
X4.0 (one-tailed if) We have a two-tailed if programming notation with the syntax
if binary expression then program else program f

Most programming languages also have a one-tailed if with a syntax like
if binary expression then program f

It is executed by first evaluating the binary expression, and then executing the program if
and only if the binary expression's value was ⊤ .

(a) Define the one-tailed if formally.
(b) Let n be a natural variable, and let t be time measured recursively. Define

countdown = n≥0 ⇒ tʹ=t+n
Prove the refinement

countdown ⇐ if n>0 then n:= n–1. t:= t+1. countdown f

After trying the question, scroll down to the solution.

(a) Define the one-tailed if formally.

§ A one-tailed if is equal to a two-tailed if with an ok else-part.
if b then P f = if b then P else ok f
if b then P f = b∧P ∨ ¬b∧ok
if b then P f = (b⇒P) ∧ (¬b⇒ok)

(b) Let n be a natural variable, and let t be time measured recursively. Define
countdown = n≥0 ⇒ tʹ=t+n

Prove the refinement
countdown ⇐ if n>0 then n:= n–1. t:= t+1. countdown f

§ Rewriting the refinement with a two-tailed if :
countdown ⇐ if n>0 then n:= n–1. t:= t+1. countdown else ok f

There are two cases to prove. First case:
n>0 ∧ (n:= n–1. t:= t+1. countdown) ⇒ countdown definition of countdown

= n>0 ∧ (n:= n–1. t:= t+1. n≥0 ⇒ tʹ=t+n) ⇒ countdown substitution law twice
= n>0 ∧ (n–1≥0 ⇒ tʹ=t+1+n–1) ⇒ countdown simplify
= n>0 ∧ (n>0 ⇒ tʹ=t+n) ⇒ countdown discharge
= n>0 ∧ tʹ=t+n ⇒ countdown definition of countdown
= n>0 ∧ tʹ=t+n ⇒ (n≥0 ⇒ tʹ=t+n) portation
= n>0 ∧ tʹ=t+n ∧ n≥0 ⇒ tʹ=t+n specialization
= ⊤
Second case:

n=0 ∧ ok ⇒ countdown definitions of ok and countdown
= n=0 ∧ nʹ=n ∧ tʹ=t ⇒ (n≥0 ⇒ tʹ=t+n) portation

 = n=0 ∧ nʹ=n ∧ tʹ=t ∧ n≥0 ⇒ tʹ=t+n simplify n=0 ∧ n≥0
 = n=0 ∧ nʹ=n ∧ tʹ=t ⇒ tʹ=t+n context
 = n=0 ∧ tʹ=t ⇒ tʹ=t specialization

= ⊤

