
2022-2-22 0

the Halting Game

Eric C.R. Hehner William J. Stoddart

Department of Computer Science Department of Computing
University of Toronto Teesside University

Toronto M5S 2E4 Canada Middlesbrough TS1 3BX UK
hehner@cs.utoronto.ca w.j.stoddart@gmail.com 

Games

Here is a series of games between two players named Call and Analyze.  Player Call must write a program 
named  call  that can call programs (execute them).  Then player Analyze must write a program named  analyze  
that can analyze programs (read them and reason about them).  The programming language is Python.  Since 
Call goes first, Call does not know what Analyze will write, but Analyze knows what Call has written.  All 
programs (functions, procedures, methods), including  call  and  analyze , as soon as they are composed, are 
written in a dictionary, both source and object, and are available for  call  to call and for  analyze  to analyze.

Game A:  A program's execution may terminate, or it may not.  Call's goal is to write  call  so that its execution 
behaves the same as  analyze 's execution:  execution of  call  terminates if execution of  analyze  terminates, 
and execution of  call  does not terminate if execution of  analyze  does not terminate.  Analyze's goal is to write  
analyze  so that its execution behaves opposite to  call 's execution:  execution of  analyze  terminates if 
execution of  call  does not terminate, and execution of  analyze  does not terminate if execution of  call  
terminates.  Call's strategy is easy:  call  just calls  analyze .

def call(): analyze()
Analyze argues that  call  has not been written first since it requires  analyze .  But the referee rules in favor of 
Call, saying  call  has been written first but cannot be executed until  analyze  is written.   Analyze seems to 
have an impossible task.  Analysis of program  call  seems to make clear that either execution of both programs 
terminates, or execution of both programs does not terminate.  Whatever program Analyze writes, Call wins and 
Analyze loses.

Game B:  Execution of a program produces a binary (boolean) result.  Call's goal is to write  call  so that its 
execution produces the opposite result from execution of program  analyze .  Analyze's goal is to write  analyze  
so that its execution produces the same result as execution of program  call .  As in game A,  Call has it easy:  
call  just calls  analyze , and then produces the opposite result.

def call(): return not analyze()
Again, Analyze has a seemingly impossible job because the tasks are inconsistent.  Call wins;  Analyze loses.  
The point of Game B is to say that the impossibility is not due to the fact that we are attempting to determine 
termination of execution.  The impossibility is due to the inconsistency of tasks.

Game C:  This is a hybrid of games A and B.  Analyze's goal is to write  analyze  so that its execution produces 
result  True  if execution of  call  terminates, and  False  if execution of  call  does not terminate.  Call's goal is 
to oppose Analyze:  write  call  so that its execution terminates if execution of  analyze  produces result  False , 
and does not terminate if execution of  analyze  produces result  True .  Call writes

def call(): if analyze(): call()
In spite of the mixture of tasks, the inconsistency is the same.  It seems that program  analyze  cannot be 
written.  Call wins;  Analyze loses.

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca
mailto:w.j.stoddart@gmail.com


2022-2-22                                                                                        the Halting Game                                                                                                        1

Game D:  This is the same as Game C, but adding irrelevant text (string) input parameters.  Program  call  has a 
text input parameter  i .  Program  analyze  has two text input parameters  p  and  q .  Analyze's goal is to write  
analyze  so that its execution produces result  True  if execution of the program whose name is the value of 
parameter  p , given as input the value of parameter  q , terminates, and  False  if it does not.  Call's goal is to 
oppose Analyze:  execution of  call("call")  should terminate if execution of  analyze("call", "call")  produces 
result  False , and not terminate if execution of  analyze("call", "call")  produces result  True .  As usual, 
program  call  is easy to write:

def call(i): if analyze(i, i): call(i)
Now  analyze  seems to be impossible to write because whatever result  analyze("call", "call")  produces will be 
wrong.  If  analyze("call", "call")  produces  True  then execution of  call("call")  is nonterminating;  if  
analyze("call", "call")  produces  False  then execution of  call("call")  is terminating.  The inconsistency is still 
there.  Call wins and Analyze loses again.

The parameters in Game D serve to direct attention away from the instance  analyze("call", "call")  that shows 
the inconsistency, to all those instances  analyze(p, q)  that are not problems.  Looking at those instances, one 
gets the impression that  analyze  is reasonably defined.  Then, looking at  call , one may blame the supposed 
limited power of computation to compute the answer, and label  analyze  “incomputable” or “undecidable”.  
Game D is the famous Halting Problem, and the definition of  call  is the standard proof that  analyze  cannot be 
written.  Game D is not different in character from Games A, B, and C.  We can specify a mathematical halting 
function without inconsistency.  But when we ask for a Python program to determine halting for all Python 
programs, we are asking for the impossible;  its specification is inconsistent.  In the preceding sentence, we can 
substitute any programming language for Python, and any nontrivial property of the execution of programs for 
halting.  The mathematical function escapes the inconsistency because  call  cannot call a mathematical 
function;  it can only call Python programs.

Analyze Gets Smart

Analyze conceded too quickly.  Analyze can win Game A as follows:
def analyze(): import sys;  if sys._getframe(1).f_code.co_name == "call": while True: pass

After writing  import sys , the value of  sys._getframe(1).f_code.co_name  is a text giving the name of the 
program (function) that has called  analyze .  So  analyze  says, informally, if I am being called from  call , then 
loop forever, and otherwise terminate execution.

def analyze(): if (I am being called from  call ): while True: pass
Execution of  call  calls  analyze , which loops forever because it was called from  call .  Execution of any other 
call of  analyze  terminates, which is opposite to the execution of  call , as required.  So Analyze wins and Call 
loses.

Analyze can win Game B as follows:
def analyze(): import sys;  return sys._getframe(1).f_code.co_name == "call"

which says, informally, if I am being called from  call , then return  True , and otherwise return  False .
  def analyze(): return (Am I being called from  call ?)
Execution of  call  calls  analyze , which returns  True  because it was called from  call , negates it, and returns  
False .  Execution of any other call of  analyze  returns  False , the same as execution of  call , as required.  So 
Analyze wins and Call loses.

Analyze can win Game C exactly the same way it wins Game B.
def analyze(): import sys;  return sys._getframe(1).f_code.co_name == "call"

Execution of  call  calls  analyze , which returns  True  because it was called from  call , and is then an infinite 
loop.  Execution of any other call of  analyze  returns  False , as it should because execution of  call  does not 



2022-2-22                                                                                        the Halting Game                                                                                                        2

terminate.  So Analyze wins and Call loses.

Game D is harder.  Analyze has to write program  analyze  so that it can analyze any Python program with any 
input and report its halting status.  Analyze can use the same trick as in Game C to defeat Call, but there are 
(potentially) infinitely many programs like  call .  For example,

def call2(i): if analyze(i, i): call2(i)
It is impossible for  analyze  to list all of their names to defeat them the same way it defeats  call .  This time, 
both Call and Analyze lose.

the Game Changes

cPython is a programming language.  It is exactly the same as Python except that all identifiers must begin with 
the letter  c .  aPython is another programming language.  It is also exactly the same as Python except that all 
identifiers must begin with the letter  a .  Call must write program  call  in language cPython, and Analyze must 
write program  analyze  in language aPython.

Game E:  This game is like Game B.  Analyze's goal is to write  analyze  so that its execution produces the same 
binary value that execution of  call  produces.  Call's goal is to write  call  so that its execution produces the 
value that is opposite to the value that execution of  analyze  produces.  This time,  call  is syntactically 
prevented from calling  analyze .  But Call has a strategy.  When  analyze  is written, Call can translate it from 
aPython to cPython by replacing the first letter of every identifier, which is  a , with  c , creating a program in 
cPython named  cnalyze .  Then  call  can call  cnalyze .  Call writes

def call(): return not cnalyze()
Call is thinking that execution of  cnalyze  must produce the same result as execution of  analyze , so  call  will 
produce the opposite result, as required.  Analyze again argues that  call  has not been written first since it needs 
a translation of  analyze .  Again the referee rules in favor of Call.  But this time Analyze has a most devious 
strategy.  Analyze knows that every compiler reads some text, does some lexical and syntactic analysis, and 
determines whether the text is a program in the language it compiles, printing an error message if it isn't.  In 
Python, after writing  import sys , the value of  sys._getframe().f_code.co_name  is a text giving the name of 
the program (function) it is in.  Using the equivalent aPython identifiers, Analyze writes  analyze  so that it 
looks up its own name ( analyze ) in the dictionary of all definitions and obtains its own source text (the text of  
analyze ).  It then does the same lexical and syntactic analysis that a Python compiler would do, plus a check to 
see if all identifiers start with  a , with result  True  if its own text is written in aPython, and  False  if not.  
Expressing the result informally,

def analyze(): return (Am I written in aPython?)
And since  analyze  is written in aPython, the result of execution will be  True .  When  analyze  is translated 
from aPython to cPython, we obtain, informally,

def cnalyze(): return (Am I written in aPython?)
The translation looks up its own name ( cnalyze ) in the dictionary of all definitions and obtains its own source 
text (the text of  cnalyze ), does the same lexical and syntactic analysis that a Python compiler would do plus a 
check to see if all identifiers start with  a , with result  True  if its own text is written in aPython, and  False  if 
not.  And since  cnalyze  is not written in aPython, the result of execution will be  False .  The result of 
executing  call  is therefore  True .  Analyze wins;  Call loses.

Call's definition of  call  turned out to be a loser, but Call might try some other definition.  However, since  call  
cannot call  analyze , and since translating  analyze  into cPython didn't work, Call is out of options.  We know 
of no reason to prevent  analyze  from analyzing any program Call might write to determine whether it returns  
True  or  False .



2022-2-22                                                                                        the Halting Game                                                                                                        3

Game F:  This is like Game C.  Analyze's goal is to write  analyze  in aPython so that its execution produces 
result  True  if execution of  call  terminates, and  False  if execution of  call  does not terminate.  Call's goal is 
to oppose Analyze:  write  call  in cPython so that its execution terminates if execution of  analyze  produces 
result  False , and does not terminate if execution of  analyze  produces result  True .  Ever hopeful, Call plans 
to translate  analyze  from aPython to cPython, creating program  cnalyze .  Call writes

def call(): if cnalyze(): call()
But Analyze's strategy works just as well in Game F as it did in Game E.  Analyze writes

def analyze(): return (Am I written in aPython?)
When  analyze  is executed, it returns  True .  When it is translated to  cnalyze , it returns  False .  Therefore 
execution of  call  terminates, just as  analyze  said it would.  Analyze wins;  Call loses.

Game G:  This is like Game F but with irrelevant input text parameters as in Game D.  cPython program  call  
has a text input parameter  ci .  aPython program  analyze  has two text input parameters  ap  and  aq .  
Analyze's goal is to write  analyze  so that its execution produces result  True  if execution of the cPython 
program whose name is the value of  ap , given as input the value of  aq , terminates, and  False  if it does not.  
Call's goal is to oppose Analyze:  execution of  call("call")  should terminate if execution of  
analyze("call",  "call")  produces result  False , and not terminate if execution of  analyze("call",  "call")  
produces result  True .  As in Games E and F, Call is denied the strategy of calling  analyze .  If Call's strategy is 
to translate  analyze  to cPython, Analyze can use the same strategy (Am I written in aPython?) as in Games E 
and F to defeat Call.  Analyze has a huge job to write program  analyze  so that it can analyze any cPython 
program with any input and report its halting status.  But there is no logical reason it cannot do so.

Conclusion

The point of Game G is to say that we have no reason to believe that a program ( analyze ) in a Turing-
Machine-Equivalent programming language (aPython) cannot be written to determine halting for all programs 
in a Turing-Machine-Equivalent programming language (cPython).  We just have to ensure that the programs 
being analyzed cannot call the program doing the analysis.  And they cannot, since cPython programs cannot 
call aPython programs.

Historical Note

Turing Machine programs didn't have names, but they could be numbered, and referred to by number.  In 
Turing's proof, call was accomplished by what he called a “Universal Machine”, a UM, which we today would 
call an interpreter.  Its input was the number of the program to be interpreted.  From a program number, a UM 
(interpreter) must be able to determine the program instructions.  In Turing's proof, the UM decoded the number 
into a stream of instructions.  In this paper, looking up a program name in the dictionary of all definitions 
determines the program instructions, and is the equivalent of decoding.  Calling and interpreting are equivalent.

References

In [0] it is argued that the standard Halting Problem proof proves inconsistency of specification rather than 
incomputability.  The point is made in [1] that the problem arises because the programs being analyzed can call 
the program doing the analysis, and the two-language solution is suggested.  A program that returns different 
results depending on where it was called from was suggested in [3].  Turing's proof is [4 p.247].  Other papers 
on the Halting Problem can be found at [2].

[0] E.C.R.Hehner: Problems with the Halting Problem, COMPUTING2011 Symposium on 75 years of Turing Machine and 
Lambda-Calculus, Karlsruhe Germany, invited, 2011 October 20-21; Advances in Computer Science and Engineering v.10 n.1 
p.31-60, 2013

https://www.cs.toronto.edu/~hehner/PHP.pdf


2022-2-22                                                                                        the Halting Game                                                                                                        4

[1] E.C.R.Hehner: Epimenides, Gödel, Turing: an Eternal Gölden Twist, SN Computer Science v.1 p.308, 2020 September
[2] E.C.R.Hehner: the Halting Problem, hehner.ca/halting.html, 2013-2022
[3] W.Stoddart: Halting Misconceived.  EuroForth 2017, http://www.complang.tuwien.ac.at/anton/euroforth/ef17/papers/stoddart.pdf 
[4] A.M.Turing: on Computable Numbers with an Application to the Entscheidungsproblem, Proceedings of the London 

Mathematical Society s.2 v.42 p.230-265, 1936; correction s.2 v.43 p.544-546, 1937

other papers on halting

http://www.cs.utoronto.ca/~hehner/EGT+.pdf
https://www.cs.toronto.edu/~hehner/halting.html
http://www.complang.tuwien.ac.at/anton/euroforth/ef17/papers/stoddart.pdf
http://www.cs.utoronto.ca/~hehner/halting.html

