
467 A binary tree can be stored as a list of nodes in breadth order.  Traditionally, the root is at 
index  1 , the node at index  n  has its left child at index  2×n  and its right child at index  
2×n+1 .  Suppose the user's variable is  x: X , and the implementer's variables are  s: [*X]  
and  p: nat+1 , and the operations are

goHome = p:= 1
goLeft = p:= 2×p
goRight = p:= 2×p + 1
goUp = p:= div p 2
put = s:= p→x | s
get = x:= s p

Now suppose we decide to move the entire list down one index so that we do not waste 
index  0 .  The root is at index  0 , its children are at indexes  1  and  2 , and so on.  
Develop the necessary data transform, and use it to transform the operations.

After trying the question, scroll down to the solution.



§ The new implementer's variables are  r: [*X]  and  q: nat .  The transform is
r = s[1;..#s]  ∧  p = q+1

For each of the transformations, it will be easy enough to eliminate the three variables  p ,  
sʹ , and  pʹ  by one-point.  The trick to eliminate  s  is explained after the transformations.

Transform  goHome :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=s ∧ pʹ=1
= xʹ=x ∧ rʹ=r  ∧  1 = qʹ+1
= q:= 0

Transform  goLeft :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=s ∧ pʹ=2×p
= xʹ=x ∧ rʹ=r  ∧  2×(q+1) = qʹ+1
= q:= 2×q + 1

Transform  goRight :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=s ∧ pʹ=2×p+1
= xʹ=x ∧ rʹ=r  ∧  2×(q+1) + 1 = qʹ+1
= q:= 2×q + 2

Transform  goUp :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=s ∧ pʹ = div p 2
= xʹ=x ∧ rʹ=r  ∧  div (q+1) 2 = qʹ+1
= q:= div (q+1) 2 – 1
= q:= div (q–1) 2

Transform  put :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=p→x | s ∧ pʹ=p
= xʹ=x ∧ rʹ = q→x | r  ∧  qʹ+1=q+1
= r:= q→x | r

Transform  get :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=s p ∧ sʹ=s ∧ pʹ=p
= xʹ=r q ∧ rʹ=r  ∧  qʹ+1=q+1
= x:= r q

To transform  put  we start with

∀s, p· r = s[1;..#s] ∧ p = q+1
⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=p→x | s ∧ pʹ=p

The three variables  p ,  sʹ , and  pʹ  are easy to eliminate by one-point.  We get



= ∀s·  r = s[1;..#s]   ⇒   rʹ = (q+1→x | s)[1;..#(q+1→x | s)] ∧ q+1 = qʹ+1 ∧ xʹ=x

The problem is to get rid of  s  because we don't have  s=something .  We have
r = s[1;..#s]

From this we see that  #r = #s–1  and  s = [i];;r  for some unknown item  i .  I'll use that to 
eliminate  s .

= rʹ = (q+1→x | [i];;r)[1;..#(q+1→x | [i];;r)] ∧ q+1 = qʹ+1 ∧ xʹ=x

We can simplify  #(q+1→x | [i];;r)  ro  #r+1  and simplify  q+1 = qʹ+1  to  qʹ=q .

= rʹ = (q+1→x | [i];;r)[1;.. #r+1] ∧ qʹ=q ∧ xʹ=x

Now we need to simplify  (q+1→x | [i];;r)[1;.. #r+1] .  We have a list  (q+1→x | [i];;r)  of 
length  #r+1 , and in this list at index  q+1  the item is  x .  Now we index with the list  
[1;.. #r+1] , which shifts all the indexes down  1 .  So now at index  q  the item is  x .

= xʹ=x ∧ rʹ = q→x | r  ∧  qʹ=q
= r:= q→x | r

I wish I could see a nice series of formal steps.


