47 Let \otimes be a two-operand infix operator (precedence 3) with natural operands and an extended natural result. Informally, $n \otimes m$ means "the number of times that n is a factor of m". It is defined by the following two axioms.

```
m: n \times nat \lor n \otimes m = 0
```

 $n{\neq}0 \implies n{\otimes}(m{\times}n) = n{\otimes}m+1$

- (a) Make a 3×3 chart of the values of $(0,..3)\otimes(0,..3)$.
- (b) Show that the axioms become inconsistent if the antecedent of the second axiom is removed.
- (c) How should we change the axioms to allow \otimes to have extended natural operands?

After trying the question, scroll down to the solution.

(a) Make a 3×3 chart of the values of $(0,...3)\otimes(0,...3)$.

- (b) Show that the axioms become inconsistent if the antecedent of the second axiom is removed.

§

§

 $0 \otimes 0 = 0 \otimes (1 \times 0) = 0 \otimes 1 + 1 = 0 + 1 = 1$ $0 \otimes 0 = 0 \otimes (0 \times 0) = 0 \otimes 0 + 1$

Hence 1 = 1+1.

(c) How should we change the axioms to allow \otimes to have extended natural operands? § From the first axiom, instantiating with $m=\infty$ and n=1, we get

$$\infty$$
: 1×*nat* v 1 \otimes ∞ = 0

$$\perp$$
 v $1 \otimes \infty = 0$

= 1 \otimes ∞ = 0

=

From the second axiom, instantiating with $m=\infty$ and n=1, we get

 $1 \neq 0 \implies 1 \otimes (\infty \times 1) = 1 \otimes \infty + 1$

 $= 1 \otimes \infty = 1 \otimes \infty + 1$ now use what we got from the first axiom = 0 = 0 + 1

So we can't leave the axioms as they are. We can change *nat* to *xnat* in the first axiom; now for $n \neq 0$ we have $n \otimes \infty = \infty$. Perhaps we don't want $\infty \otimes \infty = \infty$, so perhaps we should weaken the second axioms to $0 < n < \infty \implies n \otimes (m \times n) = n \otimes m + 1$. We now have no answer for $\infty \otimes m$, and I don't know what it should be.