
483 (disjoint composition) Concurrent composition P||Q requires that P and Q have no
variables in common, although each can make use of the initial values of the other's
variables by making a private copy. An alternative, let's say disjoint composition, is to
allow both P and Q to use all the variables with no restrictions, and then to choose
disjoint sets of variables v and w and define

P |v|w| Q = (P. vʹ=v) ∧ (Q. wʹ=w)
(a) Describe how P |v|w| Q can be executed.
(b) Prove that if P and Q are implementable specifications, then P |v|w| Q is

implementable.

After trying the question, scroll down to the solution.

(a) Describe how P |v|w| Q can be executed.
§ Make a copy of all variables. Execute P using the original set of variables and

concurrently execute Q using the copies. Then copy back from the copy w to the
original w . Then throw away the copies. There may be variables x other than v and
w ; if so, their final values are arbitrary, and this implementation makes them be what P
says they should be. Formally, using application 〈v· P〉 x as the formal notation for
(substitute x for v in P),

var cv:= v· var cw:= w· var cx:= x·
 (P || 〈v, w, x, vʹ, wʹ, xʹ· Q〉 cv cw cx cvʹ cwʹ cxʹ). w:= cw

(b) Prove that if P and Q are implementable specifications, then P |v|w| Q is
implementable.

§ First, a lemma.
P. vʹ=v expand sequential composition

= ∃vʹʹ, wʹʹ, xʹʹ· 〈vʹ, wʹ, xʹ· P〉 vʹʹ wʹʹ xʹʹ ∧ vʹ=vʹʹ one-point vʹʹ
= ∃wʹʹ, xʹʹ· 〈vʹ, wʹ, xʹ· P〉 vʹ wʹʹ xʹʹ rename wʹʹ, xʹʹ to wʹ, xʹ
= ∃wʹ, xʹ· 〈vʹ, wʹ, xʹ· P〉 vʹ wʹ xʹ simplify
= ∃wʹ, xʹ· P
So P |v|w| Q = (P. vʹ=v) ∧ (Q. wʹ=w) = (∃wʹ, xʹ· P) ∧ (∃vʹ, xʹ· Q)
Now the main proof.

(P |v|w| Q is implementable) definition of implementable
= ∀v, w, x· ∃vʹ, wʹ, xʹ· P |v|w| Q use previous result
= ∀v, w, x· ∃vʹ, wʹ, xʹ· (∃wʹ, xʹ· P) ∧ (∃vʹ, xʹ· Q) identity for xʹ
= ∀v, w, x· ∃vʹ, wʹ· (∃wʹ, xʹ· P) ∧ (∃vʹ, xʹ· Q)
= ∀v, w, x· ∃vʹ· ∃wʹ· (∃wʹ, xʹ· P) ∧ (∃vʹ, xʹ· Q) distribution (factoring)
= ∀v, w, x· ∃vʹ· (∃wʹ, xʹ· P) ∧ (∃wʹ· ∃vʹ, xʹ· Q) distribution (factoring)
= ∀v, w, x· (∃vʹ· ∃wʹ, xʹ· P) ∧ (∃wʹ· ∃vʹ, xʹ· Q)
= ∀v, w, x· (∃vʹ, wʹ, xʹ· P) ∧ (∃vʹ, wʹ, xʹ· Q) splitting law
= (∀v, w, x· ∃vʹ, wʹ, xʹ· P) ∧ (∀v, w, x· ∃vʹ, wʹ, xʹ· Q) definition of implementable
= (P is implementable) ∧ (Q is implementable)

