- 38 Let be a two-operand infix operator (precedence 3) whose operands and result are of some type T. Let \diamond be a two-operand infix operator (precedence 7) whose operands are of type T and whose result is binary, defined by the axiom $a \diamond b = a \bullet b = a$
- (a) Prove if \bullet is idempotent then \diamond is reflexive.
- (b) Prove if \bullet is associative then \diamond is transitive.
- (c) Prove if \bullet is symmetric then \diamond is antisymmetric.
- (d) If T is the binary values and \bullet is \land , what is \diamond ?
- (e) If T is the binary values and \bullet is v, what is \diamond ?
- (f) If T is the natural numbers and \diamond is \leq , what is \bullet ?
- (g) The axiom defines \diamond in terms of \bullet . Can it be inverted, so that \bullet is defined in terms of \diamond ?

After trying the question, scroll down to the solution.

Prove if \bullet is idempotent then \diamond is reflexive. (a) $a \bullet a = a$ use axiom § $a \diamond a$ =(b) Prove if \bullet is associative then \diamond is transitive. $a \diamond b \land b \diamond c$ use axiom 2 times § = $a \bullet b = a \land b \bullet c = b$ idempotence of \wedge = $a \bullet b = a \land a \bullet b = a \land b \bullet c = b$ use third conjunct to replace b in second = $a \bullet b = a \land a \bullet (b \bullet c) = a \land b \bullet c = b$ specialize: drop third conjunct $a \bullet b = a \land a \bullet (b \bullet c) = a$ use associativity \Rightarrow use first conjunct to replace $a \cdot b$ in second = $a \bullet b = a \land (a \bullet b) \bullet c = a$ = $a \bullet b = a \land a \bullet c = a$ specialize: drop first conjunct use axiom \Rightarrow $a \bullet c = a$ _ $a \diamond c$ (c) Prove if \bullet is symmetric then \diamond is antisymmetric. $a \diamond b \land b \diamond a$ use axiom 2 times § = $a \bullet b = a \land b \bullet a = b$ use symmetry of = and \bullet = $a = a \bullet b \land a \bullet b = b$ transitivity of = \Rightarrow a = b(d) If T is the binary values and • is \land , what is \diamond ? $a \Rightarrow b \equiv a \land b = a \text{ so } \diamond \text{ is } \Rightarrow$. § If T is the binary values and \bullet is \vee , what is \diamond ? (e) $a \leftarrow b \equiv a \lor b = a \text{ so } \diamond \text{ is } \leftarrow .$ § (f) If T is the natural numbers and \diamond is \leq , what is \bullet ? $a \le b \equiv \min a \ b = a \ \text{so} \cdot \text{is} \ \min a$. § The axiom defines \diamond in terms of \bullet . Can it be inverted, so that \bullet is defined in terms of (g) \diamond ? If T is the binary values we can invert as follows: $a \cdot b = a \land b = a$. If T is § anything else, we can invert under the assumption $a \diamond b \lor b \diamond a$. The inversion is $a \bullet b \equiv if a \diamond b$ then a else b fi