
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Programming with Quantum Communication

Anya Tafliovich1 ,2

Computer Science
University of Toronto

Toronto, Canada

Eric C. R. Hehner3

Computer Science
University of Toronto

Toronto, Canada

Abstract

This work develops a formal framework for specifying, implementing, and analysing quantum communication
protocols. We provide tools for developing simple proofs and analysing programs which involve communi-
cation, both via quantum channels and exhibiting the LOCC (local operations, classical communication)
paradigm.

Keywords: Quantum Computing, Quantum Communication Protocol, Formal Verification, Formal
Methods of Program Design

1 Introduction

The term quantum communication refers to the process of transferring a quantum

state between distinct physical locations. There are two ways of accomplishing this

task. The first one is analogous to classical communication and involves sending a

quantum bit over a quantum communication channel (just as classical communica-

tion is associated with sending classical bits over a classical communication chan-

nel). The second one has no classical analogue. In a quantum world it is possible

to transfer a quantum bit without utilising a quantum channel, by using a classi-

cal communication channel and a pair of entangled states and applying quantum

operations locally.

This work develops a formal framework for specifying, implementing, and

analysing quantum communication protocols. We provide tools for developing sim-

1 This work is in part supported by NSERC.
2 Email: anya@cs.toronto.edu
3 Email: hehner@cs.toronto.edu

c©2009 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:anya@cs.toronto.edu
mailto:hehner@cs.toronto.edu

Tafliovich

ple proofs and analysing programs which involve communication, both via quan-

tum channels and exhibiting the LOCC (local operations, classical communication)

paradigm. We look at quantum communication in the context of formal methods of

program development, or programming methodology. This is the field of computer

science concerned with applications of mathematics and logic to software engineering

tasks. In particular, the formal methods provide tools to formally express specifica-

tions, prove correctness of implementations, and reason about various properties of

specifications (e.g. implementability) and of implementations (e.g. time and space

complexity).

In this work the analysis of quantum communication protocols is based on

quantum predicative programming ([23,24,22]), a recent generalisation of the well-

established predicative programming ([14,15]). It supports the style of program

development in which each programming step is proved correct as it is made. We

inherit the advantages of the theory, such as its generality, simple treatment of

recursive programs, and of time and space complexity. The theory of quantum pro-

gramming provides tools to write both classical and quantum specifications, develop

quantum programs that implement these specifications, and reason about their com-

parative time, space, and communication complexity, all in the same framework.

There has been a number of proposals for formal approaches to quantum pro-

gramming, including the language qGCL [20,28], process algebraic approaches

of [4,18,17], tools developed in the field of category theory [1,2,3,10,21], functional

languages of [6,7,5,25], as well as work of [12], [11], and [13]. A detailed discussion

of the work related to quantum predicative programming is presented in [23].

The contribution of this work is twofold. Firstly, we present a framework for im-

plementing quantum communication protocols, specifying desired properties of the

protocols, and formally proving whether these properties hold. The properties are

not restricted to reasoning about the data sent or received by the parties involved.

We provide tools to prove properties which deal with the complexity of the pro-

tocol, such as the number of classical and quantum bits sent during its execution.

Secondly, the reasoning about quantum communication fits nicely in the general

framework of quantum predicative programming, and thus inherits all of its advan-

tages. The definitions of specification and program are simple: a specification is a

boolean (or probabilistic) expression and a program is a specification. The treat-

ment of recursion is simple: there is no need for additional semantics of loops. The

treatment of termination simply follows from the introduction of a time variable; if

the final value of the time variable is ∞, then the program is a non-terminating one.

There is a uniform method for proving correctness and time, space, and commu-

nication complexity; moreover, after proving them separately, we naturally obtain

the conjunction. The use of Dirac-like notation makes it easy to write down specifi-

cations and develop algorithms. Finally, the treatment of computation with mixed

states does not require any additional mechanisms.

The rest of this work is organised as follows. Section 2 is a brief introduction

to quantum predicative programming. The contribution of this work is Section 3

which introduces a formal framework for specifying, implementing, and analysing

quantum communication protocols and presents the analysis of two such protocols:

quantum teleportation and quantum dense coding. Section 4 states conclusions and

2

Tafliovich

outlines directions for future research. A short introduction to quantum computing

is presented in the Appendix A.

2 Quantum Predicative Programming

This section introduces the programming theory of our choice — quantum predica-

tive programming. We briefly introduce parts of the theory necessary for under-

standing Section 3 of this work. For a course in predicative programming the reader

is referred to [14]. An introduction to probabilistic predicative programming can

be found in [15,16]. Quantum predicative programming is developed in [23,24,22].

2.1 Predicative programming

In predicative programming a specification is a boolean expression. The variables

in a specification represent the quantities of interest, such as prestate (inputs),

poststate (outputs), and computation time and space. We use primed variables to

describe outputs and unprimed variables to describe inputs. For example, speci-

fication x′ = x + 1 states that the final value of x is its initial value plus 1. A

computation satisfies a specification if, given a prestate, it produces a poststate,

such that the pair makes the specification true. A specification is implementable if

for each input state there is at least one output state that satisfies the specification.

We use standard logical notation for writing specifications: ∧ (conjunction), ∨
(disjunction), ⇒ (logical implication), = (equality, boolean equivalence), 6= (non-

equality, non-equivalence), and if then else. The larger operators == , ≤ , and

=⇒ are the same as =, ≤, and ⇒, but with lower precedence. We use standard

mathematical notation, such as + − × /mod div. We use lowercase letters for

variables of interest and uppercase letters for specifications.

In addition to the above, we use the following notations: σ (prestate), σ′ (post-

state), ok (σ′ = σ), and x := e (x′ = e ∧ y′ = y ∧ . . .). The notation ok specifies

that the values of all variables are unchanged. In the assignment x := e, x is a state

variable (unprimed) and e is an expression (in unprimed variables) in the domain

of x.

IfR and S are specifications in variables x, y, . . . , then the sequential composition

of R and S is defined by

R ; S == ∃x′′, y′′, . . . ·R′′ ∧ S′′ (1)

where R′′ is obtained from R by substituting all occurrences of primed variables

x′, y′, . . . with double-primed variables x′′, y′′, . . . , and S′′ is obtained from S by

substituting all occurrences of unprimed variables x, y, . . . with double-primed vari-

ables x′′, y′′,

Various laws can be proved about sequential composition. One of the most

important ones is the substitution law, which states that for any expression e of the

prestate, state variable x, and specification P ,

x := e ; P == (for x substitute e in P) (2)

3

Tafliovich

Specification S is refined by specification P if and only if S is satisfied whenever

P is satisfied, that is ∀σ, σ′ · S ⇐ P . Given a specification, we are allowed to

implement an equivalent specification or a stronger one.

A program is an implemented specification. A good basis for classical (non-

quantum) programming is provided by: ok, assignment, if then else, sequential

composition, booleans, numbers, bunches, and functions. Given a specification S,

we proceed as follows. If S is a program, there is no work to be done. If it is not, we

build a program P , such that P refines S, i.e. S ⇐ P . The refinement can proceed

in steps: S ⇐ . . .⇐ R⇐ Q⇐ P .

In S ⇐ P it is possible for S to appear in P . No additional rules are required

to prove the refinement. For example, it is trivial to prove that

x ≥ 0 ⇒ x′ = 0 ⇐= if x = 0 then ok else (x := x− 1 ; x ≥ 0 ⇒ x′ = 0)

The specification says that if the initial value of x is non-negative, its final value

must be 0. The solution is: if the value of x is zero, do nothing, otherwise decrement

x and repeat.

2.2 Probabilistic predicative programming

A probability is a real number between 0 and 1, inclusive. A distribution is an

expression whose value is a probability and whose sum over all values of variables

is 1. Given a distribution of several variables, we can sum out some of the variables

to obtain a distribution of the rest of the variables.

To generalise boolean specifications to probabilistic specifications, we use 1 and

0 both as numbers and as boolean true and false, respectively. If R and S are

specifications in variables x, y, . . . , then the definition (1) of sequential composition

of R and S is generalised to

R ; S ==
∑

x′′, y′′, . . . ·R′′ × S′′

where R′′ and S′′ are defined as before.

If p is a probability and R and S are distributions, then

if p then R else S == p×R+ (1 − p) × S

If S is an implementable deterministic specification and p is a distribution of

the initial state x, y, ..., then the distribution of the final state is

p′ ; S

Various laws can be proved about sequential composition. One of the most

important ones, the substitution law, introduced earlier, applies to probabilistic

specifications as well.

To implement a boolean specification S, we need to provide a program P which is

either equivalent to or is stronger than S, that is S ⇐ P . In developing probabilistic

programs, the analog of ⇒ is ≤. However, one must be careful when using it.

4

Tafliovich

Consider, for example, the following probabilistic expression:

(x′ = 0)/2 + (x′ 6= 0)/2

which is intended to capture the specification that says that the final value of x is

0 half of the time and non-zero half of the time. We can refine this expression with

the following program (in one variable x):

if 1/2 then x :=0 else x :=1

== (x′ = 0)/2 + (x′ = 1)/2

≤ (x′ = 0)/2 + (x′ 6= 0)/2

However, it is also the case that

if 1/2 then x :=1 else x :=2

== (x′ = 1)/2 + (x′ = 2)/2

≤ 1/2

== (x′ = 0)/2 + (x′ 6= 0)/2

which does not correspond to the intended meaning of the specification. There

is an intrinsic problem with formulating probabilistic specifications as super-

distributions, known as a convex closure problem. We avoid this problem in this

work by only allowing the following uses of super-distributions in probabilistic re-

finement: if P0 is a probabilistic specification (a distribution) in variables σ′0 and P1

is a distribution in variables σ′1 then we allow a probabilistic analog of weakening :

P0 × P1 ≤ P0 and

P0 × P1 ≤ P1

2.3 Quantum Predicative Programming

Let C be the set of all complex numbers with the absolute value operator | · | and

the complex conjugate operator ∗. Then a state of an n-qubit system is a function

ψ : 0, ..2n → C, such that
∑
x : 0, ..2n · |ψx|2 == 1. Here notation i, ..j means from

(and including) i to (and excluding) j.

If ψ and φ are two states of an n-qubit system, then their inner product, denoted

by 〈ψ|φ〉, is defined by:

〈ψ|φ〉 =
∑

x : 0, ..2n · (ψx)∗ × (φx)

A basis of an n-qubit system is a collection of 2n quantum states b0,..2n , such

that ∀i, j : 0, ..2n · 〈bi|bj〉 = (i = j). We adopt the following Dirac-like notation

for the computational basis: if x is from the domain 0, ..2n, then x denotes the

corresponding n-bit binary encoding of x and |x〉 : 0, ..2n → C is the following

quantum state:

|x〉 = λi : 0, ..2n · (i = x)

5

Tafliovich

where λx : D · b is a function of a variable x with domain D and body b. If ψ is a

state of an m-qubit system and φ is a state of an n-qubit system, then ψ ⊗ φ, the

tensor product of ψ and φ, is the following state of a composite m+n-qubit system:

ψ ⊗ φ = λi : 0, ..2m+n · ψ(i div 2n) × φ(i mod 2n)

We write φ⊗n to mean “φ tensored with itself n times”. An operation defined

on an n-qubit quantum system is a higher-order function, whose domain and range

are maps from 0, ..2n to the complex numbers. An identity operation on a state of

an n-qubit system is defined by

In = λψ : 0, ..2n → C · ψ

For a linear operation A, the adjoint of A, written A†, is the (unique) operation,

such that for any two states ψ and φ, 〈ψ|Aφ〉 = 〈A†ψ|φ〉.
The unitary transformations that describe the evolution of an n-qubit quantum

system are operations U defined on the system, such that U †U = In.

In this setting, the tensor product of operators is defined in the usual way. If ψ

is a state of an m-qubit system, φ is a state of an n-qubit system, and U and V are

operations defined on m and n-qubit systems, respectively, then the tensor product

of U and V is defined on an m+ n qubit system by

(U ⊗ V)(ψ ⊗ φ) = (Uψ) ⊗ (V φ)

To apply an operation U defined on a 1-qubit system to qubit i in a composite

n-qubit system, we apply the operation Uni to the entire system, where Uni is defined

by:

Uni = I ⊗ ...⊗ I
︸ ︷︷ ︸

i

⊗ U ⊗ I ⊗ ...⊗ I
︸ ︷︷ ︸

n−i−1

Suppose we have a system of n qubits in state ψ and we measure (observe) it.

Suppose also that we have a variable r from the domain 0, ..2n, which we use to

record the result of the measurement, and variables x, y, . . ., which are not affected

by the measurement. Then the measurement corresponds to a probabilistic specifi-

cation that gives the probability distribution of ψ′ and r′ (these depend on ψ and

on the type of measurement) and states that the variables x, y, . . . are unchanged.

For a general quantum measurement described by a collection M = M0,..2n of

measurement operators, which satisfy the completeness equation (see Appendix A),

the specification is measureM ψ r, where

measureM ψ r == 〈ψ|M †
r′Mr′ψ〉 ×

ψ′ =
Mr′ψ

√

〈ψ|M †
r′Mr′ψ〉

 × (σ′ = σ)

where σ′ = σ is an abbreviation of (x′ = x) × (y′ = y) × . . . and means “all other

variables are unchanged”.

Given an arbitrary orthonormal basis B = b0,..2n , measurement of ψ in basis B

is:

measureB ψ r == |〈br′ |ψ〉|2 × (ψ′ = br′) × (σ′ = σ)

6

Tafliovich

The simplest and the most commonly used measurement in the computational

basis is:

measure ψ r == |ψr′|2 × (ψ′ = |r′〉) × (σ′ = σ)

In this case the distribution of r′ is |ψr′|2 and the distribution of the quantum

state is: ∑

r′ · |ψr′|2 × (ψ′ = |r′〉)
which is precisely the mixed quantum state that results from the measurement.

In order to develop quantum programs we need to add to our list of implemented

things. We add variables of type quantum state as above and we allow the following

three kinds of operations on these variables. If ψ is a state of an n-qubit quantum

system, r is a natural variable, and M is a collection of measurement operators that

satisfy the completeness equation, then:

(i) ψ := |0〉⊗n is a program

(ii) ψ := Uψ, where U is a unitary transformation on an n-qubit system, is a

program

(iii) measureM ψ r is a program

where the superscript ⊗n means “tensored with itself n times”. The special cases of

measurements are therefore also allowed.

Some unitary operations that we will use in the later sections are (here x, c : 0, 1):

I|x〉 = |x〉 identity

X|x〉 = |1 − x〉 X - Pauli matrix

Y |x〉 = (−1)x × i× |1 − x〉 Y - Pauli matrix

Z|x〉 = (−1)x × |x〉 Z - Pauli matrix

H|x〉 = (|0〉 + (−1)x × |1〉)/
√

2 Hadamard

CNOT |cx〉 = (I ⊗Xc)|cx〉 controlled-not

3 Distributed Quantum Systems and Communication

In predicative programming, to reason about distributed computation we (dis-

jointly) partition the variables between the processes involved in a computation.

Parallel composition is then simply boolean conjunction. For example, consider

two processes P and Q. P owns integer variables x and y and Q owns an integer

variable z. Suppose P == x := x + 1 ; y := x and Q == z := −z. Parallel

composition of P with Q is then simply

P ||Q == P ∧Q == x′ = x+ 1 ∧ y′ = x+ 1 ∧ z′ = −z

In quantum predicative programming, one needs to reason about distributed

quantum systems. Recall that if ψ is a state of an m-qubit system and φ is a

state of an n-qubit system, then ψ ⊗ φ, the tensor product of ψ and φ, is the

state of a composite m + n-qubit system. On the other hand, given a composite

m + n-qubit system, it is not always possible to describe it in terms of the tensor

product of the component m- and n-qubit systems. Such a composed system is

7

Tafliovich

entangled. Entanglement is one of the most non-classical, most poorly understood,

and most interesting quantum phenomena. An entangled system is in some sense

both distributed and shared. It is distributed in the sense that each party can apply

operations and measurements to only its qubits. It is shared in the sense that the

actions of one party affect the outcome of the actions of another party. Simple

partitioning of qubits is therefore insufficient to reason about distributed quantum

computation.

The formalism we introduce fully reflects the physical properties of a distributed

quantum system. We start by partitioning the qubits between the parties involved.

For example, consider two parties P and Q. P owns the first qubit of the composite

entangled quantum system ψ = |00〉/
√

2 + |11〉/
√

2 and Q owns the second qubit.

A specification is a program only if each party computes with its own qubits. In

our example,

P == ψ0 := Hψ0 ; measure ψ0 p and Q == measure ψ1 q

are programs, if p and q are integer variables owned by P and Q, respectively.

Sometimes we want to explicitly include partitioning of variables as part of a

specification. For this purpose, we introduce notation varP to mean the bunch

of variables that belong to process P . In the above example we can make the

partitioning of variables explicit with the specification

ψ0, p : varP ∧ ψ1, q : varQ

We define parallel composition of P and Q which share an n+m quantum system

in state ψ with the first n qubits belonging to P and the other m qubits belonging

to Q as follows. If

P == ψ0,..n := UPψ0,..n and Q == ψn,..n+m := UQψn,..n+m

where UP is a unitary operation on an n-qubit system and UQ is a unitary operation

on an m-qubit system, then

P ||ψ Q == ψ := (UP ⊗ UQ)ψ

Performing ok is equivalent to performing the identity unitary operation, and

therefore if

P == ψ0,..n := UPψ0,..n and Q == ok

then

P ||ψ Q == ψ := (UP ⊗ I⊗m)ψ

Similarly, if

P == measureMP
ψ0,..n p and Q == measureMQ

ψn,..n+m q

where MP and MQ are a collection of proper measurement operators for n- and

m-qubit systems, respectively, then

P ||ψ Q == measureMP⊗MQ
ψ p×q

8

Tafliovich

In our example,

ψ := |00〉/
√

2 + |11〉/
√

2 ; P ||ψQ expand, substitute

== ψ := |00〉/
√

2 + |11〉/
√

2 ;

measure (Hψ0) p ||ψ measure ψ1 q compose on ψ

== ψ := |00〉/
√

2 + |11〉/
√

2 ; measure (H ⊗ I)ψ pq substitute

== measure (H ⊗ I)(|00〉/
√

2 + |11〉/
√

2) pq apply H ⊗ I

== measure (|00〉 + |01〉 + |10〉 − |11〉)/2 pq measure

== |(|00〉 + |01〉 + |10〉 − |11〉)/2 pq|2 × (ψ′ = |p′q′〉) application

== (ψ′ = |p′q′〉)/4

When explicitly specifying partitioning of variables in a parallel composition, it

is convenient to allow the variables to appear as subscripts on the corresponding

processes. For example, the specification Pψ0,p ||ψ Qψ1,q denotes a parallel compo-

sition of processes P and Q that share an entangled state ψ, such that ψ0 and p

belong to P and ψ1 and q belong to Q.

To reason about communication between processes we use the framework of

Hehner’s calculus([14]). A named, one-way communication channel c is described

by an infinite message script Mc, an infinite time script Tc, and read and write

cursors rc and wc. The message and time scripts are the list of all messages that

appear on the channel and the list of corresponding times. The read and write

cursors specify how many messages have been read from and written to a channel.

To specify two-way communication, we use two channels. The input and output on

channel c are defined by the following operations (here t is the time variable):

c!e == Mcwc = e ∧ Tcwc = t ∧ wc := wc + 1 c output e

c? == rc := rc + 1 c input

c == Mc(rc − 1)

A channel declaration chan c : T ·P defines a new channel c with communication

of type T ; the declaration applies to the specification P (here xnat stands for

naturals extended with ∞):

chan c : T · P == ∃Mc : [∞∗ T] · ∃Tc : [∞∗ real] · var rc, wc : xnat := 0 · P

where [∞ ∗ T] is an infinite sequence of elements of type T . One useful theorem

that we use in later examples is the equivalence of communication on a local channel

with assignment:

chan c : T · c!e || (c? ; x := c) == x := e

The reader is referred to [14] for a detailed description of formal treatment of clas-

sical communication in Hehner’s calculus.

When defining a quantum communication channel one must be careful not to

introduce any unwanted behaviour, such as violation of the no-cloning principle

(i.e. creation of identical copies of an unknown arbitrary quantum state). For this

9

Tafliovich

purpose we make the change of ownership of the transported qubit explicit in the

definition:

c!ψ == Mcwc = ψ ∧ Tcwc = t ∧ w′
c = wc + 1 ∧ var′P = varP \ψ ∧ σ′ = σ

c?ψ == r′c = rc + 1 ∧ ψ′ = Mcrc ∧ var′Q = varQ, ψ ∧ σ′ = σ

where c is a quantum communication channel from process P to process Q and

σ′ = σ is shorthand for “the rest of the variables are unchanged”.

Now that we allow changing of ownership of the variables, the specification

σ′P = σP , “the rest of the variables of process P are unchanged” is defined by

∀v′ : var′P · v′ = v.

The declaration of a quantum channel qchan c : qbit · P is similar to the decla-

ration of a local classical channel:

qchan q : T · P == ∃Mq : [∞∗ T] · ∃Tq : [∞∗ real] · var rq, wq : xnat := 0 · P

Similarly to the above-mentioned theorem, we can prove the equivalence of com-

munication on a local quantum channel with the change of ownership. If P == c!ψ

and Q == c?ψ, then (leaving out time)

qchan c : qbit · P || Q def. qchan

== ∃M : [∞∗ qbit] · var r, w : xnat := 0 · P || Q expand

== ∃M : [∞∗ qbit] · var r, w : xnat := 0·
Mw = ψ ∧ w′ = w + 1 ∧ var′P = varP \ψ
∧ var′Q = varQ, ψ ∧ r′ = r + 1 ∧ ψ′ = Mr initialisation

== ∃M : [∞∗ qbit] · var r, w : xnat·
M0 = ψ ∧ w′ = 1 ∧ var′P = varP \ψ
∧ var′Q = varQ, ψ ∧ r′ = 1 ∧ ψ′ = M0 simplify

== var′P = varP \ψ ∧ var′Q = varQ, ψ ∧ σ′ = σ

3.1 Quantum teleportation

Quantum teleportation is the most famous quantum communication protocol. Its

description first appeared in a seminal article by Bennett et al in 1993 ([9]), it

has since been extensively used as part of more complex quantum communication

protocols, and has received much attention in experimental research. The protocol

achieves transmission of quantum information by utilising only a classical commu-

nication channel and an entangled pair of qubits: no qubits are sent in the process.

The protocol: Alice and Bob share an entangled pair of qubits in the state

(|00〉 + |11〉)/
√

2. Alice has some qubit ψ in her possession (she may not know the

state of the qubit) that she wishes to transfer to Bob. Alice starts by interacting

the qubit she wishes to teleport with her half of the entangled pair (she applies a

controlled-not followed by a Hadamard transform) and measuring her two qubits.

She then sends the results of her measurements to Bob (two classical bits). Bob

receives the two classical bits and, depending of their values, applies one of the three

10

Tafliovich

|φ0〉 • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

•

|φ1〉 ⊕
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

•

|φ2〉 X Z

Fig. 1. Quantum teleportation protocol

Pauli operators or the identity to his qubit. Surprisingly, he has recovered the state

Alice wished to teleport.

The protocol is usually described informally, by using a diagram as in Figure 1 4 .

Such a description is insufficient, in part since it only describes the evolution of

the quantum system and does not specify the distribution of the system nor the

communication. Alternatively, the description of the protocol is given informally,

in English. Our goal is to formally define and prove correctness of the quantum

teleportation protocol. Some approaches proposed in the literature (e.g. [27]) define

teleportation as a program that implements a specification of the form φ′ = ψ.

We point out that this specification may as well be implemented by a program

that involves sending a qubit on a quantum channel, which is not teleportation.

Furthermore, the specification does not mention that two classical bits are sent on

a classical channel, which is an important part of the specification of teleportation.

Similarly, it is important to specify that a pair of maximally entangled qubits is

required.

To formalise the quantum teleportation protocol we let c be the number of

classical bits sent on a communication channel and q be the number of quantum

bits sent. The formal specification of quantum teleportation is:

S == φ01 : varAlice ∧ φ2 : varBob ∧
φ0,..3 = (α× |0〉 + β × |1〉) ⊗ (|00〉 + |11〉)/

√
2

⇒ φ′2 = α× |0〉 + β × |1〉 ∧ c′ = c+ 2 ∧ q′ = q

The specification says that if the computation starts with a qubit (specified in

the most general form) in Alice’s possession and if Alice and Bob share a maximally

entangled state (|00〉 + |11〉)/
√

2, then at the end of the computation the qubit is

teleported to Bob at a cost of 2 classical bits of communication and 0 qubits of

communication. The specification does not restrict the quantum system to three

qubits, so that teleportation can be a part of a bigger computation.

The well-known solution is the following parallel program:

P == chan ch : bit ·Alicea0,a1,φ01
||φ Bobb0,b1,φ2

where Alice == φ01 := CNOTφ01 ; φ0 := Hφ0 ; measure φ01 a0a1 ;

c := c+ 1 ; ch!a0 ; c := c+ 1 ; ch!a1

and Bob == ch? ; b0 := ch ; ch? ; b1 := ch ; φ2 := Zb0Xb1φ2

That is, two processes, Alice and Bob, partition a 3-qubit quantum system φ, so

4 The figure is generated with qasm2pdf

11

Tafliovich

that Alice owns the first qubit (the one she wants to teleport) and the second qubit

and Bob owns the third qubit. Alice can write to a local classical communication

channel ch and Bob can read from it. Finally, a0 and a1 are two bits that belong to

Alice, and b0 and b1 are two bits that belong to Bob. The process Alice performs

local operations and measurements and sends two classical bits on the channel. The

process Bob reads from the channel and performs local operations.

Our goal is to prove that the program P implements the specification S. We

first note the following equivalence:

P ⇒ S def. S

== P ∧ φ01 : varAlice ∧ φ2 : varBob ∧
φ0,..3 = (α× |0〉 + β × |1〉) ⊗ (|00〉 + |11〉)/

√
2

⇒ φ′2 = α× |0〉 + β × |1〉 ∧ c′ = c+ 2 ∧ q′ = q simplification

== P ∧ φ = (α× |0〉 + β × |1〉) ⊗ (|00〉 + |11〉)/
√

2

⇒ φ′2 = α× |0〉 + β × |1〉 ∧ c′ = c+ 2 ∧ q′ = q

Next, we simplify P to prove the above implication. With implicit partitioning

of variables (as it does not change):

chan ch : bit · ((φ01 := CNOTφ01 ; φ0 := Hφ0 ; measure φ01 a0a1 ;

c := c+ 1 ; ch!a0 ; c := c+ 1 ; ch!a1)

||φ (ch? ; b0 := ch ; ch? ; b1 := ch ; φ2 := Zb0Xb1φ2))

== substitute, H on first qubit

chan ch : bit · ((measure H ⊗ I(CNOTφ01) a0a1 ;

c := c+ 1 ; ch!a0 ; c := c+ 1 ; ch!a1)

||φ (ch? ; b0 := ch ; ch? ; b1 := ch ; φ2 := Zb0Xb1φ2))

== parallel composition, simplification

chan ch : bit·
measure01 H ⊗ I ⊗ I(CNOT ⊗ Iφ) a0a1 ;

((c := c+ 1 ; ch!a0 ; c := c+ 1 ; ch!a1) || (ch? ; b0 := ch ; ch? ; b1 := ch)) ;

φ := I ⊗ I ⊗ Zb0(I ⊗ I ⊗Xb1φ)

== classical channel

measure01 H ⊗ I ⊗ I(CNOT ⊗ Iφ) a0a1 ;

c′ = c+ 2 ∧ b′0 = a0 ∧ b′1 = a1 ∧ σ′ = σ ;

φ := I ⊗ I ⊗ Zb0(I ⊗ I ⊗Xb1φ)

Next we notice that the first line in the above specification (which is, in fact,

the effect of Alice’s actions) conjoined with the specification of the initial state

of the quantum system, result in the following distribution over the states of the

computation:

φ′ = |a′0a′1〉 ⊗ (α× |a′1〉 + (−1)a
′
0 × β × |1 − a′1〉)/4

That is, with probability 1/4 the quantum system is in state |00〉 ⊗ (α × |0〉 +

12

Tafliovich

β × |1〉) and the values of Alice’s bits are a0 = 0 and a1 = 0; with probability 1/4

the quantum system is in state |01〉 ⊗ (α × |1〉 + β × |0〉) and the values of Alice’s

bits are a0 = 0 and a1 = 1; etc.

To prove this formally, we first note that:

H ⊗ I ⊗ I(CNOT ⊗ I((α× |0〉 + β × |1〉) ⊗ (|00〉 + |11〉)/
√

2))

== apply CNOT

H ⊗ I ⊗ I(α× |000〉 + β × |110〉 + α× |011〉 + β × |101〉)/
√

2

== apply H

α× (|0〉 + |1〉) ⊗ |00〉/2 + β × (|0〉 − |1〉) ⊗ |10〉/2+

α× (|0〉 + |1〉) ⊗ |11〉/2 + β × (|0〉 − |1〉) ⊗ |01〉/2
== rearrange terms

|00〉 ⊗ (α× |0〉 + β × |1〉)/2 + |01〉 ⊗ (α× |1〉 + β × |0〉)/2+

|10〉 ⊗ (α× |0〉 − β × |1〉)/2 + |11〉 ⊗ (α× |1〉 − β × |0〉)/2

Therefore, measurement of the first two qubits of the above state in the compu-

tational basis gives:

measure01 (|00〉 ⊗ (α× |0〉 + β × |1〉)/2 + |01〉 ⊗ (α× |1〉 + β × |0〉)/2+

|10〉 ⊗ (α× |0〉 − β × |1〉)/2 + |11〉 ⊗ (α× |1〉 − β × |0〉)/2)

a0a1

== φ′ = |a′0a′1〉 ⊗ (α× |a′1〉 + (−1)a
′
0 × β × |1 − a′1〉)/4

Let Q be the specification of the initial state of the quantum system:

Q == φ = (α× |0〉 + β × |1〉) ⊗ (|00〉 + |11〉)/
√

2

Putting it all together, we get:

Q ∧ P
== Q× (measure01 H ⊗ I ⊗ I(CNOT ⊗ Iφ) a0a1 ;

c′ = c+ 2 ∧ b′0 = a0 ∧ b′1 = a1 ∧ σ′ = σ ; one point law,

φ := I ⊗ I ⊗ Zb0(I ⊗ I ⊗Xb1φ)) as above

== Q× φ′ = |a′0a′1〉 ⊗ (α× |a′1〉 + (−1)a
′
0 × β × |1 − a′1〉)/4 ; sequential

c′ = c+ 2 ∧ b′0 = a0 ∧ b′1 = a1 ∧ σ′ = σ ; composition,

φ := I ⊗ I ⊗ Zb0(I ⊗ I ⊗Xb1φ) one point law

== Q× (c′ = c+ 2) × (b′0 = a′0) × (b′1 = a′1) × (σ′ = σ)×
φ′ = I ⊗ I ⊗ Zb

′
0(I ⊗ I ⊗Xb′

1

(|b′0b′1〉 ⊗ (α× |b′1〉 + (−1)b
′
0 × β × |1 − b′1〉)/4)) apply Xb′

1

== Q× (c′ = c+ 2) × (b′0 = a′0) × (b′1 = a′1) × (σ′ = σ)×
φ′ = I ⊗ I ⊗ Zb

′
0(|b′0b′1〉 ⊗ (α× |0〉 + (−1)b

′
0 × β × |1〉)/4 apply Zb

′
0

== Q× (c′ = c+ 2) × (b′0 = a′0) × (b′1 = a′1) × (σ′ = σ)×
(φ′ = |b′0b′1〉 ⊗ (α× |0〉 + β × |1〉)/4)

13

Tafliovich

≤ (c′ = c+ 2) × (q′ = q) × (φ′2 = α× |0〉 + β × |1〉)
== S

This example shows formalisation and analysis of an LOCC (local operations,

classical communication) quantum communication protocol. We now turn to our

attention to a protocol which involves a quantum communication channel.

3.2 Quantum dense coding

The quantum dense coding (sometimes called super-dense coding) protocol is less

famous than the quantum teleportation protocol, but it is no less important. It

achieves the transfer of 2 bits of classical information by sending 1 bit of quantum

information and utilising 1 entangled pair of qubits. That is, its goal is the opposite

of that of the quantum teleportation protocol.

Just as with teleportation, the protocol is usually described informally: either

with a diagram or in English. We formalise the specification of the protocol by

using the same variables as in section 3.1:

S == a0, a1, φ0 : varAlice ∧ b0, b1, φ1 : varBob ∧ φ01 = (|00〉 + |11〉)/
√

2

⇒ b′0 = a0 ∧ b′1 = a1 ∧ c′ = c ∧ q′ = q + 1

The specification says that if the computation starts with Alice and Bob sharing

a maximally entangled state, with classical bits a0 and a1 in Alice’s possession and

b0 and b1 in Bob’s possession, then at the end of the computation Bob has the values

of Alice’s classical bits, at a cost of sending no bits on a classical channel and one

qubit on a quantum channel. The program for the protocol is:

P == qchan qch : qbit ·Alicea0,a1,φ0
||φ Bobb0,b1,φ1

where Alice == if a0 = a1 = 0 then ok

else if a0 = 0 ∧ a1 = 1 then φ0 := Xφ0

else if a0 = 1 ∧ a1 = 0 then φ0 := Zφ0

else φ0 := Y φ0 ;

q := q + 1 ; qch!φ0

and Bob == qch?φ0 ; φ := CNOTφ ; φ0 := Hφ0 ; measure φ b0b1

That is, Alice applies one of the three Pauli operators or an identity to her half of

the entangled pair, depending on the values of her classical bits, and sends her qubit

to Bob. Bob receives the qubit, applies a controlled-not followed by a Hadamard,

and measures the two qubits in his possession. We now show that the program P

implements the specification S. First, we simplify the processes Alice and Bob:

Alice == φ0 := (−i)a0×a1 × Za0(Xa1φ0) ; q := q + 1 ; qch!φ0 (math)

Bob == qch?φ0 ; measure H ⊗ I(CNOTφ) b0b1 (substitutions)

We now look at their parallel composition:

P == qchan qch : qbit ·Alicea0,a1,φ0
||φ Bobb0,b1,φ1

14

Tafliovich

== qchan qch : qbit·
((φ0 := (−i)a0×a1 × Za0(Xa1φ0) ; q := q + 1 ; qch!φ0)a0,a1,φ0

||φ (qch?φ0;measure H ⊗ I(CNOTφ) b0b1)b0,b1,φ1
)

quantum channel

== φ := (−i)a0×a1 × Za0 ⊗ I(Xa1 ⊗ Iφ) ;

q′ = q + 1 ∧ var′Alice = varAlice\φ0 ∧ var′Bob = varBob, φ0 ∧ σ′ = σ ;

measure H ⊗ I(CNOT φ) b0b1

sequential composition

== (measure (−i)a0×a1 ×H ⊗ I(CNOT (Za0 ⊗ I(Xa1 ⊗ Iφ))) b0b1)×
(q′ = q + 1) × (var′Alice = a0, a1) × (var′Bob = b0, b1, ψ0, ψ1) × (σ′ = σ)

Next, we note that the quantum state being measured is:

(−i)a0×a1 ×H ⊗ I(CNOT (Za0 ⊗ I(Xa1 ⊗ I(|00〉 + |11〉)/
√

2)))

== (a0 = 0) × (a1 = 0) ×H ⊗ I(CNOT (|00〉 + |11〉)/
√

2)+

(a0 = 0) × (a1 = 1) ×H ⊗ I(CNOT (X ⊗ I(|00〉 + |11〉)/
√

2))+

(a0 = 1) × (a1 = 0) ×H ⊗ I(CNOT (Z ⊗ I(|00〉 + |11〉)/
√

2))+

(a0 = 1) × (a1 = 1) × (−i) ×H ⊗ I(CNOT (Z ⊗ I(X ⊗ I(|00〉 + |11〉)/
√

2)))

apply X

== (a0 = 0) × (a1 = 0) ×H ⊗ I(CNOT (|00〉 + |11〉)/
√

2)+

(a0 = 0) × (a1 = 1) ×H ⊗ I(CNOT (|10〉 + |01〉)/
√

2)+

(a0 = 1) × (a1 = 0) ×H ⊗ I(CNOT (Z ⊗ I(|00〉 + |11〉)/
√

2))+

(a0 = 1) × (a1 = 1) × (−i) ×H ⊗ I(CNOT (Z ⊗ I(|10〉 + |01〉)/
√

2))

apply Z

== (a0 = 0) × (a1 = 0) ×H ⊗ I(CNOT (|00〉 + |11〉)/
√

2)+

(a0 = 0) × (a1 = 1) ×H ⊗ I(CNOT (|10〉 + |01〉)/
√

2)+

(a0 = 1) × (a1 = 0) ×H ⊗ I(CNOT (|00〉 − |11〉)/
√

2)+

(a0 = 1) × (a1 = 1) × (−i) ×H ⊗ I(CNOT (−|10〉 + |01〉)/
√

2)

apply CNOT

== (a0 = 0) × (a1 = 0) ×H ⊗ I(|00〉 + |10〉)/
√

2+

(a0 = 0) × (a1 = 1) ×H ⊗ I(|11〉 + |01〉)/
√

2+

(a0 = 1) × (a1 = 0) ×H ⊗ I(|00〉 − |10〉)/
√

2+

(a0 = 1) × (a1 = 1) × (−i) ×H ⊗ I(−|11〉 + |01〉)/
√

2

apply H

== (a0 = 0) × (a1 = 0) × |00〉+
(a0 = 0) × (a1 = 1) × |01〉+
(a0 = 1) × (a1 = 0) × |10〉)+
(a0 = 1) × (a1 = 1) × (−i) × |11〉

== (−i)a0×a1 × |a0a1〉
15

Tafliovich

Putting it all together, we get:

(φ01 = (|00〉 + |11〉)/
√

2) ∧ P as above

== (measure (−i)a0×a1 × |a0a1〉 b0b1) × (q′ = q + 1)×
(var′Alice = a0, a1) × (var′Bob = b0, b1, ψ0, ψ1) × (σ′ = σ) measure

== (φ′ = |b′0b′1〉) × (b′0 = a0) × (b′1 = a1) × (q′ = q + 1)×
(var′Alice = a0, a1) × (var′Bob = b0, b1, ψ0, ψ1) × (σ′ = σ)

≤ S

This example shows formalisation and analysis of a quantum communication

protocol which involves a quantum communication channel.

4 Conclusion and Future Work

We have presented a formal framework for specifying, implementing, and analysing

quantum communication protocols. The analysis is not limited to reasoning about

the data sent or received during the execution of the protocol. We provide tools to

formally prove complexity of the communication protocols, such as the number of

classical and quantum bits sent during the execution. We have applied our approach

to two important quantum communication protocols: quantum teleportation and

quantum dense coding. The resulting formal proofs are short: in fact, the proofs

in Sections 3.1 and 3.2 are only slightly longer than the informal reasoning and

calculations in [19]. The proofs are easy to read, the use of Dirac-like notation makes

the expressions of quantum states look familiar, while providing a formal treatment

that fits in the overall framework. Finally, the formal proofs are checkable by a

computer (although we currently do not have suitable software implemented), thus

providing a measure of confidence in the analysis of correctness and complexity of

the protocols.

Current research focuses on formal reasoning about complexity of distributed

quantum algorithms (e.g. [26]). Future work involves formalising quantum crypto-

graphic protocols, such as BB84 [8], in our framework and providing formal analysis

of these protocols.

References

[1] Abramsky, S., High-level methods for quantum computation and information, in: Proceedings of the
19th Annual IEEE Symposium on Logic in Computer Science (2004), pp. 410–414.

[2] Abramsky, S. and B. Coecke, A categorical semantics of quantum protocols, in: Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science (2004), pp. 415–425.

[3] Abramsky, S. and R. Duncan, A categorical quantum logic, Mathematical Structures in Computer
Science 16 (2006), pp. 469–489.

[4] Adão, P. and P. Mateus, A process algebra for reasoning about quantum security, in: Proceedings of the
3rd International Workshop on Quantum Programming Languages, 2007, pp. 3–21.

[5] Altenkirch, T. and J. Grattage, A functional quantum programming language, in: Proceedings of the
20th Annual IEEE Symposium on Logic in Computer Science (2005), pp. 249–258.

[6] Arrighi, P. and G. Dowek, Operational semantics for formal tensorial calculus, in: Proceedings of the
2nd International Workshop on Quantum Programming Languages, 2004, pp. 21–38.

16

Tafliovich

[7] Arrighi, P. and G. Dowek, Linear-algebraic λ-calculus, arXiv:quant-ph/0501150 (2005).

[8] Bennett, C. H. and G. Brassard, Quantum cryptography: Public-key distribution and coin tossing, in:
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing.

[9] Bennett, C. H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70

(1993), pp. 1895–1899.

[10] Coecke, B., The logic of entanglement, arXiv:quant-ph/0402014 (2004).

[11] Danos, V., E. Kashefi and P. Panangaden, The measurement calculus, Journal of the ACM 54.

[12] D’Hondt, E. and P. Panangaden, Quantum weakest preconditions, Mathematical Structures in
Computer Science 16 (2006), pp. 429–451.

[13] Gay, S. J. and R. Nagarajan, Communicating quantum processes, in: Proceedings of the 32nd ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (2005), pp. 145–157.

[14] Hehner, E. C., “a Practical Theory of Programming,” Springer, New York, 1993, first edition, current
edn. (2009) Available free at www.cs.utoronto.ca/~hehner/aPToP.

[15] Hehner, E. C., Probabilistic predicative programming, in: Proceedings of the 7th International
Conference on Mathematics of Program Construction, Lecture Notes in Computer Science 3125 (2004),
pp. 169–185.

[16] Hehner, E. C., A probability perspective, Formal Aspects of Computing (2009), to appear.

[17] Jorrand, P. and M. Lalire, Toward a quantum process algebra, in: Proceedings of the 1st ACM
Conference on Computing Frontiers (2004), pp. 111–119.

[18] Lalire, M. and P. Jorrand, A process algebraic approach to concurrent and distributed computation:
operational semantics, in: Proceedings of the 2nd International Workshop on Quantum Programming
Languages, 2004, pp. 109–126.

[19] Nielsen, M. A. and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge
University Press, 2000.

[20] Sanders, J. W. and P. Zuliani, Quantum programming, in: Mathematics of Program Construction,
Lecture Notes in Computer Science 1837 (2000).

[21] Selinger, P., Towards a quantum programming language, Mathematical Structures in Computer Science
14 (2004), pp. 527–586.

[22] Tafliovich, A., “Quantum Programming,” Master’s thesis, University of Toronto (2004).

[23] Tafliovich, A. and E. C. Hehner, Quantum predicative programming, in: Proceedings of the 8th
International Conference on Mathematics of Program Construction, Lecture Notes in Computer Science
4014 (2006), pp. 433–454.

[24] Tafliovich, A. and E. C. Hehner, Programming telepathy: Implementing quantum non-locality games,
in: Proceedings of the 10th Brazilian Symposium on Formal Methods (2007), pp. 70–86.

[25] Valiron, B., Quantum typing, in: Proceedings of the 2nd International Workshop on Quantum
Programming Languages, 2004, pp. 163–178.

[26] Yimsiriwattana, A. and S. J. L. Jr, Distributed quantum computing: A distributed Shor algorithm,
arXiv:quant-ph/0403146 (2004).

[27] Zuliani, P., “Quantum Programming,” DPhil thesis, University of Oxford (2001).

[28] Zuliani, P., Non-deterministic quantum programming, in: Proceedings of the 2nd International
Workshop on Quantum Programming Languages, 2004, pp. 179–195.

17

www.cs.utoronto.ca/~hehner/aPToP

Tafliovich

A Quantum Computation

In this section we introduce the basic concepts of quantum mechanics, as they

pertain to the quantum systems that we consider for quantum computation. The

discussion of the underlying physical processes, spin-1
2 -particles, etc. is not our

interest. We are concerned with the model for quantum computation only. A

reader not familiar with quantum computing can consult [19] for a comprehensive

introduction to the field.

The Dirac notation, invented by Paul Dirac, is often used in quantum mechanics.

In this notation a vector v (a column vector by convention) is written inside a ket :

|v〉. The dual vector of |v〉 is 〈v|, written inside a bra. The inner products are

bra-kets 〈v|w〉. For n-dimensional vectors |u〉 and |v〉 and m-dimensional vector

|w〉, the value of the inner product 〈u|v〉 is a scalar and the outer product operator

|v〉〈w| corresponds to an m by n matrix. The Dirac notation clearly distinguishes

vectors from operators and scalars, and makes it possible to write operators directly

as combinations of bras and kets.

In quantum mechanics, the vector spaces of interest are the Hilbert spaces of

dimension 2n for some n ∈ N. A convenient orthonormal basis is what is called a

computational basis, in which we label 2n basis vectors using binary strings of length

n as follows: if s is an n-bit string which corresponds to the number xs, then |s〉 is

a 2n-bit (column) vector with 1 in position xs and 0 everywhere else. The tensor

product |i〉 ⊗ |j〉 can be written simply as |ij〉. An arbitrary vector in a Hilbert

space can be written as a weighted sum of the computational basis vectors.

Postulate 1 (state space) Associated to any isolated physical system is a Hilbert

space, known as the state space of the system. The system is completely described

by its state vector, which is a unit vector in the system’s state space.

Postulate 2 (evolution) The evolution of a closed quantum system is described

by a unitary transformation.

Postulate 3 (measurement) Quantum measurements are described by a collec-

tion {Mm} of measurement operators, which act on the state space of the system

being measured. The index m refers to the possible measurement outcomes. If

the state of the system immediately prior to the measurement is described by a

vector |ψ〉, then the probability of obtaining result m is 〈ψ|M †
mMm|ψ〉, in which

case the state of the system immediately after the measurement is described by

the vector Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
. The measurement operators satisfy the completeness

equation
∑
m ·M †

mMm == I.

An important special class of measurements is projective measurements, which

are equivalent to general measurements provided that we also have the ability to

perform unitary transformations.

A projective measurement is described by an observable M , which is a Hermitian

operator on the state space of the system being measured. This observable has

a spectral decomposition M =
∑
m · λm × Pm, where Pm is the projector onto

the eigenspace of M with eigenvalue λm, which corresponds to the outcome of

the measurement. The probability of measuring m is 〈ψ|Pm|ψ〉, in which case

18

Tafliovich

immediately after the measurement the system is found in the state Pm|ψ〉√
〈ψ|Pm|ψ〉

.

Given an orthonormal basis |vm〉, 0 ≤ m < 2n, measurement with respect to

this basis is the corresponding projective measurement given by the observable

M =
∑
m · λm × Pm, where the projectors are Pm = |vm〉〈vm|.

Measurement with respect to the computational basis is the simplest and the

most commonly used class of measurements. In terms of the basis |m〉, 0 ≤ m < 2n,

the projectors are Pm = |m〉〈m| and 〈ψ|Pm|ψ〉 = |ψm|2. The state of the system

immediately after measuring m is |m〉.
For example, measuring a single qubit in the state α × |0〉 + β × |1〉 results in

the outcome 0 with probability |α|2 and outcome 1 with probability |β|2. The state

of the system immediately after the measurement is |0〉 or |1〉, respectively.

Suppose the result of the measurement is ignored and we continue the com-

putation. In this case the system is said to be in a mixed state. A mixed state

is not the actual physical state of the system. Rather it describes our knowl-

edge of the state the system is in. In the above example, the mixed state is

expressed by the equation |ψ〉 = |α|2 × {|0〉} + |β|2 × {|1〉}. The equation is

meant to say that |ψ〉 is |0〉 with probability |α|2 and it is |1〉 with probability

|β|2. An application of operation U to the mixed state results in another mixed

state, U(|α|2 × {|0〉} + |β|2 × {|1〉}) = |α|2 × {U |0〉} + |β|2 × {U |1〉}.
Postulate 4 (composite systems) The state space of a composite physical sys-

tem is the tensor product of the state spaces of the component systems. If we

have systems numbered 0 up to and excluding n, and each system i, 0 ≤ i < n,

is prepared in the state |ψi〉, then the joint state of the composite system is

|ψ0〉 ⊗ |ψ1〉 ⊗ . . .⊗ |ψn−1〉.
While we can always describe a composite system given descriptions of the com-

ponent systems, the reverse is not true. Indeed, given a state vector that describes

a composite system, it may not be possible to factor it to obtain the state vectors of

the component systems. A well-known example is the state |ψ〉 = |00〉/
√

2+|11〉/
√

2.

Such a state is called an entangled state.

Just as it may not be possible to represent the state of a multi-qubit system

as tensor product of its component systems, it may not be possible to represent

an operation on a composite system as a tensor product of single-qubit operations

on the component systems. Consider, for example, “controlled-NOT” (CNOT)

operation on two qubits defined by

CNOT (|0〉 ⊗ |x〉) = |0〉 ⊗ |x〉
CNOT (|1〉 ⊗ |x〉) = |1〉 ⊗ |1 − x〉

where x ∈ 0, 1. It can be shown that there are no two single-qubit operations U0

and U1, such that CNOT = U0 ⊗ U1.

19

	Introduction
	Quantum Predicative Programming
	Predicative programming
	Probabilistic predicative programming
	Quantum Predicative Programming

	Distributed Quantum Systems and Communication
	Quantum teleportation
	Quantum dense coding

	Conclusion and Future Work
	References
	Quantum Computation

