98 (friends) Formalize and prove the statement "The people you know are those known by all who know all whom you know.".

After trying the question, scroll down to the solution.

I need a notation to mean "person a knows person b"; I will use $a \vdash b$ with precedence level 3. I extend \vdash to bunch operands as follows.

 $A \vdash B = \forall a: A \cdot \forall b: B \cdot a \vdash b$

Perhaps the word "you" refers to some particular person whom I will call u, or perhaps the word "you" means an arbitrary person, in which case we just put $\forall u$ in front of everything. Perhaps the word "are" means "are included among", or perhaps it means "are exactly"; we can prove the latter, which is stronger and implies the former. All quantifications will be over people, so I won't bother to write the domains. Now let's take it slowly.

"all whom you know" = $\S c \cdot u \vdash c$

"all who know all whom you know" = $\S b \cdot b \vdash \S c \cdot u \vdash c$ "those known by all who know all whom you know" = $\S a \cdot (\S b \cdot b \vdash \S c \cdot u \vdash c) \vdash a$ And finally, the given statement becomes

 $a \cdot u \vdash a = a \cdot (b \cdot b \vdash c \cdot u \vdash c) \vdash a$ Instead of using the solution quantifier $b \cdot a$, I could have used \forall according to the following three identities.

- (a) $(\$x \cdot p) = (\$x \cdot q) = \forall x \cdot p = q$
- (b) $(\$x \cdot p) \vdash y \equiv \forall x \cdot p \Rightarrow x \vdash y$
- (c) $x \vdash (\$y \cdot p) \equiv \forall y \cdot p \Rightarrow x \vdash y$

So the given statement is transformed as follows.

$$(\$a \cdot u \vdash a) = (\$a \cdot (\$b \cdot b \vdash \$c \cdot u \vdash c) \vdash a)$$
 use (a)

$$= \forall a \cdot u \vdash a = (\$b \cdot b \vdash \$c \cdot u \vdash c) \vdash a$$
 use (b)

 $= \forall a \cdot u \vdash a = (\forall b \cdot (b \vdash \$c \cdot u \vdash c) \Rightarrow b \vdash a)$ use (c)

$$= \forall a \cdot u \vdash a = (\forall b \cdot (\forall c \cdot u \vdash c \Rightarrow b \vdash c) \Rightarrow b \vdash a)$$

Now for the proof. I'll work inside the $\forall a \cdot$ and divide the proof into two cases. if $u \vdash a$

then
$$((u \vdash a = (\forall b \cdot (\forall c \cdot u \vdash c \Rightarrow b \vdash c) \Rightarrow b \vdash a))$$
 assumption $u \vdash a$
 $= \forall b \cdot (\forall c \cdot u \vdash c \Rightarrow b \vdash c) \Rightarrow b \vdash a$ Specialize c to a . This weakens
an antecedent, and so strengthens the implication.
 $\Leftarrow \forall b \cdot (u \vdash a \Rightarrow b \vdash a) \Rightarrow b \vdash a$ assumption $u \vdash a$
 $= \forall b \cdot b \vdash a \Rightarrow b \vdash a$ reflexive then idempotent
 $= \top$)
else $((u \vdash a = (\forall b \cdot (\forall c \cdot u \vdash c \Rightarrow b \vdash c) \Rightarrow b \vdash a))$ assumption $\neg (u \vdash a)$
 $= \neg \forall b \cdot (\forall c \cdot u \vdash c \Rightarrow b \vdash c) \Rightarrow b \vdash a$ Specialize b to u . This weakens
 a negand, and so strengthens the negation.
 $\Leftarrow \neg ((\forall c \cdot u \vdash c \Rightarrow u \vdash c) \Rightarrow u \vdash a)$ reflexivity, idempotence, assumption
 $= \neg (\top \Rightarrow \bot)$

Here is a third approach. For bunch of people A, define $\exists A$ to be those known by all A, and define $\vDash B$ to be those who know all B.

 $\exists A = \S b \cdot A \vdash b$ $\models B = \S a \cdot a \vdash B$

Then the statement we are asked to prove is $\exists u = \exists \vDash \exists u$. Before proving it, we prove the lemma $A : \vDash B \equiv B : \exists A$ (which says that \exists and \vDash are strongly Galois connected).

- A: $\models B$
- $= \forall a: A \cdot \forall b: B \cdot a \vdash b$
- $= \forall b: B \cdot \forall a: A \cdot a \vdash b$

$$=$$
 $B: = A$

Now the theorem:

	$\exists u = \exists \vDash \exists u$	
=	$\exists u: \exists \vDash \exists u \land \exists \vDash \exists u: \exists u$	use the lemma in each conjunct
=	$\models \exists u : \models \exists u \land u : \models \exists \models \exists u$	in left conjunct : is reflexive
=	u : $\models \exists \models \exists u$	transitivity
\Leftarrow	$u: \models \exists u \land \models \exists u: \models \exists \models \exists u$	use the lemma in each conjunct
=	$\exists u: \exists u \land \exists \models \exists u: \exists \models \exists u$	reflexivity twice
=	Т	

The theorem is instantly generalizable to $\exists A = \exists \models \exists A$ with no change in the proof. It is further generalizable to a relation whose left and right operands come from different populations.