tion law twice
	if x =head \land y =tail then n' = n		
else $(n'-n \ge 1) \times 2^{-(n'-n)} \times if$ y=head then 1 else n'-n-1 fi fi			
	else $y := tail. n := n+1.$	aı	nd twice more
	if $x=head \land y=tail$ then $n'=n$		
	else $(n'-n \ge 1) \times 2^{-(n'-n)} \times \text{if } y = head \text{ then } 1 \text{ else } n'-n-1 \text{ fi}$	fi fi	
=	if $1/2$ then if $x=head \land head=tail$ then $n'=n+1$		
	else $(n'-n-1 \ge 1) \times 2^{-(n'-n-1)} \times \text{if } head=head \text{ then } 1$	else n'-n-	-1–1 fi fi
	else if $x=head \land tail=tail$ then $n'=n+1$		
	else $(n'-n-1 \ge 1) \times 2^{-(n'-n-1)} \times \text{if } tail=head \text{ then } 1 \text{ else } n'-n-1 \ge 1$	<i>n</i> –1–1 fi fi	fi simplify
=	if $1/2$ then $(n'-n \ge 2) \times 2^{-(n'-n-1)}$		
	else if <i>x</i> = <i>head</i> then $n'=n+1$ else $(n'-n \ge 2) \times 2^{-(n'-n-1)} \times (n'-n-2)$	2) fi fi	replace if 1/2
=	$1/2 \times (n' - n \ge 2) \times 2^{-(n' - n - 1)}$		
	+ $1/2 \times \text{if } x = head \text{ then } n' = n+1 \text{ else } (n'-n \ge 2) \times 2^{-(n'-n-1)} \times (n'-n)$	- <i>n</i> -2) fi	distribute
=	$1/2 \times (n' - n \ge 2) \times 2^{-(n' - n - 1)}$		
	+ if <i>x</i> = <i>head</i> then $(n'=n+1)/2$ else $(n'-n \ge 2) \times 2^{-(n'-n-1)} \times (n'-n-1)$	-2) / 2 fi	arithmetic

$$= (n'-n \ge 2) \times 2^{-(n'-n)} + if x=head then (n'=n+1)/2 else (n'-n \ge 2) \times 2^{-(n'-n)} \times (n'-n-2) fi$$
context

$$= (n'-n \ge 2) \times 2^{-(n'-n)} + if x=head then (n'=n+1) \times 2^{-(n'-n)} else (n'-n \ge 2) \times 2^{-(n'-n)} \times (n'-n-2) fi$$
factor

$$= 2^{-(n'-n)} \times ((n'-n \ge 2) + if x=head then n'-n = 1 else (n'-n \ge 2) \times (n'-n-2) fi)$$
check 3 cases: $n'-n \le 0$, $n'-n = 1$, and $n'-n \ge 2$

$$= (n'-n \ge 1) \times 2^{-(n'-n)} \times if x=head then 1 else n'-n-1 fi$$

$$= P$$

The average value of n' is

The average value of n' is

A.n $(n'-1) \times 2^{-n'}$. n = $\Sigma n''$: $nat+1 \cdot (n''-1) \times 2^{-n''} \times n''$ drop the primes (rename) and symmetry of \times = $\Sigma n: nat+1 \cdot (n-1) \times n \times 2^{-n}$ multiply and separate sum = $(\Sigma n: nat+1: n^2 \times 2^{-n}) - (\Sigma n: nat+1: n \times 2^{-n})$ Lemmas 1 and 2 = 6 - 2= = 4

(b) Bob tosses a coin until he sees two heads in a row. How many times does he toss a coin on average?

Here is Bob's program. §

 $B = \mathbf{if} 1/2 \mathbf{then} x = head \mathbf{else} x = tail \mathbf{fi}. n = 1. Q$

= **if** 1/2 **then** *y*:= *head* **else** *y*:= *tail* **fi**. *n*:= *n*+1. 0 if $x=head \land y=head$ then ok else x:=y. Q fi

In the end, $x'=head \land y'=head$, but we want the distribution of n'. Any execution of this program produces a sequence of coin results that looks like this:

*tail; *(head; tail; *tail); head; head

Just to simplify the formula, if we take the final *head* and change it into an initial *tail*, we don't change the length or the probability of any sequence, and the sequences are

tail; **tail*; *head*; **(tail*; **tail*; *head*) For each $n' \ge 2$ there are f n' such sequences of length n', each occurring with probability $2^{-n'}$, where

 $f n' = \Sigma i: nat \cdot (n' - 3 \times i - 1 \ge 0) \times (n' - 2 \times i - 1)! / (n' - 3 \times i - 1)! / i!$ The initial factor $(n' - 3 \times i - 1 \ge 0)$ is equivalent to (i < n'/3). Checking: f = 1, f = 1, f = 1, f = 2, f = 3.

So I propose

 $B = (n' \ge 2) \times f n' \times 2^{-n'}$

For example, n'=4 with probability $(4\geq 2) \times f n' \times 2^{-4}$ which is 1/8. We need to prove that B is a distribution of n'. Each value is a probability, so we prove

 $\Sigma n': nat+1 \cdot (n' \ge 2) \times f n' \times 2^{-n'}$ drop the primes (rename) $\Sigma n: nat+2 \cdot fn \times 2^{-n}$ =

- $\Sigma n: nat+2: 2^{-n} \times \Sigma i: nat: (n-3 \times i 1 \ge 0) \times (n-2 \times i 1)! / (n-3 \times i 1)! / i!$ =
- **UNFINISHED** =
- 1 =

Now we need a hypothesis for Q, and I propose

Q = UNFINISHED

Here is the proof, starting with the B equation, right side. if 1/2 then x := head else x := tail fi. n := 1. Q **UNFINISHED** = =В And now the Q equation, starting with its right side. **if** 1/2 **then** *y*:= *head* **else** *y*:= *tail* **fi**. *n*:= *n*+1. if $x=head \land y=head$ then ok else x:=y. Q fi **UNFINISHED** = = Q The average value of n' is *B*. *n* replace B

- $= (n' \ge 2) \times f n' \times 2^{-n'} \cdot n \qquad \text{definition of} \quad .$ $= \Sigma n'': nat+1 \cdot (n'' \ge 2) \times f n'' \times 2^{-n''} \times n'' \qquad \text{drop the primes (rename)}$ $= \Sigma n: nat+2 \cdot f n \times 2^{-n} \times n \qquad .$ $= \Sigma n: nat+2 \cdot n \times 2^{-n} \times \Sigma i: nat \cdot (n - 3 \times i - 1 \ge 0) \times (n - 2 \times i - 1)! / (n - 3 \times i - 1)! / i!$
- $= 2n. nai+2^{n} n \times 2^{n} \times 2i. nai^{n} (n 3 \times i 1 \ge 0) \times (n 2 \times i 1)! / (n 3 \times i 1)! / i!$ = UNFINISHED
- = 6
- (c) Since the probability of a head is equal to the probability of a tail, the probability of a head followed by a tail is equal to the probability of two heads in a row; each is 1/4. So why do the answers to (a) and (b) differ?
- S Alice's program in part (a) and Bob's program in part (b) are so similar that you might expect the same answer, but the answer differs. That's why Tokieda called it a paradox.