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Introduction

In 1976, [0] suggested that computer programs could directly express their semantics, without 
the need for a semantic function.  The suggestion was made at the end of the paper, and not acted 
upon in the paper.  (Due to referee request, it was removed from the published version [1] of the 
paper.)  In 1981, [2] did act upon that suggestion (and also in the published version [3]), and it 
became the basis for what was then called “Predicative Programming” [4][5].  More recently, the 
same basis was used in the 1993 book a Practical Theory of Programming [6], and in the current 
free online edition.  We are using the initials of that book (aPToP) to designate this kind of 
specification and program semantics.  The same basis was used in the 1994 paper “the Temporal 
Logic of Actions” [11], and in the 1998 book Unifying Theories of Programming [9].

We specify computation (computer behavior) using a binary (boolean) expression whose 
nonlocal (free) variables represent whatever is of interest about the computation.  In this paper, 
the initial value  x  and final value  xʹ  of a single natural variable, and the initial (start) time  t  
and final (end) time  tʹ  of the computation are of interest.  If the computation is unending, the 
final time is  ∞ .

A program is a specification that has been implemented so that a computer can execute it.  For 
example,  x:= x+2  is an assignment program (statement).  If its execution takes time  1 , then

x:= x+2   =   xʹ=x+2 ∧ tʹ=t+1

A specification  s  is called “implementable” if, for all initial states and times, there are final 
states and times to satisfy the specification, with nondecreasing time.

∀x, t· ∃xʹ, tʹ· s ∧ tʹ≥t
Let  s  be a specification and let  p  be a program.  Then

∀x, t, xʹ, tʹ· s ⇐ p
says “ s  is implied by  p ”, “ s  is refined by  p ”, “ s  is implemented by  p ”.  It means that 
execution of program  p  will satisfy specification  s .  If you implement an implementable 
specification, then the specification becomes a program.  Recursion is allowed.  For example,

xʹ=0 ∧ tʹ=t+x   ⇐   if x=0 then ok else x:= x–1.  t:= t+1.  xʹ=0 ∧ tʹ=t+x fi
The specification  xʹ=0 ∧ tʹ=t+x  is being implemented.  Program  ok  is defined as
(0) ok   =   xʹ=x ∧ tʹ=t
which directs a computer to do nothing (the “empty” program).  The assignment  t:= t+1  is not 
an instruction to a computer;  it is just accounting for the passage of time each loop iteration.  
The loop is formed by the recursive use of the specification  xʹ=0 ∧  tʹ=t+x ;  refinement of the 
specification  xʹ=0 ∧ tʹ=t+x  by a program makes  xʹ=0 ∧ tʹ=t+x  a program, so it can be used in 
programs (even in the program refining it).  (Proof of the refinement is easy, and is omitted.)
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The above specifications and programs are “imperative”, meaning they describe a change in 
state.  We also need “functional” specifications and programs.  Any expression of a mathematical 
function can serve as a functional specification.  A functional program is a functional 
specification that has been implemented so that a computer can execute it.

Halting Proof

There are various ways one may attempt to formalize the statement that execution of a program 
terminates.  Here is one:  Let  p  be an imperative program;  it is a binary expression in nonlocal 
variables  x ,  t ,  xʹ , and  tʹ .  Execution of  p , starting in state  x  at time  t , terminates if and 
only if
(1) ∀xʹ, tʹ·  p ∧ t<∞ ⇒ tʹ<∞
If execution of  p  starts at a finite time, it will end at a finite time.  Expression (1) is the 
mathematical halting function.  It has nonlocal variables  p  (program),  x  (start state), and  t  
(start time).  Let's call it  halt , and turn its nonlocal variables into explicit parameters.
(2) halt p x t   =   ∀xʹ, tʹ·  p ∧ t<∞ ⇒ tʹ<∞
halt p x t  is  ⊤  (binary “true”) if execution of  p , starting in state  x  at time  t , terminates, and  
⊥  (binary “false”) otherwise.

Technical point:  For programs to be parameters, they must be encoded as data.  Turing 
encoded them as numbers [13].  He called the decoder that turns numbers into programs 
the Universal Machine.  The modern practice is to encode programs as text (character 
string);  that is how programs are passed to compilers.  The decoder that turns text into 
program is called an interpreter.  For example,

 “x:= 0”   =   x:= 0
where    is the interpreter.  A text encoding of a program is so transparent that it is easy 
to forget the difference between a program and its encoding as text.  In the aPToP world, 
a program is a specification, and the type of an imperative specification is binary:  it 
evaluates to  ⊤  when a computation satisfies it, and to  ⊥  when a computation does not 
satisfy it.  But in  halt p x t , we are not passing a binary value  p  to  halt ;  we are passing 
text.  Thus we are abusing notation, relying on the context to make it clear, rather than 
cluttering our expressions with quotation marks and uses of   .

Assume (in order to show a contradiction) that functional specification  halt  has been 
implemented, and is therefore a functional program.  We now create an imperative program, let's 
call it  twist , defined as
(3) twist   =   if halt twist x t then loop else ok fi
where  loop  is defined as
(4) loop   =   tʹ=∞
and easily implemented as

loop   ⇐   t:= t+1.  loop

Technical point:  We assume there is a dictionary of definitions, including (0), (2), (3), 
and (4), that is accessible to  halt , so that  halt  can look up  ok ,  halt ,  twist , and  loop  
in the dictionary, and retrieve their texts for analysis. 
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For any values of  x  and  t ,  halt twist x t  is either  ⊤  or  ⊥ .  Suppose  halt twist 0 0  =  ⊤ .  We 
calculate:

⊤ supposition
= halt twist 0 0 (2)
= ∀xʹ, tʹ·  twist ∧ 0<∞ ⇒ tʹ<∞ identity
= ∀xʹ, tʹ·  twist ⇒ tʹ<∞ (3)
= ∀xʹ, tʹ·  if halt twist 0 0 then loop else ok fi ⇒ tʹ<∞ supposition
= ∀xʹ, tʹ·  if ⊤ then loop else ok fi ⇒ tʹ<∞ simplify  if
= ∀xʹ, tʹ·  loop ⇒ tʹ<∞ (4)
= ∀xʹ, tʹ·  tʹ=∞ ⇒ tʹ<∞ portation
= ∀xʹ, tʹ·  ⊥ identity
= ⊥

Now suppose  halt twist 0 0  =  ⊥ .  We calculate:

⊥ supposition
= halt twist 0 0 (2)
= ∀xʹ, tʹ·  twist ∧ 0<∞ ⇒ tʹ<∞ identity
= ∀xʹ, tʹ·  twist ⇒ tʹ<∞ (3)
= ∀xʹ, tʹ·  if halt twist 0 0 then loop else ok fi ⇒ tʹ<∞ supposition
= ∀xʹ, tʹ·  if ⊥ then loop else ok fi ⇒ tʹ<∞ simplify  if
= ∀xʹ, tʹ·  ok  ⇒  tʹ<∞ (0)
= ∀xʹ, tʹ·  xʹ=0 ∧ tʹ=0  ⇒  tʹ<∞ specialization, identity
= ⊤

We have a contradiction.  Therefore the assumption that there is a program to implement the 
halting specification was wrong.  This is the aPToP proof of the classic result by Turing [13].

Specification Version

In the proof of the previous section, we consider that there is a fixed set of programs for  halt  to 
apply to.  If this set includes  halt  and  twist , we have a contradiction.

The aPToP (and UTP [9] and TLA [11]) view of programs is different.  aPToP was designed to 
aid programmers in writing programs, and it takes their view.  If you write a program, there is 
now one more program than there was before you wrote it.  Any implementable specification 
becomes a program when it is refined by a program.  To be compatible with this view, we now 
generalize functional specification  halt  to apply to all imperative specifications.
(5) halt s x t   =   ∀xʹ, tʹ·  s ∧ t<∞ ⇒ tʹ<∞ x
where  s  is any implementable specification.  Definition (5) is identical to definition (2), except 
that in (2)  halt  applied only to programs, and in (5)  halt  applies to all specifications (including 
programs).  halt s x t  is  ⊤  if  s  specifies a computation that, starting in state  x  at time  t , 
terminates, and  ⊥  otherwise.
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If we assume that this generalized  halt  specification is implemented, then both  halt  and  twist  
are programs, and the exact same calculations (previous section) arrive at the same contradiction.  
If  halt  is not implemented, then both  halt  and  twist  are not programs, but they are nonetheless 
specifications.  And the exact same calculations (previous section, except that hint (2) becomes 
hint (5)) arrive at the same contradiction.  We arrive at this contradiction without having assumed 
that there is a program to implement the halting specification.  So we have no assumption to 
blame for the contradiction.  The conclusion is that definitions (5) and (3) ( halt  and  twist ) 
together are inconsistent.  That is the conclusion whether or not  halt  and  twist  are programs.  
The inconsistency neither appears nor disappears by changing the domain of  halt  from 
programs to all specifications.  For a similar conclusion, see [12].  For a contrary conclusion, see 
[10].

Discussion

What Turing proved, and what many textbooks prove, and what we proved in this paper in aPToP 
style, is

A. The definition of  halt  as a program applying to program  twist  is inconsistent.

From that, we might conclude

B. The definition of  halt  as a program applying to all programs is inconsistent.

If a consistent specification cannot be implemented in a Turing-Machine-Equivalent (TME) 
programming language, we say it is “undecidable”.  The specification must be consistent so that 
it does specify something, and it must be something a TME programming language is not 
expressive enough to implement.  An inconsistent specification cannot be implemented in any 
consistent language, no matter how powerful or expressive, but that doesn't merit calling it 
“undecidable”.  If it did, we could just use  ⊥  as an example of an undecidable specification.  To 
say that halting is “undecidable”, we also need

C. The definition of  halt  as an unimplemented specification applying to all programs is 
consistent.

C is not proven, but it is commonly believed for the weak reason that no inconsistency is 
apparent.  B and C are necessary to call halting “undecidable”, but they are not sufficient.  The 
problem lies in the words “all programs” in B and C.

The aPToP approach begins with specifications.  We prove

D. The definition of  halt  as a specification applying to all specifications is inconsistent.

by exactly the same proof that we used to prove A, except that  halt  and  twist  are specifications 
(they may or may not be programs), and  halt  applies to all specifications (including but not 
limited to programs).
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In the aPToP view, programs are a growing subset of specifications;  when an implementable 
specification is refined by a program, that specification becomes a program.  So we might limit 
our attention to implementable specifications, which are the potential programs.  In definition (3), 
if  halt twist x t  =  ⊤ , then  twist = loop , so  twist  is implementable.  And if  halt twist x t  =  ⊥ , 
then  twist = ok , so again  twist  is implementable.  Therefore  twist  is classically 
implementable.  But since we cannot determine whether  halt twist x t  is  ⊤  or  ⊥ ,  twist  is not 
constructively implementable.  Classically, we can conclude

E. The definition of  halt  as an unimplemented specification applying to implementable 
specifications is inconsistent.

Contrast C with E:  changing “programs” to “implementable specifications” changes “consistent” 
to “inconsistent”.

If we reduce the domain of  halt  to just the two programs  loop  and  ok ,  halt  is easily 
implemented.  So

F. The definition of  halt  as a program applying to the programs  loop  and  ok  is consistent.

To talk about “all programs”, we need to have a syntactically defined programming language, 
and then we can talk about all programs in that language.  We shall say “L-program” for a 
program written in TME programming language L.  Conclusion B becomes

G. The definition of  halt  as an L-program applying to all L-programs is inconsistent.

That's because, if  halt  is an L-program, then there is an L-program just like  twist .  So we dare 
to suggest

H. The definition of  halt  as an L-program is consistent if we restrict its domain to those L-
programs that do not refer to  halt , neither directly nor indirectly through other L-programs.

This is not the largest class for which a  halt  program exists;  there are L-programs that refer to  
halt  in a benign fashion, and could be included without inconsistency.  Consider
(6) straight   =   if halt straight x t then ok else loop fi
For any values of  x  and  t ,  halt straight x t  is either  ⊤  or  ⊥ .  Suppose  halt straight 0 0 = ⊤ .  
We calculate:

⊤ supposition
= halt straight 0 0 (2)
= ∀xʹ, tʹ·  straight ∧ 0<∞ ⇒ tʹ<∞ identity
= ∀xʹ, tʹ·  straight ⇒ tʹ<∞ (3)
= ∀xʹ, tʹ·  if halt straight 0 0 then ok else loop fi ⇒ tʹ<∞ supposition
= ∀xʹ, tʹ·  if ⊤ then ok else loop fi ⇒ tʹ<∞ simplify  if
= ∀xʹ, tʹ·  ok  ⇒  tʹ<∞ (0)
= ∀xʹ, tʹ·  xʹ=0 ∧ tʹ=0  ⇒  tʹ<∞ specialization, identity
= ⊤ 
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Now suppose  halt straight 0 0  =  ⊥ .  We calculate:

⊥ supposition
= halt straight 0 0 (2)
= ∀xʹ, tʹ·  straight ∧ 0<∞ ⇒ tʹ<∞ identity
= ∀xʹ, tʹ·  straight ⇒ tʹ<∞ (3)
= ∀xʹ, tʹ·  if halt straight 0 0 then ok else loop fi ⇒ tʹ<∞ supposition
= ∀xʹ, tʹ·  if ⊥ then ok else loop fi ⇒ tʹ<∞ simplify  if
= ∀xʹ, tʹ·  loop  ⇒  tʹ<∞ (0)
= ∀xʹ, tʹ·  tʹ=∞  ⇒  tʹ<∞
= ∀xʹ, tʹ·  ⊥ identity
= ⊥

We can suppose  halt straight 0 0  is  ⊤  or  ⊥  without any inconsistency.  Therefore a  halt  
program, when applied to program  straight , can return either  ⊤  or  ⊥ .

In [7] and [8] the suggestion is made to define  halt  to work on all L-programs, and to write an 
implementation of  halt  in TME language M, where L-programs cannot call M-programs.  This 
disallows the inconsistency proof, while at the same time defining and implementing  halt  to 
apply to all programs in a TME language.  If we can do that, then we cannot call halting 
“undecidable”.

The obvious objection to this suggestion is that if we could program  halt  in language M to 
apply to all L-programs, we could translate it into language L;  but there is no L-program to 
implement  halt  for all L-programs, so there cannot be an M-program to do so either.  The 
objection is wrong:  even though  halt  written in language M does compute halting for all L-
programs, its translation to an L-program does not compute halting for all L-programs.  This 
surprising result is the subject of [8].

Conclusion

For Turing, and for most of the programming world today, even for most of the formal methods 
community, programs and specifications are different things.  They have separate languages in 
which they are expressed.  Programs are instructions to a computer, not mathematical 
expressions.  Formal specifications are mathematical expressions, not instructions to a computer.  
Specifications are used to reason about programs.

To the majority of people, the Halting Problem is about programs, not about specifications.  The 
computability assumption is essential;  we have to assume the existence of a program to compute 
halting so that we can reason about it.  An inconsistency is created by the assumption that such a 
program exists.  The reasoning that there is an inconsistency uses specifications, but, to the 
majority of people, the specifications are talking about programs.

In the aPToP world [6], programs are a growing subset of specifications.  We do not specify 
programs;  we specify computation, or computer behavior.  Programs are those specifications 
that have been implemented so that they can be executed by a computer.  If we prove something 
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about all specifications, that includes all programs.  If we find an inconsistency in a collection of 
specifications, that finding is unaffected by an assumption that one or more of the specifications 
are programs.

Maybe a revision of the Halting Problem will have to wait (possibly forever) until the aPToP 
view of programming is accepted.
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Appendix

The aPToP specification of termination is  tʹ ≤ t + f x  where  f  is a nonnegative and finite 
function.  It may seem that  tʹ<∞  expresses termination more simply.  But  tʹ<∞  is an 
unimplementable specification.  That's because programs, and more generally specifications, can 
be composed sequentially.  If the first program in a sequential composition is an infinite loop, 
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then its execution ends at time  ∞  (in other words, it never ends), and so execution of the second 
program in the sequential composition starts at time  ∞  (in other words, it never starts).  Since 
any program can be placed following an infinite loop, a specification cannot promise that 
execution will end before time  ∞  (at a finite time).  But it can promise that execution will take a 
finite amount of time.

An implementable candidate to express termination is  t<∞ ⇒ tʹ<∞ ;  if the computation starts at 
a finite time, then it ends at a finite time.  But, surprisingly, this specification can be implemented 
by an infinite loop.

t<∞ ⇒ tʹ<∞   ⇐   t:= t+1.  t<∞ ⇒ tʹ<∞
In order for a user of this program to complain that its execution violates the specification, the 
user must observe computer behavior contrary to the specification.  The user must observe that 
the computation starts at a finite time (easy), and ends at time infinity (it never ends).  All 
observations are made at finite times;  the user can never complain that the computation has 
taken forever.  So this candidate fails to express termination.

The specification  tʹ ≤ t + f x  for any given nonnegative finite function  f  does express 
termination, and furthermore, gives a time bound for termination.  If execution takes longer than  
f x , the user can complain.  The specification  tʹ=∞  does express nontermination;  if execution 
ends at a finite time, the user can complain.  For further details, see [6 p.50-51].


