X5.3 Given a standard 2-sided coin, probability 1/2 for each side, build a 3-sided die, probability 1/3 for each side. (I have no idea what a 3-sided die would look like, but we can write a probabilistic program for it.) What is the average number of coin flips?

After trying the question, scroll down to the solution.

if 1/3 then d = 0 else if 1/2 then d = 1 else d = 2 fi fi

But this solution requires that we already have a way to get probability 1/3. We want to build 1/3 from 1/2. Define specification S as follows:

$$S = ((d'=0)+(d'=1)+(d'=2))/3$$

Here's the idea. If you flip a coin twice, there are four possible outcomes, which is one too many. So pick one of the four, and keep flipping twice until the outcome is one of the other three. The program is

S =if 1/2 then if 1/2 then S else d := 0 fi else if 1/2 then d := 1 else d := 2 fi fi To prove it, I start with the right side.

if 1/2 then if 1/2 then S else d := 0 fi else if 1/2 then d := 1 else d := 2 fi fi

replace S with its definition, and replace if s and assignments

$$= \frac{1/2 \times (1/2 \times ((d'=0)+(d'=1)+(d'=2))/3 + 1/2 \times (d'=0))}{1/2 \times (1/2 \times (d'=1) + 1/2 \times (d'=2))}$$

$$= \frac{(1/2 \times 1/2 \times 1/3 + 1/2 \times 1/2) \times (d'=0)}{1/2 \times 1/2 \times 1/3 + 1/2 \times 1/2) \times (d'=0)}$$

$$+ \frac{(1/2 \times 1/2 \times 1/3 + 1/2 \times 1/2) \times (d'=1)}{1/2 \times 1/2 \times 1/3 + 1/2 \times 1/2) \times (d'=2)}$$

$$= \frac{(1/12 + 1/4) \times (d'=0) + (1/12 + 1/4) \times (d'=1) + (1/12 + 1/4) \times (d'=2)}{1/2 \times (d'=0) + (d'=0) + (d'=1) + (d'=2)}$$

$$= \frac{(d'=0) + (d'=1) + (d'=2)}{3}$$

For the execution time, we can count flips by putting t = t+1 before each flip.

$$S = t := t+1$$
. if $1/2$ then $t := t+1$. if $1/2$ then S else $d := 0$ fi else $t := t+1$. if $1/2$ then $d := 1$ else $d := 2$ fi fi

If we focus on t and ignore d, we can simplify this equation to

S

=

$$t := t+1$$
. if $1/2$ then $t := t+1$. if $1/2$ then S else ok fi else $t := t+1$. if $1/2$ then ok else ok fi fi

Factor out t := t+1, and simplify if 1/2 then ok else ok fi to ok.

- = t:= t+2. if 1/2 then if 1/2 then S else ok fi else ok fi
- replace if and ok

- = t:= t+2. $1/2 \times (1/2 \times S + 1/2 \times (t'=t)) + 1/2 \times (t'=t)$
- = t:=t+2. $S/4 + (t'=t)\times 3/4$

substitution law

$$=$$
 $(t:=t+2. S)/4 + (t'=t+2)\times 3/4$

$$= (t'=t+2)\times(3/4)$$

$$+ (t'=t+4)\times(1/4)\times(3/4)$$

$$+ (t'=t+6)\times(1/4)\times(1/4)\times(3/4)$$

$$+ (t'=t+8)\times(1/4)\times(1/4)\times(1/4)\times(3/4)$$

$$+ (t'=t+10)\times(1/4)\times(1/4)\times(1/4)\times(1/4)\times(3/4)$$

$$+ ...$$

$$= (even (t'-t)) \times (t' \ge t+2) \times 3/2^{t'-t}$$

That is the distribution of the number of flips. Proof:

 $(t:=t+2. S)/4 + (t'=t+2)\times 3/4$ $= (t:=t+2. (even (t'-t))\times (t'\ge t+2)\times 3/2t'-t)/4 + (t'=t+2)\times 3/4$

replace S substitution law

```
=
          (even (t'-t-2)) \times (t' \ge t+4) \times 3/2t'-t-2/4 + (t'=t+2) \times 3/4 simplify even and divide by 4
=
          (even (t'-t))\times(t'\geq t+4)\times 3/2t'-t + (t'=t+2)\times 3/4
                                                                                                                  combine
=
          (even(t'-t))\times(t'\geq t+2)\times 3/2^{t'-t}
=
          S
The average value of t' is
          S. t
          (even (t'-t)) \times (t' \ge t+2) \times 3/2^{t'-t}. t
=
=
          \sum t'' \cdot (even(t''-t)) \times (t'' \ge t+2) \times 3/2^{t''-t} \times t''
=
          3/4 \times (t+2) + 3/16 \times (t+4) + 3/64 \times (t+6) + 3/256 \times (t+8) + \dots
                                                                                                divide into two sums
              3/4 \times t + 3/16 \times t + 3/64 \times t + 3/256 \times t + \dots
                                                                                                              factor out t
          + 3/4 \times 2 + 3/16 \times 4 + 3/64 \times 6 + 3/256 \times 8 + ...
=
          (3/4 + 3/16 + 3/64 + 3/256 + ...) \times t + (3/4 \times 2 + 3/16 \times 4 + 3/64 \times 6 + 3/256 \times 8 + ...)
(3/4 + 3/16 + 3/64 + 3/256 + ...) = (3/4)/(1 - 1/4) = 1
Let x =
                       3/4 \times 2 + 3/16 \times 4 + 3/64 \times 6 + 3/256 \times 8 + \dots
                                   3/16 \times 2 + 3/64 \times 4 + 3/256 \times 6 + \dots
Then 1/4 \times x =
So 3/4 \times x = 3/4 \times 2 + 3/16 \times 2 + 3/64 \times 2 + 3/256 \times 2 + \dots = (3/4 \times 2)/(1 - 1/4) = 2
Therefore x = 8/3
```

And S. t = t + 8/3

On average, there are 2 + 2/3 coin flips.