362 (conditional probability) Bayes defined conditional probability, using his own notation, as follows:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

This is to be read "the probability that A is true given that B is true is equal to the probability that both are true divided by the probability that B is true". How is conditional probability expressed in our notation?

After trying the question, scroll down to the solution.

A binary expression *B* may not be a distribution. It becomes a distribution if we divide it by its sum. For example, let x be the only variable. Then $B / (\Sigma x \cdot B)$ is the distribution proportional to *B*. Define

 $\mathcal{F}B = B / (\Sigma x \cdot B)$ We pronounce $\mathcal{F}B$ as "normalize *B*". We can now express Bayes' conditional probability P(A | B) as

 $B' \cdot A$

This describes the situation where we learn that B is true and then ask if A is true. This situation is just one of infinitely many situations for which we may want to calculate a probability. We cannot make a special notation for each one, as Bayes has done for conditional probability. We need to be able to describe the situation using a basic set of connectives, and from that description, calculate probabilities, as we do.

To prove that we have described Bayes' conditional probability, again let x be the only variable, and let n be the size of its domain. Then

	B'. A	use definition of \updownarrow
=	$B' / (\Sigma x' \cdot B'). A$	use definition of .
=	$\Sigma x^{\prime\prime} \cdot B^{\prime\prime} / (\Sigma x^{\prime} \cdot B^{\prime}) \times A^{\prime\prime}$	rearrange and rename local variables
=	$(\Sigma x \cdot A \times B) / (\Sigma x \cdot B)$	divide numerator and denominator each by n
=	$\frac{(\Sigma x \cdot A \times B) / n}{(\Sigma x \cdot B) / n}$	switch to Bayes' probability notation
=	$\frac{P\left(A \wedge B\right)}{P\left(B\right)}$	use Bayes definition of conditional probability
=	$P(A \mid B)$	

§