
X4.0 (one-tailed if)  We have a two-tailed if programming notation with the syntax
if binary expression then program else program f

Most programming languages also have a one-tailed if with a syntax like
if binary expression then program f

It is executed by first evaluating the binary expression, and then executing the program if 
and only if the binary expression's value was  ⊤ .

(a) Define the one-tailed  if  formally.
(b) Let  n  be a natural variable, and let  t  be time measured recursively.  Define

countdown   =   n≥0 ⇒ tʹ=t+n
Prove the refinement

countdown   ⇐   if n>0 then n:= n–1.  t:= t+1.  countdown f

After trying the question, scroll down to the solution.



(a) Define the one-tailed  if  formally.

§ A one-tailed  if  is equal to a two-tailed  if  with an  ok  else-part.
if b then P f  =  if b then P else ok f
if b then P f  =  b∧P ∨ ¬b∧ok
if b then P f  =  (b⇒P) ∧ (¬b⇒ok)

(b) Let  n  be a natural variable, and let  t  be time measured recursively.  Define
countdown   =   n≥0 ⇒ tʹ=t+n

Prove the refinement
countdown   ⇐   if n>0 then n:= n–1.  t:= t+1.  countdown f

§ Rewriting the refinement with a two-tailed  if :
countdown   ⇐   if n>0 then n:= n–1.  t:= t+1.  countdown else ok f

There are two cases to prove.  First case:
n>0 ∧ (n:= n–1.  t:= t+1.  countdown) ⇒ countdown definition of  countdown

= n>0 ∧ (n:= n–1.  t:= t+1.  n≥0 ⇒ tʹ=t+n) ⇒ countdown substitution law twice
= n>0 ∧ (n–1≥0 ⇒ tʹ=t+1+n–1) ⇒ countdown simplify
= n>0 ∧ (n>0 ⇒ tʹ=t+n) ⇒ countdown discharge
= n>0 ∧ tʹ=t+n ⇒ countdown definition of  countdown
= n>0 ∧ tʹ=t+n ⇒ (n≥0 ⇒ tʹ=t+n) portation
= n>0 ∧ tʹ=t+n ∧ n≥0 ⇒ tʹ=t+n specialization
= ⊤
Second case:

n=0 ∧ ok  ⇒  countdown definitions of  ok  and  countdown
= n=0 ∧ nʹ=n ∧ tʹ=t  ⇒  (n≥0 ⇒ tʹ=t+n) portation

 = n=0 ∧ nʹ=n ∧ tʹ=t ∧ n≥0  ⇒  tʹ=t+n simplify  n=0 ∧  n≥0
 = n=0 ∧ nʹ=n ∧ tʹ=t  ⇒  tʹ=t+n context
 = n=0 ∧ tʹ=t  ⇒  tʹ=t specialization

= ⊤


