
X4.0 (one-tailed if)  We have a two-tailed if programming notation with the syntax
if binary expression then program else program fi

Most programming languages also have a one-tailed if with a syntax like
if binary expression then program fi

It is executed by first evaluating the binary expression, and then executing the program if 
and only if the binary expression's value was  ⊤ .

(a) Define the one-tailed  if  formally.
(b) Let  n  be a natural variable, and let  t  be time measured recursively.  Define

countdown   =   n≥0 ⇒ tʹ=t+n
Prove the refinement

countdown   ⇐   if n>0 then n:= n–1.  t:= t+1.  countdown fi

After trying the question, scroll down to the solution.



(a) Define the one-tailed  if  formally.

§ A one-tailed  if  is equal to a two-tailed  if  with an  ok  else-part.
if b then P fi  =  if b then P else ok fi
if b then P fi  =  b∧P ∨ ¬b∧ok
if b then P fi  =  (b⇒P) ∧ (¬b⇒ok)

(b) Let  n  be a natural variable, and let  t  be time measured recursively.  Define
countdown   =   n≥0 ⇒ tʹ=t+n

Prove the refinement
countdown   ⇐   if n>0 then n:= n–1.  t:= t+1.  countdown fi

§ Rewriting the refinement with a two-tailed  if :
countdown   ⇐   if n>0 then n:= n–1.  t:= t+1.  countdown else ok fi

There are two cases to prove.  First case:
n>0 ∧ (n:= n–1.  t:= t+1.  countdown) ⇒ countdown definition of  countdown

= n>0 ∧ (n:= n–1.  t:= t+1.  n≥0 ⇒ tʹ=t+n) ⇒ countdown substitution law twice
= n>0 ∧ (n–1≥0 ⇒ tʹ=t+1+n–1) ⇒ countdown simplify
= n>0 ∧ (n>0 ⇒ tʹ=t+n) ⇒ countdown discharge
= n>0 ∧ tʹ=t+n ⇒ countdown definition of  countdown
= n>0 ∧ tʹ=t+n ⇒ (n≥0 ⇒ tʹ=t+n) portation
= n>0 ∧ tʹ=t+n ∧ n≥0 ⇒ tʹ=t+n specialization
= ⊤
Second case:

n=0 ∧ ok  ⇒  countdown definitions of  ok  and  countdown
= n=0 ∧ nʹ=n ∧ tʹ=t  ⇒  (n≥0 ⇒ tʹ=t+n) portation

 = n=0 ∧ nʹ=n ∧ tʹ=t ∧ n≥0  ⇒  tʹ=t+n simplify  n=0 ∧  n≥0
 = n=0 ∧ nʹ=n ∧ tʹ=t  ⇒  tʹ=t+n context
 = n=0 ∧ tʹ=t  ⇒  tʹ=t specialization

= ⊤


