X4.0 (one-tailed if) We have a two-tailed if programming notation with the syntax
if binary expression then program else program fi
Most programming languages also have a one-tailed if with a syntax like
if binary expression then program fi
It is executed by first evaluating the binary expression, and then executing the program if
and only if the binary expression's value was T .
(a) Define the one-tailed if formally.
(b) Let n be a natural variable, and let ¢ be time measured recursively. Define
countdown = n=0=> t'=t+n
Prove the refinement
countdown <= if n>0 then n:=n-1. t:=t+1. countdown fi

After trying the question, scroll down to the solution.



(@)

(b)

Define the one-tailed if formally.

A one-tailed if is equal to a two-tailed if with an ok else-part.
if b then P fi = if b then P else ok fi
if b then P fi bAP v ~brok
if b then P fi (b=P) A (mb=>0k)

Let n be a natural variable, and let ¢ be time measured recursively. Define
countdown = n=20= t'=t+n

Prove the refinement
countdown <= if n>0then n:=n-1. r:=1t+1. countdown fi

Rewriting the refinement with a two-tailed if :
countdown <= if n>0 then n:=n-1. t:=1t+1. countdown else ok fi
There are two cases to prove. First case:

n>0 A (n:=n-1. t:=t+1. countdown) = countdown definition of countdown
n>0 A (n:=n-1. t:=t+1. n=0 = '=t+n) = countdown substitution law twice

n>0 A (n-1=20 = t'=t+1+n-1) = countdown
n>0 A (n>0 = t'=t+n) = countdown

Second case:

n=0 A ok = countdown definitions of ok and countdown

n=0 A n'=n A t'=t = (n=0 = '=r+n)

n=0 An'=nAt=t = t'=t+n

T

>0 A '=t4+n = countdown definition of countdown
n>0 A t'=t+n = (n=0 = ¢'=t+n)

n>0 A t'=t+n A n=0 = '=t+n specialization
T

n=0 A n'=n A t'=t A 120 = t'=t+n simplify n=0 A n=0

n=0 A t'=t = t'=t specialization



