
525 (choose)  The following picture shows a network of communicating processes.

The formal description of this network is
new a, b, c? bin·  a! ⊤  ||  choose  ||  (c?.  b! c)

Formally define  choose , add transit time, and state the output message and time if
(a) choose  either reads from  a  and then outputs  ⊤  on  c  and  d , or reads from  b  and then 

outputs  ⊥  on  c  and  d .  The choice is made freely.
(b) as in part (a),  choose  either reads from  a  and then outputs  ⊤  on  c  and  d , or reads 

from  b  and then outputs  ⊥  on  c  and  d .  But this time the choice is not made freely;   
choose  reads from the channel whose input is available first (if there's a tie, then take 
either one).

After trying the question, scroll down to the solution.

a! ⊤
 a             b
choose     c?.  b! c
 d             c



(a) choose  either reads from  a  and then outputs  ⊤  on  c  and  d , or reads from  b  and then 
outputs  ⊥  on  c  and  d .  The choice is made freely.

§ We define  choose  as follows:
choose   =   (a?.  (c! ⊤ || d! ⊤)) ∨ (b?.  (c! ⊥ || d! ⊥))

Now we calculate.
new a, b, c? bin·  a! ⊤  ||  choose  ||  (c?.  b! c)

= ∃𝓜a, 𝓣a, 𝓻a, 𝓻aʹ, 𝔀a, 𝔀aʹ, 𝓜b, 𝓣b, 𝓻b, 𝓻bʹ, 𝔀b, 𝔀bʹ, 𝓜c, 𝓣c, 𝓻c, 𝓻cʹ,𝔀c,𝔀cʹ·
             𝓻a=𝔀a=𝓻b=𝔀b=𝓻c=𝔀c=0
         ∧ (𝓜a𝔀a=⊤ ∧ 𝓣a𝔀a=t ∧ (𝔀a:= 𝔀a+1)

|| ( t:= t↑(𝓣a𝓻a + 1).  𝓻a:= 𝓻a+1.
(  𝓜c𝔀c=⊤ ∧ 𝓣c𝔀c=t ∧ (𝔀c:= 𝔀c+1)
||  𝓜d𝔀d=⊤ ∧ 𝓣d𝔀d=t ∧ (𝔀d:= 𝔀d+1) ) )

∨ ( t:= t↑(𝓣b𝓻b + 1).  𝓻b:= 𝓻b+1.
(  𝓜c𝔀c=⊥ ∧ 𝓣c𝔀c=t ∧ (𝔀c:= 𝔀c+1)
||  𝓜d𝔀d=⊥ ∧ 𝓣d𝔀d=t ∧ (𝔀d:= 𝔀d+1) ) )

|| ( t:= t↑(𝓣c𝓻c + 1).  𝓻c:= 𝓻c+1.
𝓜b𝔀b=𝓜c𝓻c–1 ∧ 𝓣b𝔀b=t ∧ (𝔀b:= 𝔀b+1) ) )

Except for time, all processes in concurrent compositions
change different variables, so  ||  is easily replaced by conjunction.

Also, make all substitutions indicated by assignments.
= ∃𝓜a, 𝓣a, 𝓻a, 𝓻aʹ, 𝔀a, 𝔀aʹ, 𝓜b, 𝓣b, 𝓻b, 𝓻bʹ, 𝔀b, 𝔀bʹ, 𝓜c, 𝓣c, 𝓻c, 𝓻cʹ,𝔀c,𝔀cʹ·
              𝓻a=𝔀a=𝓻b=𝔀b=𝓻c=𝔀c=0
         ∧   ∃ta, tc, tb·

ta=𝓣a0=t ∧ 𝓜a0=⊤ ∧ 𝔀aʹ=1
∧ ( tc = 𝓣c0 = 𝓣d𝔀d = 𝓣a0 + 1 ∧ 𝓻aʹ=𝔀cʹ=1 ∧ 𝓜c0=𝓜d𝔀d=⊤ ∧ 𝔀dʹ=𝔀d+1
∨ tc = 𝓣c0 = 𝓣d𝔀d = 𝓣b0+1 ∧ 𝓻bʹ=𝔀cʹ=1 ∧ 𝓜c0=𝓜d𝔀d=⊥ ∧ 𝔀dʹ=𝔀d+1)

∧ tb = 𝓣b0 = 𝓣c0 + 1  ∧  𝓻cʹ=𝔀bʹ=1  ∧  𝓜b0=𝓜c0
∧ tʹ = ta↑tc↑tb use One-Point laws to eliminate most quantifiers

= ∃tc, tb·
( tc = 𝓣d𝔀d = t+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ=𝔀d+1
∨ tc = 𝓣d𝔀d = tb + 1  ∧  𝓜d𝔀d=⊥  ∧  𝔀dʹ=𝔀d+1 )

∧ tb = tc+1
∧ tʹ = t↑tc↑tb move the conjunctions into the disjunction

= ∃tc, tb·
tc = 𝓣d𝔀d = t+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ=𝔀d+1  ∧  tb = tc+1  ∧  tʹ = t↑tc↑tb

∨ tc = 𝓣d𝔀d = tb+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ=𝔀d+1  ∧  tb = tc+1  ∧  tʹ = t↑tc↑tb
now we can eliminate  tc  and  tb  in each disjunct separately

= 𝓣d𝔀d = t+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ=𝔀d+1  ∧  tʹ = t+2
∨ 𝓣d𝔀d = ∞  ∧  𝓜d𝔀d=⊥  ∧  𝔀dʹ=𝔀d+1  ∧  tʹ=∞

= (t:= t+1.  d! ⊤.  t:= t+1) ∨ (t:= ∞.  d! ⊥)
Either a  ⊤  is output after time  1  or nothing ever happens.  There is probably a better 
way to do this question by using laws of programs and not translating to ordinary logic.

(b) as in part (a),  choose  either reads from  a  and then outputs  ⊤  on  c  and  d , or reads 
from  b  and then outputs  ⊥  on  c  and  d .  But this time the choice is not made freely;   
choose  reads from the channel whose input is available first (if there's a tie, then take 
either one).

§ There is a slight ambiguity in the question.  It says “the channel whose input is available 
first”.  Does this mean the channel whose input arrived first?  Or, if two inputs have 
already arrived, no matter which arrived first, they are both available now (at the same 
time)?  I'll do it  both ways.  Formalizing makes the meaning clear.



Suppose “available first” means “arrived first”.  We define  choose  as follows:
choose   =      𝓣ara≤𝓣brb ∧ (a?.  (c! ⊤ || d! ⊤))
                   ∨  𝓣brb≤𝓣ara ∧ (b?.  (c! ⊥ || d! ⊥))

Now we calculate.
new a, b, c? bin·  a! ⊤  ||  choose  ||  (c?.  b! c)

= ∃𝓜a, 𝓣a, 𝓻a, 𝓻aʹ, 𝔀a, 𝔀aʹ, 𝓜b, 𝓣b, 𝓻b, 𝓻bʹ, 𝔀b, 𝔀bʹ, 𝓜c, 𝓣c, 𝓻c, 𝓻cʹ,𝔀c,𝔀cʹ·
             𝓻a=𝔀a=𝓻b=𝔀b=𝓻c=𝔀c=0
         ∧ ( 𝓜a𝔀a=⊤ ∧ 𝓣a𝔀a=t ∧ (𝔀a:= 𝔀a+1)

* || ( ( 𝓣a𝓻a≤𝓣b𝓻b
∧ (t:= t↑(𝓣a𝓻a + 1).  𝓻a:= 𝓻a+1.

  ( 𝓜c𝔀c=⊤ ∧ 𝓣c𝔀c=t ∧ (𝔀c:= 𝔀c+1)
  || 𝓜d𝔀d=⊤ ∧ 𝓣d𝔀d=t ∧ (𝔀d:= 𝔀d+1) ) ) )

* ∨ ( 𝓣b𝓻b≤𝓣a𝓻a
∧ (t:= t↑(𝓣b𝓻b + 1).  𝓻b:= 𝓻b+1.

  ( 𝓜c𝔀c=⊥ ∧ 𝓣c𝔀c=t ∧ (𝔀c:= 𝔀c+1)
  || 𝓜d𝔀d=⊥ ∧ 𝓣d𝔀d=t ∧ (𝔀d:= 𝔀d+1) ) ) ) )

|| ( t:= t↑(𝓣c𝓻c + 1).  𝓻c:= 𝓻c+1.
𝓜b𝔀b=𝓜c𝓻c–1 ∧ 𝓣b𝔀b=t ∧ (𝔀b:= 𝔀b+1) ) )

Except for time, all processes in concurrent compositions
change different variables, so  ||  is easily replaced by conjunction.

Also, make all substitutions indicated by assignments.
= ∃𝓜a, 𝓣a, 𝓻a, 𝓻aʹ, 𝔀a, 𝔀aʹ, 𝓜b, 𝓣b, 𝓻b, 𝓻bʹ, 𝔀b, 𝔀bʹ, 𝓜c, 𝓣c, 𝓻c, 𝓻cʹ,𝔀c,𝔀cʹ·
             𝓻a=𝔀a=𝓻b=𝔀b=𝓻c=𝔀c=0
         ∧ ∃ta, tc, tb·

ta=𝓣a0=t ∧ 𝓜a0=⊤ ∧ 𝔀aʹ=1
* ∧ ( 𝓣a0≤𝓣b0

∧ tc=𝓣c0=𝓣d𝔀d=𝓣a0+1 ∧ 𝓻aʹ=𝔀cʹ=1 ∧ 𝓜c0=𝓜d𝔀d=⊤ ∧ 𝔀dʹ=𝔀d+1
* ∨ 𝓣b0≤𝓣a0

∧ tc=𝓣c0=𝓣d𝔀d=𝓣b0+1 ∧ 𝓻bʹ=𝔀cʹ=1 ∧ 𝓜c0=𝓜d𝔀d=⊥ ∧ 𝔀dʹ=𝔀d+1)
∧ tb = 𝓣b0 = 𝓣c0 + 1  ∧  𝓻cʹ=𝔀bʹ=1  ∧  𝓜b0=𝓜c0
∧ tʹ = ta↑tc↑tb use the One-Point laws to eliminate most quantifiers

= ∃tc, tb·
( t≤tb  ∧  tc = 𝓣d𝔀d = t+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ=𝔀d+1
∨ tb≤t  ∧  tc = 𝓣d𝔀d = tb+1  ∧  𝓜d𝔀d=⊥  ∧  𝔀dʹ=𝔀d+1 )

∧ tb = tc+1
∧ tʹ = t↑tc↑tb move the conjunctions into the disjunction

= ∃tc, tc·
tc=𝓣d𝔀d=t+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ = 𝔀d+1  ∧ tb = tc+1 ∧ tʹ = t↑tc↑tb

∨ tb≤t  ∧  tc=𝓣d𝔀d=tb+1  ∧  𝓜d𝔀d=⊥ ∧ 𝔀dʹ=𝔀d+1 ∧ tb = tc+1 ∧ tʹ = t↑tc↑tb
now we can eliminate  tc  and  tb  in each disjunct separately

= 𝓣d𝔀d = t+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ = 𝔀d+1  ∧  tʹ = t+2
∨ ∞≤t  ∧  𝓣d𝔀d=∞  ∧  𝓜d𝔀d=⊥  ∧  𝔀dʹ=𝔀d+1  ∧  tʹ=∞

= (t:= t+1.  d! ⊤.  t:= t+1)  ∨  t=tʹ=∞ ∧ (d! ⊥)
If the computation starts before time  ∞  the output is definitely  ⊤  after time  1 .  Again, 
there is probably a better way to do this question by using laws of programs and not 
translating to ordinary logic.

Suppose “available first” means “if it's available now, it doesn't matter when it arrived”.  
We define  choose  as follows:



choose   =      (√a  ∨  𝓣ara≤𝓣brb) ∧ (a?.  (c! ⊤ || d! ⊤))
                   ∨  (√b  ∨  𝓣brb≤𝓣ara) ∧ (b?.  (c! ⊥ || d! ⊥))

Now we calculate.
new a, b, c? bin·  a! ⊤  ||  choose  ||  (c?.  b! c)

= ∃𝓜a, 𝓣a, 𝓻a, 𝓻aʹ, 𝔀a, 𝔀aʹ, 𝓜b, 𝓣b, 𝓻b, 𝓻bʹ, 𝔀b, 𝔀bʹ, 𝓜c, 𝓣c, 𝓻c, 𝓻cʹ,𝔀c,𝔀cʹ·
             𝓻a=𝔀a=𝓻b=𝔀b=𝓻c=𝔀c=0
         ∧ ( 𝓜a𝔀a=⊤ ∧ 𝓣a𝔀a=t ∧ (𝔀a:= 𝔀a+1)

|| ( ( (𝓣a𝓻a≤t ∨ 𝓣a𝓻a≤𝓣b𝓻b)
∧ (t:= t↑(𝓣a𝓻a + 1).  𝓻a:= 𝓻a+1.

  ( 𝓜c𝔀c=⊤ ∧ 𝓣c𝔀c=t ∧ (𝔀c:= 𝔀c+1)
  || 𝓜d𝔀d=⊤ ∧ 𝓣d𝔀d=t ∧ (𝔀d:= 𝔀d+1) ) ) )

∨ ( (𝓣b𝓻b≤t ∨ 𝓣b𝓻b≤𝓣a𝓻a)
∧ (t:= t↑(𝓣b𝓻b + 1).  𝓻b:= 𝓻b+1.

  ( 𝓜c𝔀c=⊥ ∧ 𝓣c𝔀c=t ∧ (𝔀c:= 𝔀c+1)
  || 𝓜d𝔀d=⊥ ∧ 𝓣d𝔀d=t ∧ (𝔀d:= 𝔀d+1) ) ) ) )

|| ( t:= t↑(𝓣c𝓻c + 1).  𝓻c:= 𝓻c+1.
𝓜b𝔀b=𝓜c𝓻c–1 ∧ 𝓣b𝔀b=t ∧ (𝔀b:= 𝔀b+1) ) )

Except for time, all processes in concurrent compositions
change different variables, so  ||  is easily replaced by conjunction.

Also, make all substitutions indicated by assignments.
= ∃𝓜a, 𝓣a, 𝓻a, 𝓻aʹ, 𝔀a, 𝔀aʹ, 𝓜b, 𝓣b, 𝓻b, 𝓻bʹ, 𝔀b, 𝔀bʹ, 𝓜c, 𝓣c, 𝓻c, 𝓻cʹ,𝔀c,𝔀cʹ·
             𝓻a=𝔀a=𝓻b=𝔀b=𝓻c=𝔀c=0
         ∧ ∃ta, tc, tb·

ta=𝓣a0=t ∧ 𝓜a0=⊤ ∧ 𝔀aʹ=1
∧ ( (𝓣a0≤t ∨ 𝓣a0≤𝓣b0)

∧ tc=𝓣c0=𝓣d𝔀d=𝓣a0+1 ∧ 𝓻aʹ=𝔀cʹ=1 ∧ 𝓜c0=𝓜d𝔀d=⊤ ∧ 𝔀dʹ=𝔀d+1
∨ (𝓣b0≤t ∨ 𝓣b0≤𝓣a0)
∧ tc=𝓣c0=𝓣d𝔀d=𝓣b0+1 ∧ 𝓻bʹ=𝔀cʹ=1 ∧ 𝓜c0=𝓜d𝔀d=⊥ ∧ 𝔀dʹ=𝔀d+1)

∧ tb = 𝓣b0 = 𝓣c0 + 1  ∧  𝓻cʹ=𝔀bʹ=1  ∧  𝓜b0=𝓜c0
∧ tʹ = ta↑tc↑tb use the One-Point laws to eliminate most quantifiers

= ∃tc, tb·
( (t≤tb ∨ t≤tb)  ∧  tc = 𝓣d𝔀d = t+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ=𝔀d+1
∨ (tb≤t ∨ tb≤t)  ∧  tc = 𝓣d𝔀d = tb+1  ∧  𝓜d𝔀d=⊥  ∧  𝔀dʹ=𝔀d+1 )

∧ tb = tc+1
∧ tʹ = t↑tc↑tb simplify the two minor disjunctions

and move the conjunctions into the major disjunction
= ∃tc, tb·

tc=𝓣d𝔀d=t+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ = 𝔀d+1  ∧ tb = tc+1 ∧ tʹ = t↑tc↑tb
∨ tb≤t  ∧  tc=𝓣d𝔀d=tb+1  ∧  𝓜d𝔀d=⊥ ∧ 𝔀dʹ=𝔀d+1 ∧ tb = tc+1 ∧ tʹ = t↑tc↑tb

now we can eliminate  tc  and  tb  in each disjunct separately
= 𝓣d𝔀d = t+1  ∧  𝓜d𝔀d=⊤  ∧  𝔀dʹ = 𝔀d+1  ∧  tʹ = t+2

∨ ∞≤t  ∧  𝓣d𝔀d=∞  ∧  𝓜d𝔀d=⊥  ∧  𝔀dʹ=𝔀d+1  ∧  tʹ=∞
= (t:= t+1.  d! ⊤.  t:= t+1)  ∨  t=tʹ=∞ ∧ (d! ⊥)
If the computation starts before time  ∞  the output is definitely  ⊤  after time  1 .  This is 
the same as before, so the ambiguity didn't matter.  This is good, because our 
programming constructs do not require us to keep track of the time messages arrive.  
Again, there is probably a better way to do this question by using laws of programs and 
not translating to ordinary logic.


