
program2circuit
ERIC C.R. HEHNER
University of Toronto

CANADA
hehner@cs.utoronto.ca

THEODORE S. NORVELL
Memorial University of Newfoundland

CANADA
theo@engr.mun.ca

Abstract: - We present a new way to implement ordinary programs with logic gates. and a new method of timing within
circuits, and a new method of circuit verification. Application-specific circuit design can be done more effectively by using a
standard programming language to describe the function that a circuit is intended to perform, rather than by describing a circuit
that is intended to perform that function. The circuits are produced automatically; they behave according to the programs, and
have the same structure as the programs. For timing we use local delays, rather than a global clock or local handshaking.
We give a formal semantics for both programs and circuits in order to prove our circuits correct.

Key-Words: - digital circuit design

1 Introduction
The usual alternative to building application-specific circuits
is to use a general-purpose processor, and customize it for an
application by writing a program. But for some
applications, particularly where speed of execution or
security is important, a custom-built circuit has some
advantages over the usual processor-and-software
combination. The speed is improved by the absence of the
“machine-language” layer of circuitry with its “fetch-
execute” cycle of interpretation, and by the ease with which
we can introduce parallelism. Security is improved by the
impossibility of reprogramming. In addition, unless the
application requires a lengthy algorithm, there are space
savings compared to a combination of software and
processor.

The VHDL [8] and Verilog [13] languages are presently
being used by industry. There are interactive synthesis tools
to aid in the construction of circuits from subsets of these
languages. The circuits are then “verified” by simulation.

We do not present a new language for circuit design.
Instead, we advocate using a standard programming language
(for example, C), not to describe circuits, but to describe
algorithms. The resulting circuits are produced
automatically; they behave according to the programs, and
have the same structure as the programs. For timing we use
local delays, rather than a global clock (synchronous) or
local handshaking (asynchronous). We give a formal
semantics for both programs and circuits in order to prove
our circuits correct, using a theory presented in [5].

There are other high-level circuit design techniques
being developed and reported in the literature. Early work
includes [11], [12], and [4]. In [3] and [7], a circuit is
specified in a subset of CSP as a set of communicating
processes, and is transformed into circuits via an
intermediate mapping to production rules. A similar

approach (and a similar circuit design language) is used in
[1] and [2], except that specifications are mapped into
connections of small components for which standard
transistor implementations exist. In [14] circuits are
modeled as networks of finite state machines, and their
formalism is used to assist in proving the correctness of
their compiled circuits. The works of [6] and [10] are most
similar to ours, but their designs have a global clock; ours
do not.

2 Time
Ideally, we might suppose that circuit components act
instantly, with no gate delays, and are represented accurately
by timeless boolean expressions. Realistically, there are
gate delays, and sometimes there are transient signals
(glitches) while a circuit settles into a stable state. We must
introduce a timing discipline to ensure that we do not
require, and are not affected by, a result before it is ready.
We can consider time to be continuous or discrete; nothing
in this paper will depend on that choice.

To talk about time, we find it convenient to introduce
the operator , pronounced “delay” or “previous”. It gives
the value that its operand had previously, a short time ago.
Its circuit graphic is similarly a triangle. Whenever we need
to say formally what constraints a delay time must satisfy,
we write it to the left of the delay operator, and inside its
circuit graphic.

Delay time is dependent on context and technology, it is
usually determined by experiment, and can be known only
approximately, say with an upper and lower bound.
Sometimes we want the delay to be as short as possible;
when that is the case, signal propagation time through the
wire and surrounding gates is sufficient, and no extra
circuitry is required. When more delay is needed, it can be

implemented as an even number of negations, or by a
suitable choice of layout; these implementations are not
subject to glitches, and so do not raise again the problem
they are solving. In addition to its logical use, the delay
sometimes has the electrical job of reshaping a pulse, both
height and width, to compensate for degradation. But that is
a level of detail below our concern.

As a formal requirement, for proof of correctness, we
need to define the output of a delay to be initially for the
delay time, and thereafter it is the same as the input but
delayed. This initial is the only initialization in our
circuits; we don't consider initialization circuitry in this
paper. (We use for low voltage, ground, or false, and
for high voltage, power, or true.)

3 Merge
A merge turns two sequences of pulses into a single
sequence of pulses. (A pulse is a momentary). The 1-
2-merge has inputs a and b and output q . It outputs a
pulse when pulses arrive on a and b in that order, or
simultaneously, but not in the other order. To design a 1-2-
merge, we introduce an internal wire A with the meaning “
a is or has been ”.

A = (a ∨ α A)
q = (A ∧ b)
α ≤ (pulse time)

Unfortunately this is a one-time-only circuit; if ever there is
a pulse on a , it will allow all subsequent pulses on b to
pass. To obtain a circuit that resets itself on the falling edge
of q ready to be used repeatedly, we introduce one more
internal wire r that is except at the falling edge of q .
The circuit becomes

r = (q ∨ ¬γ q)
A = (r ∧ (a ∨ α A))
q = (A ∧ b)
α ≤ (pulse time) ∧ α ≤ γ

1

2

>

>

a

b
>q

γ

α

>qa

b

r
A

Internal wires can be left exposed, as in the above
specification of 1-2-merge and the top diagram, or they can
be hidden as in the bottom diagram and the following
specification:

∃r , A· r = (q ∨ ¬γ q)
∧ A = (r ∧ (a ∨ α A))
∧ q = (A ∧ b)

If a pulse on a follows a pulse on b , there must be a
delay of at least γ after the end of b before the start of a
to avoid truncating the output pulse. No circuit can
constrain its inputs; its context of use must constrain its
inputs, so a constraint is expressed formally as an antecedent
rather than a conjunct. The circuit specification is therefore

¬(a ∧ ¬γ a ∧ b)
⇒ ∃r , A· r = (q ∨ ¬γ q)

∧ A = (r ∧ (a ∨ α A))
∧ q = (A ∧ b)

A merge that outputs a pulse when the second of the
two input pulses arrives, regardless of their order, and resets
itself for reuse, is as follows. The inputs are a and b and
the output is q . Internal wire A means “ a is or has
been ”; internal wire B means “ b is or has been

 ”; internal wire r is except at the falling edge of q .
The circuit is

r = (q ∨ ¬γ q)
A = (r ∧ (a ∨ α A))
B = (r ∧ (b ∨ β B))
q = (A ∧ B ∧ (a ∨ b))
α ≤ (pulse time) ∧ α ≤ γ
β ≤ (pulse time) ∧ β ≤ γ

>

>

a

b
>q

γ

β

> q
a

r

A
α

b
B

4 Overview
The circuits that result from the translation have two
components: a control I , and a memory M , connected as
follows.

CσRσ Wσ

s
I

M

s′

σ Dσ
!

!?

?

↓

A thin line indicates one wire; a thick line indicates many
wires. We are depicting logic, not layout; the best place for
a bit of memory may be with a part of the control that uses

it. The memory consists of a word for each global variable
and a RAM for each global array in the program. (We
present local variables later. By making variables as local as
possible, we minimize the need for the global memory.)
Suppose the variables are x and y , and the arrays are A
and B . Then there are four clock wires, called Cx , Cy ,
CA , and CB , and collectively called Cσ . With one clock
wire for each variable and each array, the variables and arrays
can be independently and asynchronously changed. The data
inputs are Dx , Dy , DA , and DB , collectively called
Dσ . For the arrays, the writing address wires are WA and
WB , collectively called Wσ , and the reading address wires
are RA and RB , collectively called Rσ . The memory
outputs are x , y , A[RA] and B[RB] , collectively called
σ , the state of memory. Altogether, memory is
M = (x = (if ¬Cx ∧ γ Cx then Dx else x)

∧ y = (if ¬Cy ∧ γ Cy then Dy else y)
∧ (∀i· A[i] = if ¬CA ∧ γ CA ∧ i=WA

then DA else A[i])
∧ (∀i· B[i] = if ¬CB ∧ γ CB ∧ i=WB

then DB else B[i]))
γ ≥ (edge time) + (negation delay)
The expression ¬Cx ∧ Cx says that the clock for x is
down but was just previously up, so it is a falling edge.
The Cx-delay γ should be just large enough to allow Cx
to fall and to allow that falling edge to be negated. The Dx-
delay determines what data is latched; for example, we
might want the data from before the falling edge, or at its
start, or at its end (this delay could be omitted). The x-delay
should be as small as possible. Similarly for the other
variables and arrays.

The state is input to the control, along with an initiator
wire s . A pulse on s starts the computation. As the
computation progresses, the control changes the state of
memory, thus providing itself with further input. To
change the value of variable x in memory, the control
must send a pulse on clock wire Cx and the desired new
value on wire Dx . If the computation is finite, then when
it is complete, the control indicates termination by a pulse
on the completion wire s′ . It is the responsibility of the
context to ensure that the control is not restarted before it
has completed an execution.

A program is sometimes composed of smaller
programs. (In other terminology, a statement is sometimes
composed of smaller statements; we do not distinguish
between “program” and “statement”.) When a program is
composed of parts, the control will be composed of the
controls for the parts. To make the composition easy, we
require of each part that its output Dx be at any instant
when it is not changing variable x . Then we can disjoin
the Dx wires on their way to memory. Other variables and
arrays are similar.

IQ

M

I P

!

!

!

?

?

?
↓

Each disjunction is really many disjunctions, one for each
bit in its operands.

It is not our intention to present a new programming
language for circuit design; we advocate using a standard
programming language. We now describe the control for a
sampling of programming constructs from typical
programming languages.

4.1 Construct: empty
We begin with the simplest program: ok (sometimes
called skip). It is the “empty” program, whose execution
does nothing, taking no time. Program ok yields the
control

s′=s ∧ ¬Rσ ∧ ¬Cσ ∧ ¬Wσ ∧ ¬Dσ

s s′
σ Dσ

CσWσRσ

We have shown all its inputs and outputs. But since the σ
input is not connected to anything, there is no point in
bringing those wires from memory. And since the Rσ ,
Cσ , Wσ , and Dσ outputs are , there is no point in
taking them into a disjunction. So the circuit reduces to
nothing, which is appropriate for a circuit that does nothing.

4.2 Construct: delay
The next simplest program is tick , which also does
nothing, but takes time δ to do it.

s′=δ s ∧ ¬Rσ ∧ ¬Cσ ∧ ¬Wσ ∧ ¬Dσ
Constraints on δ must be stated with each use of t ick .
Leaving out the nonexistent wires, we have

s′δs

4.2 Construct: assignment
A variable assignment program x:= e yields the control

s′=τ δ s ∧ Cx=δ s ∧ Dx=(δ s ∧ e)
¬Rσ ∧ ¬Cρ ∧ ¬Wσ ∧ ¬Dρ
δ ≥ (e time)

τ ≥ (s pulse time) ≥ (memory latch time)
where ρ is the state of memory except for x .

τδ s′s

e

C

Dσ

∨

>
>

>

Box e evaluates the data expression in the assignment. We
assume for now that adders and other circuits to perform
numerical operations are available; when we have finished
presenting high-level circuit design, we will have the means
to design the circuits to perform integer and floating-point
operations by writing programs that use only boolean
variables and arrays with a restricted form of indexing.
Adders and other arithmetic circuits may be duplicated at
each use for maximum speed, or shared among several uses
(by means of the function call circuitry which we present
later), at the programmer's discretion. The input to e is
shown as the entire state of memory, but in practice it is
just the part of memory that e depends on. When the
expression e is a constant, there is a further simplification.
For example, the assignment x:= 5 results in the circuit

τ s′s

C

bit 0 of Dx
bit 2 of Dx

∨

>

>
>

since the binary representation of 5 , which is ...0000101 ,
has 1s at bit positions 0 and 2. Expression e may
depend on an array element; if so, the reading address for
that array element must be output from the expression
circuit, conjoined with s , and routed to memory. There
may be references to elements of several arrays, but for now,
assume there is at most one array element reference per array
in e ; later, the result expression will provide a way to
allow an arbitrary number of array element references. We
are also assuming that evaluation of expression e takes a
uniform, known amount of time, and the δ delay must
exceed that time; later, with the result expression we
will remove that assumption. The outputs, as usual,
are not really there.

An array element assignment program A[i]:= e yields
the control

s′=τ δ s
CA=δ s ∧ DA=(δ s ∧ e) ∧ WA=(δ s ∧ i)
¬Rσ ∧ ¬Cρ ∧ ¬Wρ ∧ ¬Dρ
δ ≥ (e time) ∧ δ ≥ (i time)
τ ≥ (s pulse time) ≥ (memory latch time)

where ρ is the state of memory except for A .

e

CA

DA

i

WA

σ

τδ s′s >

>

>

>

∨ ∨∨∨∨

4.3 Construct: sequential composition
To implement sequential composition P;Q we suppose
that we already have the controls IP and IQ for programs
P and Q . To avoid name clashes we systematically
rename the inputs and outputs of IP by adding the subscript
P , and similarly for IQ . Then the control for P;Q is

IP ∧ IQ
s=sP ∧ s′P=sQ ∧ s′Q=s′
σP=σQ=σ
Rσ=(RσP∨RσQ) ∧ Cσ=(CσP∨CσQ)
Wσ=(WσP∨WσQ) ∧ Dσ=(DσP∨DσQ)

Diagrammatically, ignoring the connections between the
controls and memory, we have

IP I Q
s′s

4.4 Construct: parallel composition
To implement parallel composition P||Q ,we need to start
both programs (operands of || are often called “processes”),
and then merge the completion pulses. We suppose that we
already have the controls IP and IQ for programs P and
Q . To avoid name clashes we systematically rename the
inputs and outputs of IP by adding the subscript P , and
similarly for IQ . Then the control for P||Q is

IP ∧ IQ ∧ merge
s=sP=sQ ∧ a=s′P ∧ b=s′Q ∧ s′=q
σP=σQ=σ
Rσ=(RσP∨RσQ) ∧ Cσ=(CσP∨CσQ)
Wσ=(WσP∨WσQ) ∧ Dσ=(DσP∨DσQ)

Ignoring the connections between the controls and memory,
we have

IP

I Q

s′s

This implementation of parallel composition allows P and
Q to access memory simultaneously. For the memory we
have described, simultaneous access to different variables or
arrays poses no problem. Even for the same variable,
simultaneous reads are no problem. But simultaneously
reading and writing the same variable, or two simultaneous
writes to the same variable, have unpredictable results. We

will soon introduce communication channels to allow
programs to share information without memory contention.

4.5 Construct: conditional composition
To implement conditional composition if b then P else
Q we suppose that we already have the controls IP and IQ
for programs P and Q . To avoid name clashes we
systematically rename the inputs and outputs of I P by
adding the subscript P , and similarly for IQ . Then the
control for if b then P else Q is

IP ∧ IQ
sP=(δ s∧b) ∧ sQ=(δ s∧¬b) ∧ s′=(s′P∨s′Q)
σP=σQ=σ
Rσ=(RσP∨RσQ) ∧ Cσ=(CσP∨CσQ)
Wσ=(WσP∨WσQ) ∧ Dσ=(DσP∨DσQ)
δ ≥ (b time)

Diagrammatically, ignoring the connections between the
controls and memory, we have

IP

IQ

s′

s

bσ

then
else

if

δ

The assumptions about b are the same as those about the
expression in an assignment. The if-then-else box is a one-
bit demultiplexer.

A one-tailed if b then P is just if b then P else
ok . To make a circuit for a case program, the if circuit
is generalized in the obvious way.

4.6 Construct: loop
To implement while b do P we suppose that we already
have the control IP for program P . To avoid name
clashes we systematically rename the inputs and outputs of
IP by adding the subscript P . Then the control for while
b do P is

IP
sP=(δ (s∨s′P) ∧ b) ∧ s′=(δ (s∨s′P) ∧ ¬b)
σP=σ ∧ Rσ=RσP ∧ Cσ=CσP
Wσ=WσP ∧ Dσ=DσP
δ ≥ (b time)

Diagrammatically, ignoring the connections between IP
and memory, we have

IP

s′
s

bσ

then
else

if

δ

Again, the assumptions about expression b are the same as
those about the expression in an assignment.

4.7 Construct: local variable
To declare local variable z of type T with scope P we
write var z: T · P . It simply adds another word of

memory, which is used only within P . Formally, its
control is

∃z, Cz, Dz· IP
where IP is the control for P . Local declaration helps to
locate the words of memory near the control circuitry that
uses them.

IP

s

σ

Cσ

s′

Rσ Wσ

Dσ
Dz

Cz
z

!?

↓

To declare local array A of size s and type T with
scope P we write var A[s]: T· P . The size must be a
compile-time constant. It simply adds another RAM, which
is used only within P . There is another way to implement
array declarations that is preferable in some circumstances.
We can treat the declaration of array A[3] as syntactic sugar
for the declaration of three variables A0 , A1 , A2 . We
treat the data expression A[i] as sugar for case i of A0 | A1
| A2 , and the assignment A[i]:= e as sugar for case i of
A0:= e | A1:= e | A2:= e . This implementation allows
parallel access and update of array elements.

4.8 Construct: procedure
In many programming languages, a procedure is a unit of
program that can be named, so that it can be called from
several places, it is a scope for local declarations, and it can
have parameters. These three aspects of procedures are
separable; we have already dealt with local scope, we will
come to parameters in a moment, and now we consider calls
and returns. We suppose that we already have the control IP
for procedure P . This circuit is started from any of the
calls, and indicates its completion to all calling points.

P IP
from callers to callerss′Ps

The calling points each become

s′P

s′s

P
s

1

2

It is a programmer's responsibility (using communications
to be described later) to make sure that calls from parallel
programs are mutually exclusive, so that the procedure is
not restarted before it completes an execution. Our
implementation does not work for recursive calls in general,

which are significantly harder (actually, the calls are easy but
the returns are hard), but it does work for tail-recursive
calls.

A parameter declaration can be treated exactly as though
it were introducing a local variable instead of a parameter.
Whenever a procedure P with parameter x is supplied an
argument a , the resulting program P a can be treated as
though it were (x:= a ; P) , except that x has been taken
out of scope.

4.9 Construct: function
A function, in many languages, is even more of a mixture
than a procedure. Its separable features are: the ability to
name a data expression so that it can be used in different
places; the ability to nest programs (statements) within a
data expression; local scope; parameters. The last two
aspects have been dealt with, and we now consider the first
two.

To associate a name with a data expression e , just put
the circuit to evaluate e somewhere. Its input comes from
memory, and its output goes to all uses of the name.

eσ to uses

Data expressions occur in various forms of program,
such as assignment and if . We have been assuming that
their evaluation time is predictable at compile-time, but to
be general, we allow circuits for data expressions to have a
control line (s input and s′ output). The data expression
P result e requires execution of program P in order to
create the correct state for evaluation of e . Its circuit
inserts the appropriate delay in the control line. The delay
may depend on the initial state, varying from one evaluation
to another; it is not a worst-case delay.

IP

s

σ

s′

e P result e

CσRσ Wσ

Dσ? !

δ

IP is the control for program P and δ ≥ (e time) . If P
changes only local variables, so that there are no side-effects,
then the outputs Cσ, Wσ, Dσ to memory are unnecessary.
Expression e should be evaluated in the local scope, so the
input to e should include local variables as necessary. A
result expression is often used as the body of a function.
Another use is to help us out of an earlier difficulty: we
were not allowed to have references to different elements of
the same array within one basic data expression. But a
compiler can transform an expression like A[i]+A[j] into

(var t: int· t:= A[i] result t+A[j])
and so we now lift the earlier restriction.

4.10 Construct: communication
To declare local channel c of type T with scope P we
write chan c: T· P . For one writing program and one
reading program it is defined as follows.

(chan c: T· P)
= (var c: T· var √c: bool· √c:= ; P)
It introduces two variables, called the buffer and the probe.
The buffer c (same name as the channel) holds the value
being communicated, and the probe √c (pronounced “check
c ”) tells whether there is an unread message in the buffer.
We define output of expression e and input to variable x
on this channel as follows.

c! e = (while √c do tick; c:= e; √c:=)
c? x = (while ¬√c do tick; x:= c; √c:=)

Since we have already implemented all constructs on the
right sides of these definitions, we therefore have
implementations of channel declaration, input, and output.
But there are two points that need attention. The tick
delay must be longer than the control pulse (the pulse on
s) so the control pulse is not lost. And the while must
use an edge-triggered switch so the control pulse will not be
truncated, split, or otherwise damaged by a change in √c
due to a parallel program. Although the buffer may also be
shared by parallel programs that both read and write it, the
discipline of use imposed by input and output ensures
noninterference.

5 Correctness
To prove that our circuits are correct, we must have a formal
semantics for our source programs and circuits. Here is the
source semantics.

Let t and t′ be the initial and final execution times,
the times at which execution starts and ends. If the
execution time is infinite, t′=∞ . Let the state variables x ,
y , ... be functions of time. The value of x at time t is
x t . An expression such as x+y is also a function of
time; its argument is distributed to its variable operands as
follows: (x+y)t = x t + y t . Let

wait
= (t′≥t ∧ ∀t′′: t≤t′′≤t′· xt′′=xt ∧ yt′′=yt ∧ ...)
so that wait takes an arbitrary time during which the
variables are unchanging.

The programming notations are defined as follows.
ok = (t′=t)
tick = (t′=t+δ ∧ wait)
(x:= e) = (t′=t+δ+τ ∧ xt′=et ∧ waity,z...)

where δ ≥ (e time) ∧ τ ≥ (memory time) .
(P;Q) = ∃t′′· (substitute t′′ for t′ in P)

∧ (substitute t′′ for t in Q)
(Pα || Qβ) = (Pα ∧ (Q; wait)β

∨ (P; wait)α ∧ Qβ)
(if b then P else Q) = (if bt then P else Q)

= (bt ∧ P ∨ ¬bt ∧ Q)
where δ ≥ (b time) .

(while b do P)
⇒ if b then (P; while b do P) else o k

(∀x, x′, y, y′, ..., t, t′· W ⇒ if b then (P; W)
else ok)

⇒ (∀x, x′, y, y′, ..., t, t′· W ⇒ while b do P)
var z: T· P = ∃z: time→T· P

where t ime→ T is the functions from time values
(including ∞) to T values.

Here is a simple example, in variables x and y . In
this example we use discrete time and take δ to be 0 and
τ to be 1 .

x:= x+3; x:= x+4
= (t′=t+1 ∧ xt′=xt+3 ∧ yt′=yt);

(t′=t+1 ∧ xt′=xt+4 ∧ yt′=yt)
= ∃t′′· (t′′=t +1 ∧ xt′′=xt+3 ∧ yt′′=yt)

∧ (t′=t′′+1 ∧ xt′=xt′′+4 ∧ yt′=yt′′)
= t′=t+2 ∧ x(t+1)=xt+3 ∧ x(t+2)=xt+7

∧ yt=y(t+1)=y(t+2)
In the parallel composition, α consists of those

variables that appear on the left of assignments within P ,
and β consists of those variables that appear on the left of
assignments within Q ; α and β must be disjoint. The
use of wait is just to make the faster side of the parallel
composition wait until the slower side is finished. To
illustrate the semantics, here is an example in variables x
and y , and discrete time with δ=0 and τ=1 . In the left-
hand program, only x is assigned, so only x is treated as
a state variable. In the right-hand program, only y is
assigned, so only y is treated as a state variable.

(x:= 2; x:= x+y; x:= x+y) || (y:= 3; y:= x+y)
= (t′ = t +1 ∧ xt′=2; t′ = t+1 ∧ xt′ = xt+yt;

 t′ = t+1 ∧ xt′ = xt+yt)
∧ (t′ = t +1 ∧ yt′=3; t′=t+1 ∧ yt′ = xt+yt;

 t′≥t ∧ ∀t′′: t≤t′′≤t′· yt′′=yt)
∨ (t′ = t +1 ∧ xt′=2; t′ = t+1 ∧ xt′ = xt+yt;

 t′ = t+1 ∧ xt′ = xt+yt;
 t′≥t ∧ ∀t′′: t≤t′′≤t′· xt′′=xt)

∧ (t′ = t +1 ∧ yt′=3; t′=t+1 ∧ yt′ = xt+yt)
= t′ = t+3 ∧ x(t+1)=2 ∧ x(t+2) = x(t+1)+y(t+1)

∧ x(t+3) = x(t+2)+y(t+2)
∧ t′ ≥ t+2 ∧ y(t+1)=3 ∧ y(t+2) = x(t+1)+y(t+1)
∧ ∀t′′: t+2≤t′′≤t′· yt′′=y(t+2))

∨ t′ ≥ t+3 ∧ (other conjuncts)
∧ t′ = t+2 ∧ (other conjuncts)

= t′=t+3 ∧ x(t+1)=2 ∧ y(t+1)=3 ∧ x(t+2)=5
∧ y(t+2)=5 ∧ x(t+3)=10 ∧ y(t+3)=5

The example has the appearance of lock-step parallelism, as
though there were a global clock, only because, for the sake
of simplicity, we used discrete time with constants δ=0 and
τ=1 for all assignments.

The first formula concerning the while loop says it
refines its first unrolling. Stated differently, while b do P
is a pre-fixed-point of W ⇒ if b then (P; W) else ok .
The second formula says that it is as weak as any pre-fixed-
point, so it is the weakest pre-fixed-point.

The other programming constructs (channel declaration,
input, output, signal declaration, sending, receiving,
parameter declaration, argumentation) are defined in terms of

the ones we have already defined, so we do not need to give
them a separate semantics. And that completes the source
semantics.

The imperative circuit semantics was given with each
circuit. For example, the control for ok was

s′=s ∧ ¬Rσ ∧ ¬Cσ ∧ ¬Wσ ∧ ¬Dσ
and the control for while b do P was

IP
sP=(δ (s∨s′P) ∧ b) ∧ s′=(δ (s∨s′P) ∧ ¬b)
σP=σ ∧ Rσ=RσP ∧ Cσ=CσP
Wσ=WσP ∧ Dσ=DσP
δ ≥ (b time)

where IP is the control for P .
Before we can prove correctness, we need one more idea,

adapted from [9]. Roughly speaking, a circuit is “busy” if it
has been started and has not yet stopped. Formally, define
B as

B = ((s ∨ δ B) ∧ ¬s′)
δ ≤ (pulse time)

The delay here must be shorter than the pulse length used on
the control lines (s and s′). If time is discrete and δ=1 ,
then for any A

(A) 0 =
(A) (t+1) = At

and so for busy B
B0 =
B(t+1) = ((s(t+1) ∨ Bt) ∧ ¬s′(t+1))

To prove that a circuit is correct, we must prove
IP ∧ M ∧ st ∧ (∀t′′· Bt′′∧ Bt′′ ⇒ ¬st′′)

∧ t′=(min t′′· t′′≥t· ∧ s′t′′)
⇒ P
Suppose we have the control IP (for program P), and we
have the memory M , and we put a pulse on the start wire
s at time t , and we don't try to restart the circuit while it's
busy, and we give the name t′ to the first time at or after t
when s′ becomes ; then we expect the circuit to satisfy
the semantics of program P . We do not have to prove
correct each circuit that we design; instead, we prove that
our circuit generation scheme is correct. The proof is long,
and we omit it, stating only two lemmas that are useful
steps on the way to the proof.

I ∧ ¬ B ∧ ¬s ⇒ ¬s′
which says that a circuit does not spontaneously generate
s′ .

I ∧ ¬B ⇒ ¬Rσ ∧ ¬Cσ ∧ ¬Wσ ∧ ¬Dσ
which says that if a circuit is not busy, its Rσ , Cσ , Wσ ,
and Dσ outputs are all .

6 Synchronous and Asynchronous
There are two ways to control the timing in circuits. One is
by using delays calculated, or experimentally determined, to
be long enough to ensure that all data values have settled
properly. The other way, called “delay-insensitive”, is to
use handshaking signals that allow a data transfer to occur
just when both sender and receiver are ready. These
solutions can be applied locally, or globally, or at any level
in between. The word “synchronous” is usually used to

describe a global delay, or clock; the word “asynchronous”
is sometimes used to describe local handshaking.

The circuits resulting from the methods we have
presented use local delays. But as a special case, it is
possible to write a program in the form of a single loop,
whose body is a parallel composition of assignments. This
program structure forces a single, common delay for all state
changes; that delay is in effect a global clock. We can thus
program a synchronous circuit when we want one. When
designing a circuit, there is little point in aiming for the
synchronous structure, and equally little point in aiming to
avoid it. One chooses a program structure that is
appropriate for the task, and one gets a circuit that
accomplishes that task. In principle, local delays should be
faster than a single global delay. That is because a global
delay must be the maximum of all the local delays. In a
synchronous circuit, each state change takes as long as the
slowest state change requires.

If we choose to make each assignment into a little
procedure, the 1-2-merges at the calling points are an
implementation of local handshaking. We can thus program
local handshaking when we want it. In principle, local
delays should be faster than local handshaking. That is
because the handshaking takes time. A local delay is just
long enough for the data to be ready, not long enough for
the data to be ready and to indicate its readiness.

7 Conclusion
Circuit design can be done more effectively by describing the
function that a circuit is intended to perform than by
describing a circuit that is intended to perform that function.
A programming language is more convenient for that
purpose than a gate-level language. It seems quite obvious
that complex circuits can be designed this way more easily
and reliably than by low-level gate descriptions. And the
resulting circuits seem, from a preliminary investigation, to
show the promise of competing successfully with hand-
crafted circuits. They should be smaller and faster than
synchronous circuits due to the absence of a global clock.
They should also be smaller and faster than delay-insensitive
circuits due to the absence of handshaking. These gains
come at a price: the language implementer must provide
local delays. We do not suppose it is easy to provide local
delays, but this price is paid only once; circuit designers
who use the high-level language do not need to be concerned
with them.

We have compiled a sampling of programming
constructs that are representative of many high-level
languages. Some obviously desirable constructs, such as
modules, are missing only because they do not present any
circuit generation problems (modules restrict the use of
identifiers).

We have implemented ordinary programs with logic
gates. The logic gates can, of course, be implemented with
electronic transistors, resistors, and diodes. We could
therefore bypass the logic gates, implementing the programs
directly with transistors, resistors, and diodes. Doing so

makes more optimizations and more efficient circuits
possible. Ultimately, perhaps logic gates will have no
remaining role in circuit design.

References:
[1] C.H.vanBerkel, J.Kessels, M.Roncken, R.W.J.J.Saeijs,

F.Schalij: “The VLSI programming language Tangram
and its translation into handshake circuits”. In
Proceedings of the European Design Automation
Conference, 1991.

[2] C.H.vanBerkel: Handshake circuits – an asynchronous
architecture for VLSI programming. Cambridge
University Press, 1993.

[3] S.M.Burns, A.J.Martin: “Performance analysis and
optimization of asynchronous circuits”. In Proc. of
the 1991 UC Santa Cruz Conf. on VLSI, MIT Press,
1991.

[4] C.DelgadoKloos: Semantics of Digital Circuits, LNCS
285, Springer, 1987.

[5] E.C.R.Hehner: “Abstractions of Time”. In A Classical
Mind: Essays in Honour of C.A.R.Hoare, A.W.
Roscoe (ed.), Prentice-Hall, 1994.

[6] W.Luk, D.Ferguson, I.Page: “Structured Hardware
Compilation of Parallel Programs”. In More Field-
Programmable Gate Arrays, W.Moore and W.Luk
(eds.), Abingdon EE&CS Books, 1994.

[7] A.J.Martin: “Programming in VLSI: from
communicating processes to delay-insensitive circuits”.
In Developments in Concurrency and Communication,
C.A.R.Hoare (ed.), Addison-Wesley, University of
Texas at Austin Year of Programming Series, 1990.

[8] S.Mazor, P.Langstraat: a Guide to VHDL, Kluwer,
1992.

[9] T.S.Norvell: a Predicative Theory of Machine
Languages and its Application to Compiler Correctness.
PhD thesis, University of Toronto, 1994.

[10] I.Page, W.Luk: “Compiling occam into field-
programmable gate arrays”. In Field-Programmable Gate
Arrays, W.Moore and W.Luk (eds.), p.271-283,
Abingdon EE&CS Books, 1991.

[11] M.Rem: Partially Ordered Computations with
Applications to VLSI Design, Technical Report
MR83/3, Eindhoven University of Technology, 1982

[12] J.L.A.van de Snepscheut: Trace Theory and VLSI
Design, LNCS 200, Springer, 1985.

[13] D.E.Thomas, P.Moorby: the Verilog Hardware
Description Language, Kluwer, 1991.

[14] S.Weber, B.Bloom, G.Brown: “Compiling Joy into
Silicon”. In Advanced Research in VLSI and Parallel
Systems, T. Knight and J. Savage (eds.), MIT Press,
1992.

