- 417 Let the state consist of binary variables b and c. Let $W = \mathbf{if} b \mathbf{then} P. W \mathbf{else} ok \mathbf{fi}$ $X = \mathbf{if} b \mathbf{v} c \mathbf{then} P. X \mathbf{else} ok \mathbf{fi}$
- (a) Find a counterexample to W. X = X.
- (b) Now let W and X be the weakest solutions of those equations, and prove W.X = X.

After trying the question, scroll down to the solution.

(a) Find a counterexample to W.X = X. Let P = ok, let $\overline{W} = c := b \lor c$, and let $X = b := \bot$. We have to check that the given § equations are satisfied. First, the W equation. if b then P. W else ok fi expand. \perp is identity for v = **if** b **then** ok. $c := b \lor c$ **else** $c := \bot \lor c$ **fi** ok is identity. In the else part, b is \perp . = if b then $c := b \lor c$ else $c := b \lor c$ fi case idempotent = WNext, check the X equation. if $b \lor c$ then P. X else ok fi In the else part, b is \perp . =if $b \lor c$ then ok. $b := \bot$ else $b := \bot$ fi ok is identity, case idempotent = X So both equations are satisfied. Now we check that $W \cdot X = X$ is not satisfied. W.X= $c := b \lor c$. $b := \bot$ expand final assignment = $c := b \lor c$. $\neg b' \land c' = c$ substitution law = $\neg b' \land c' = b \lor c$ And X = $b := \bot$ $\neg b' \land c' = c$ _ When the initial state is $b \wedge \neg c$, (W.X) leaves c' with value \top , but X leaves c' with value \perp .

(b) Now let W and X be the weakest solutions of those equations, and prove W.X = X.