
ARTIFICIAL INTELLIGENCE 47 

Mapping Part-Whole Hierarchies into 
Connectionist Networks* 

Geoffrey E. Hinton 
Department of Computer Science, University of Toronto, 
Toronto, Ontario, Canada M5S 1A4 

ABSTRACT 

Three different ways of mapping part-whole hierarchies into connectionist networks are described. 
The simplest scheme uses a fixed mapping and is inadequate for most tasks because it fails to share 
units and connections between different pieces of the part-whole hierarchy. Two alternative schemes 
are described, each of which involves a different method of  time-sharing connections and units. The 
scheme we finally arrive at suggests that neural networks have two quite different methods for 
performing inference. Simple "intuitive" inferences can be performed by a single settling of a 
network without changing the way in which the world is mapped into the network. More complex 
"rational" inferences involve a sequence of  such settlings with mapping changes after each settling. 

1. Introduction 

One reason why many AI researchers are sceptical about connectionist net- 
works that use distributed representations is that it is hard to imagine how 
complex, articulated structures can be represented and processed in these 
networks. The approach would be far more convincing if it could come up with 
a sensible scheme for representing the meaning of a sentence such as: "She 
seems to be more at ease with her fellow students than with me, her adviser." 
(Drew McDermott, personal communication). This meaning is clearly com- 
posed of several major constituents with relationships between them, and each 
major constituent has its own, complex, internal structure. A representational 
scheme for dealing with meanings of this complexity must, at the very least, 
specify how it is possible to focus attention on the constituents of the whole 
and how it is possible, in some sense, to have the whole meaning in mind at 
once. 

The example given above is typical of examples from many different 
domains. It appears that whenever people have to deal with complexity they 
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impose part-whole hierarchies in which objects at one level are composed of 
inter-related objects at the next level down. In representing a visual scene or 
an everyday plan or the structure of a sentence we use hierarchical structures 
of this kind. The main issue addressed in this paper is how to map complex 
part-whole hierarchies into the fixed hardware of a connectionist network. The 
main conclusion is that it is essential to use some form of timesharing so that a 
portion of the connectionist network is used, at different times, to represent 
different parts of the part-whole hierarchy. 

Most existing connectionist simulations do not use timesharing of the 
connectionist apparatus because they focus on computations that can be 
performed rapidly by parallel constraint satisfaction, and they typically ignore 
the issue of how the real world gets mapped into the bottom level units in the 
network or how the results produced by the network are integrated over longer 
periods of time. These simulations are best viewed as investigations of the 
computations that can be done by one internally parallel module. At best, they 
give little insight into how complex part-whole hierarchies should be mapped 
into connectionist networks, and at worst they lend support to the naive idea 
that the entire part-whole hierarchy should be mapped simultaneously using a 
fixed, inflexible mapping (as described in Section 5 below). 

Given any finite connectionist network, we can always design a task that is so 
difficult that it cannot all be done in parallel by a single settling of the network. 
The task can be designed to have subtasks that require the same knowledge to 
be applied to different data, and although we can replicate portions of the 
network so that some of these subtasks can be performed in parallel, we will 
eventually run out of hardware and will be driven to use time instead of space. 
So eventually we have to face the issue of timesharing a module of the network 
between different pieces of a single task. This inevitably leads to questions of 
how we implement a flexible mapping of pieces of the task into a module of the 
network, how we store the intermediate results produced by the module so that 
it can be liberated to solve the next subtask, and how we use intermediate 
results to determine which subtask is tackled next. These questions have been 
widely ignored within neural network research, particularly within the sub- 
areas that have been inspired by physics and biology. 

2. Symbols and the Conventional Implementation ,ff 
Hierarchical Structures 

It will be helpful to begin by reviewing the standard way of implementing 
hierarchical data-structures in a conventional digital computer. There are 
obviously many minor variations, but a suitable paradigm example is the kind 
of record structure that is found in languages like C. Each instance of a record 
is composed of a pre-determined set of fields (sometimes called "slots" or 
"roles") each of which contains a pointer to the contents of the field which may 
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be either another instance of a record, or a primitive object. Since the pointers 
can be arbitrary addresses, this is a very flexible way of implementing a 
hierarchical data-structure, but the flexibility is bought at the price of the von 
Neumann bottleneck: The addressing mechanism means that only one pointer 
can be followed at a time. 1 

The addresses act as symbols for expressions, and they illustrate the essence 
of a symbol: It is a small representation of an object that provides a "remote 
access" path to a fuller representation of the same object.: In general, this 
fuller representation is itself composed of small representations (e.g. the 
addresses of the structures that fill the fields of the record). Because a symbol 
is small, many symbols can be put together to create a "fully-articulated" 
representation of some larger structure and the size of this fully-articulated 
representation need not be any larger than the fully-articulated representations 
of its constituents. 

When addresses are used as symbols, there is normally an arbitrary relation- 
ship between the internal structure of a symbol and the fully articulated 
representation to which it provides access. Looking at the individual bits in the 
symbol provides no information about what it represents. Occasionally this is 
not quite true. If, for example, one type of data-structure is kept in the top half 
of memory and another type in the bottom half, the first bit of a symbol reveals 
the type of the data-structure to which it provides access. So it is possible to 
check the type without following the pointer. This trick can obviously be 
extended so that many of the bits in a symbol convey useful information. A 
symbol can then be viewed as a "reduced description" of the object. 

One conclusion of this paper is that patterns of activity in some parts of a 
connectionist network need to exhibit the double life that is Characteristic of 
symbols. The patterns must allow remote access to fuller representations, but 
so long as the patterns are also reduced descriptions this remote access need 
only be used very occasionally (e.g. a few times per second in a person). Most 
of the processing can be done by parallel constraint satisfaction on the patterns 
themselves. One interesting consequence of using parallel constraint satisfac- 
tion as a powerful but somewhat inflexible inner loop in a sequential process is 
that it leads to two quite different ways of performing an inference. 

3. Rational and Intuitive Inference 

Given a parallel network, some inferences can be performed very efficiently by 
simply allowing the network to settle down into a stable state [28]. The states 
or external inputs of a subset of the units are fixed to represent the premises, 

1Architectures such as the Connection Machine [8] use routing hardware that allows many 
pointers to be followed at once. 

2 There is, of course, much debate about the meaning of the word "symbol." The informal 
definition given here emerged from conversations with Allen Newell. 



50 G.E. HINTON 

and when the network has settled down, the conclusion is represented by the 
states of some other subset of the units. A large amount of knowledge about 
the domain can influence the settling process, provided the knowledge is in the 
form of connection strengths. This method of performing inference by a single 
settling of a network will be called "intuitive inference." More complex 
inferences require a more serial approach in which parts of the network are 
used for performing several different intuitive inferences in sequence. This will 
be called "rational inference." The distinction between these two kinds of 
inference is not simply a serial versus parallel distinction. A network that is 
settling to a single stable state typically requires a series of iterations. Also, it 
may exhibit another emergent type of seriality during a single settling because 
easily drawn conclusions may emerge early in the settling. So even within one 
settling a network can exhibit something that looks like sequential inference 
[27]. This interesting phenomenon makes it clear that the crucial criterion for 
distinguishing rational from intuitive inference is not seriality. The defining 
characteristic of rational inference is that the way in which entities in the 
domain are mapped into the hardware changes during the course of the 
inference. 

The distinction between these two types of inference applies quite well to a 
conventional computer. Intuitive inferences correspond, roughly, to single 
machine instructions and rational inferences correspond to sequences of ma- 
chine instructions that typically involve changes in the way in which parts of the 
task are mapped into the CPU. Moreover, the very same inference can 
sometimes be performed in different ways. The task of multiplying two 
integers, for example, can be performed in a single instruction by dedicated 
hardware, or it can be performed by a sequential program. In the first case the 
inference is very fast but is limited in flexibility. It may work well for 32 bit 
numbers but not for 33 bit numbers. 

The idea that the same inference can be performed in radically different 
ways is important in defending connectionist research against the claim of 
Fodor and Pylyshyn [6] that connectionist networks which do not implement 
classical symbol processing are simply a revival of discredited associationism. 
To characterize a multiplier chip as simply associating the input with the 
correct output is misleading. A chip that multiplies two N-bit numbers to 
produce a 2N-bit number is able to use far less than the O(2 2N) components 
required by a table look-up scheme because it captures a lot of regularities of 
the task in the hardware. Of course, we can always render it useless by using 
bigger numbers, but this does not mean that it has failed to capture the 
structure of multiplication. A computer designer would be ill-advised to leave 
out hardware multipliers just because they cannot cope with all numbers. 
Similarly, a theoretical psychologist would be ill-advised to leave out parallel 
modules that perform fast intuitive inference just because such modules are not 
the whole story. 
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One big difference between computers and people is in the amount of 
computation that can be done in an intuitive inference. A computer typically 
breaks up a computation into very many, very small machine instructions that 
are executed in sequence. For the computations that people can do well, they 
typically use a few sequential steps each of which involves a computationally 
intensive intuitive inference. So we can think of people as "huge instruction set 
computers." This view is quite close to Fahlman's idea [5] that a network of 
simple processors could make important operations such as set intersection or 
transitive closure almost as fast as a single machine instruction. The enormous 
difference between people and conventional computers in the amount of 
computation that gets done by a single intuitive inference may explain why 
many psychologists and even some AI researchers find typical AI accounts of 
natural language processing so implausible and are attracted to connectionist 
accounts even though the performance of connectionist models is currently 
much worse. In a typical AI model, understanding a sentence involves an 
enormous amount of sequential symbol processing. To rephrase this in our new 
terminology, typical AI models use rational inference to do almost everything, 
probably because this is the convenient way to get things done on a conven- 
tional computer. 

A further difference between people and computers is that a computer does 
not change its instruction set as it runs, whereas people seem to be capable of 
taking frequently repeated sequences and eliminating the sequential steps so 
that an inference that was once rational becomes intuitive. A sketch of how 
this could happen in a connectionist network is given in Section 7.4. Of course, 
it is also possible to model this process in software on a conventional computer. 
One example is the SOAR system [18]. Another example is a checkers 
program which may start by using a deep mini-max search in a particular 
situation, but after using the results of deep searches to learn a better 
evaluation function may be able to arrive at the same conclusions with a much 
shallower search [25]. Berliner [2] uses the terms "reasoning" and "judgment" 
to denote the two kinds of inference in the context of game playing pro- 
grams. 

A good example of a large computation that can be performed by a single 
intuitive inference in a connectionist network is the task of completing a 
schema when given a subset of the slot-fillers [4, 9]. In a familiar domain, there 
will be many constraints between the fillers of the various slots in a schema. If 
the appropriate representations are used, it is possible to express these 
constraints as connection strengths which all act in parallel to determine the 
most plausible fillers for unfilled slots. Section 4 gives a detailed example and 
shows how connectionist learning techniques can be used to discover both the 
constraints and the representations that allow these constraints to be expressed 
effectively. Sections 5, 6, and 7 then describe three alternative ways of 
mapping a part-whole hierarchy into a connectionist network. 
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4. Learning to Perform Intuitive Inference 

This section illustrates the kind of inference that can be performed by a 
connectionist network in a single settling. The example shows that a single 
settling can do more than just associate an input with an output. It can perform 
a simple inference. The example was first described in [10] and uses the 
backpropagation learning procedure operating in a layered, feedforward net- 
work. The equivalent of "settling" in such a network is a single forward pass 
from the input to the output. To make this example more compatible with the 
recurrent networks that are implicitly assumed in the rest of this paper, it 
would be necessary to reimplement it using one of the gradient descent 
learning techniques for recurrent networks) 

4.1. The family trees task 

Figure 1 shows two family trees. All the information in these trees can be 
represented in simple propositions of the form (person1, relationship, person2). 
These propositions can be stored as the stable states of activity of a neural 
network which contains a group of units for the role person1, a group for the 
role relationship and a group for the role person2. The net will also require 
further groups of units in order to achieve the correct interactions between the 
three role-specific groups. Figure 2 shows a network in which one further group 
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Fig. 1. Two isomorphic family trees. The symbol " = "  means  "marr ied to ."  

3 Rumelhar t  et al. [24] describe another  version of the procedure which does not  require a 
layered net. It works for arbitrary recurrent  networks,  but requires more  complex units that 
r emember  their history of activity levels. Pineda [22] describes an alternative to backpropagation 
for recurrent  networks that settle to stable states. Hinton [11] describes an efficient deterministic 
version of the Bol tzmann machine  learning procedure that  could also be used for this task. These  
learning procedures for recurrent  nets have not  been tried on the family trees task. 
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Fig. 2, An extra group of units can be used to implement higher-order constraints between the 
role-specific patterns. 

has been introduced for this purpose. Units in this extra group detect combina- 
tions of features in the role-specific groups and can be used for causing 
appropriate completions of partial patterns. Suppose, for example, that one of 
the extra units becomes active whenever person1 is old and relationship requires 
that both people be the same age (e.g. the relationship has-husband in the very 
conventional domain we use). The extra unit can then activate the unit that 
represents the feature old within the person2 group. An extra unit that works in 
this way will be said to encode a micro-inference. It uses some of the features 
of some of the role-fillers to infer some of the features of other role-fillers and 
it is typically useful in encoding many different propositions rather than just a 
single one. By dedicating a unit to a micro-inference that is applicable in many 
different propositions, the network makes better use of the information 
carrying capacity of its activity levels and its weights than if it dedicated a single 
extra unit to each proposition. This is an example of the technique of 
coarse-coding described in [13]. In describing how a micro-inference could be 
implemented, we assumed that there was a single unit within the person1 group 
that was active whenever the pattern of activity in that group encoded an old 
person. This would not be true using random patterns, but it would be true 
using a componential representation. 

Micro-inferences store propositions by encoding the underlying regularities 
of a domain. This form of storage has the advantage that it allows sensible 
generalization. If the network has learned the micro-inference given above it 
will have a natural tendency to make sensible guesses. If, for example, it is told 
enough about a new person, Jane, to know that Jane is old and it is then asked 
to complete the proposition Jane has-husband? it will expect the filler of the 
person2 role to be old. To achieve this kind of generalization of domain-specific 
regularities, it is necessary to pick a representation for Jane in the person1 role 
that has just the right active units so that the existing micro-inferences can 
cause the right effects in the other role-specific groups. A randomly chosen 
pattern will not do. 

The real criterion for a good set of role-specific representations is that it 
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makes  it easy to express the regularities of  the domain .  It is sensible to 
dedicate  a unit to a feature  like old because useful micro-inferences can be 
expressed in terms of  this feature.  There  is another  way of  stating this point  
which enables  us to avoid awkward  quest ions about  whe ther  the ne twork  really 
unders tands  what  old means.  Ins tead of  saying that  activity in a unit means  that  
the person  is old, we can simply specify the set of  people  for  which the unit is 
active. Each  unit then cor responds  to a way of  part i t ioning all the people  into 
two subsets,  and good  representa t ions  are ones for  which these parti t ions are 
helpful in expressing the regularities. The  search for  good  representa t ions  is 
then a search in the space of  possible sets of  parti t ions.  4 

4.2. Giving the network the freedom to choose representations 

The ne twork  shown in Fig. 2 has the disadvantage that  it is impossible to 
present  a propos i t ion  to the ne twork  wi thout  a l ready having decided on the 
pat terns  of  activity that  represent  the people  and relationships.  We would  like 
the ne twork  to use its exper ience of  a set of  proposi t ions  to construct  its own 
internal  representa t ions  of  concepts ,  and so we must  have a way of  present ing 
the proposi t ions  that  is neutral  with respect  to the various possible internal 
representat ions.  Figure 3 shows how this can be done.  The  ne twork  translates a 
neutral  input representa t ion  in which each person  or  relat ionship is represented  
by a single active unit  into its own internal representa t ion  before  making  any 
associations. In the input representa t ion,  all pairs of  concepts  are equally 

agent relation patient 

T T T 
I I 

Fig. 3. The state of each role-specific group can be fixed via a special input group. By varying the 
weights between the special input groups and the role-specific groups the network can develop its 
own role-specific representations instead of being forced to use representations that are pre- 

determined. 

4 If the units can have intermediate activity levels or can behave stochastically, they do not 
correspond to clean cut partitions because there will be borderline cases. They are more like fuzzy 
sets, but the formal apparatus of fuzzy set theory (which is what defines the meaning of "fuzzy") is 
of no help here so we refrain from using the term "fuzzy." In much of what follows we talk as if 
units define clearcut sets with no marginal cases. This is just a useful idealisation. 
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similar. But we expect that the network will develop a hidden representation in 
which similar patterns of activity are used to represent people who have similar 
relationships to other people. 

4.3. Distorting the task so that backpropagation can be used 

To use the backpropagation learning procedure we need to express the task of 
learning about family relationships in a form suitable for a layered feed- 
forward network. There are many possible layered networks for this task and 
so our choice is somewhat arbitrary: We are merely trying to show that there is 
at least one way of doing it, and we are not claiming that this is the best or only 
way. The network we used is shown in Fig. 4. It has a group of input units for 
the filler of the person1 role, and another group for the filler of the relationship 
role. The output units represent the filler of the porson2 role, so the network 

f 
Learned distributed I 

encoding of person 1 

Local encoding 
of person 2 

t 
Learned distributed I 

encoding of person 2 

t 

Learned distributed en- 
coding of relat onsh p 

Input: local encoding I ~1 Input: local encoding 
of person 1 I I of relationship 

Fig. 4. The architecture of the network used for the family trees task. It has three hidden layers in 
which it constructs its own representations. The input and output layers are forced to use localist 

encodings. 
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can only be used to complete propositions when given the first two terms. 5 The 
states of the units in the input groups are clamped from outside and the 
network then determines the states of the output  units and thus completes the 
proposition. 

For some relationships, like uncle, there may be several possible fillers for 
the person2 role that are compatible  with a given filler of the person1 role. In a 
stochastic network it would be reasonable to allow the network to choose one 
of the possibilities at random. In the deterministic network we decided to insist 
on an output  which explicitly represented the whole set of possible fillers. This 
is easy to do because the neutral representat ion that we used for the output has 
a single active unit for each person and so there is an obvious representat ion 
for a set of people. 

Using the relationships father, mother, husband, wife, son, daughter, uncle, aunt, 
brother, sister, nephew, niece there are 104 instances of relationships in the two 
family trees shown in Fig. 1. We trained the network on 100 of these instances. 
The details of the training are given in [10]. The training involved weight-decay 
which ensures that the final magnitude of a weight is proport ional  to the 
amount  of work that it does in reducing the error in the output.  This means 
that weights which are unimportant  for the performance of the network shrink 
to near  zero, which makes  it much easier to interpret the weight displays. After  
1500 sweeps through all 100 training examples the weights were very stable and 
the network per formed correctly on all the training examples: When given a 
person1 and a relationship as input it always produced activity levels greater  than 
0.8 for the output units corresponding to correct answers and activity levels of 
less than 0.2 for all the other output  units. 

The fact that the network can learn the examples it is shown is not 
particularly surprising. Any associative memory  or table look-up scheme could 
do that. The interesting questions are: Does it create sensible internal repre- 
sentations for the various people  and relationships that make it easy to express 
regularities of the domain that are only implicit in the examples it is given? 
Does it generalize correctly to the remaining examples? Does it make use of 
the isomorphism between the two family trees to allow it to encode them more 
efficiently and to generalize relationships in one family tree by analogy to 
relationships in the other? If it does all these things, it seems reasonable to say 
that it is doing inference rather  than mere association. 

4.4. The representations 

Figure 5 shows the weights on the connections from the 24 units that are used 

5 We would have preferred it to perform completion when given any two terms. This could have 
been done by using a bigger network in which there were three input groups and three output 
groups, but learning would have been slower in the larger network and so we opted for the simpler 
case. 



PART-WHOLE HIERARCHIES IN CONNECTIONIST NETS 57 

L L 

= = - - - - - - - -  - -  - - -  1 

1 

i ~ ~ = = l g = : : = l l = = =  ~ 

] ~ L _ _ _ ~ _ _ ~  ~ ~ | = 
-_.- ~ _ _ _ ~ = = ~ . = ~  3 

Fig. 5. The weights from the 24 input units that represent people to the 6 units in the second layer 
that learn distributed representations of people. White rectangles stand for excitatory weights, 
black for inhibitory weights, and the area of the rectangle encodes the magnitude of the weight. 
The weights from the 12 English people are in the top row of each unit. Beneath each of these 

weights is the weight from the isomorphic Italian. 

to give a neutral input representation of p e r s o n 1  to the 6 units that are used for 
the network's internal, distributed representation of person1. These weights 
define the "receptive field" of each of the 6 units in the space of people. It is 
clear that at least one unit (unit number 1) is primarily concerned with the 
distinction between English and Italian. Moreover, most of the other units 
ignore this distinction which means that the representation of an English 
person is very similar to the representation of their Italian equivalent. The 
network is making use of the isomorphism between the two family trees to 
allow it to share structure and it will therefore tend to generalize sensibly from 
one tree to the other. 

Unit 2 encodes which generation a person belongs to. Notice that the middle 
generation is encoded by an intermediate activity level. The network is never 
explicitly told that generation is a useful three-valued feature. It discovers this 
for itself by searching for features that make it easy to express the regularities 
of the domain. Unit 6 encodes which branch of the family a person belongs to. 
Aga~ ,  this is useful for expressing the regularities but is not at all explicit in 
the examples. 6 

6 In many tasks, features that are useful for expressing regularities between concepts are also 
observable properties of the individual concepts. For example, the feature male is useful for 
expressing regularities in the relationships between people and it is also related to sets of 
observable properties like hairyness and size. We carefully chose the input representation to make 
the problem difficult by removing all local cues that might have suggested the appropriate features. 
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It is initially surprising that none of the 6 units encodes sex. This is because 
of the particular set of relationship terms that was used. Each of the 12 
relationship terms completely determines the sex of person2 so the sex of 
person1 is redundant.  If we had included relationships like spouse there would 
have been more pressure to encode the sex of person1 because this would have 
been useful in constraining the possible fillers of the porson2 role. 

4.5. Generalization 

The network was trained on 100 of the 104 instances of relationships in the two 
family trees. It was then tested on the remaining four instances. The whole 
training and testing procedure was repeated twice, starting from different 
random weights. In one case the network got all four test cases correct and in 
the other  case it got 3 out of 4, where "correct"  means that the output  unit 
corresponding to the right answer had an activity level above 0.5, and all the 
other output units were below 0.5. In the test cases, the separation between the 
activity levels of the correct units and the activity levels of the remainder were 
not as sharp as in the training cases. 

Any learning procedure which relied on finding direct correlations between 
the input and output vectors would generalize very badly on the family trees 
task. Consider the correlations between the filler of the person1 role and the 
filler of the person2 role. The filler of person1 that is used in each of the 
generalization tests is negatively correlated with the correct output vector 
because it never occurred with this output vector during training, and it did 
occur with other  output  vectors. The structure that must be discovered in order  
to generalize correctly is not present in the pairwise correlations between input 
units and output units. 

4.6. Componentiai versus structuralist accounts of concepts 

The family trees example sheds an interesting new light on a long-running 
controversy between rival theories of conceptual structure. There have been 
many different proposals for how conceptual information may be represented 
in neural networks. These range from extreme localist theories in which each 
concept is represented by a single neural unit [1] to extreme distributed 
theories in which a concept corresponds to a pattern of activity over a large 
part of the cortex [19]. These two extremes are the natural implementations of 
two different theories of semantics. In the structuralist approach, concepts are 
defined by their relationships to other concepts rather than by some internal 
essence. The natural expression of this approach in a neural net is to make 
each concept be a single unit with no internal structure and to use the 
connections between units to encode the relationships between concepts. In the 
componential  approach each concept is simply a set of features and so a neural 
net can be made to implement a set of concepts by assigning a unit to each 
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feature and setting the strengths of the connections between units so that each 
concept corresponds to a stable pattern of activity distributed over the whole 
network [15, 17, 33]. The network can then perform concept completion (i.e. 
retrieve the whole concept from a sufficient subset of its features). The 
problem with most componential theories is that they have little to say about 
how concepts are used for structured reasoning. They are primarily concerned 
with the similarities between concepts or with pairwise associations. They 
provide no obvious way of representing articulated structures composed of a 
number of concepts playing different roles within the structure. 

The family trees example shows that componential reduced descriptions can 
be learned from structural information about how concepts go together within 
propositions. Given a sufficiently powerful learning procedure, the structuralist 
information can be converted into componential representations that facilitate 
rapid intuitive inference. 

5. The Fixed Mapping 

Perhaps the most obvious way to implement part-whole hierarchies in a 
connectionist network is to use the connections themselves as pointers. The 
simplest version of this uses localist representations, but once that version has 
been understood, it is easily converted into a version that uses distributed 
representations. Figure 6 shows a localist example taken from the work of 
McClelland and Rumelhart [21]. It is a network that recognizes a word when 

CI- 

Fig. 6. Part of a network used for recognizing words. Only a few of the units and connections are 
shown. The connections between alternative hypotheses at the same level are inhibitory. 
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given partial information about the features of the letters in the word. 7 Because 
each relationship in the hierarchical tree-structure is implemented by its own 
dedicated connection, it is possible to do a lot of parallel processing during 
recognition. Simultaneously, many different letters can check whether the 
features they require are present, and many different words can check whether 
the letters they require are present. 

One very important aspect of the McClelland and Rumelhart  network is that 
each of the letter units has to be replicated for each possible position of a letter 
within the word. There  are separate units for an H as first letter and an H as 
second letter. All the letter features and all the knowledge about which 
combinations of letter features make an H must also be replicated for each of 
the positions. This replication is a natural consequence of implementing 
par t -whole  relationships with pairwise connections. A par t -whole  relationship 
involves three different things: The part, the whole, and the role that the part 
plays within the whole. In the conventional implementation using pointers, the 
role is encoded by which field the pointer is in. A pairwise connection between 
neuron-like units does not have anything equivalent to a field, and so one of 
the two units is used to represent both the field and the contents of the field. 
Thus, instead of having a single role-independent representation of H which is 
pointed to from many different fields, we have many different "role-specific" 
representations. Activity in any one of these units then represents the conjunc- 
tion of an identity and a role. 

At first sight, the fixed mapping seems very wasteful because it replicates the 
apparatus for representing and recognizing letters across all the different roles. 
However,  the replication has some useful consequences. It makes it possible to 
recognize different instances of the same letter in parallel without any of the 
contention that would occur if several different processes needed to access a 
single, central store of knowledge simultaneously. Also, when letters are used 
as cues for words, it is not just the letter identities that are important. It is the 
conjunction of the identity and the spatial role within the word that is the real 
cue. So it is very convenient to have units that explicitly represent such 
conjunctions. 

5.1. The fixed mapping with distributed representations 

The McClelland and Rumelhart  network uses localist representations in which 
each entity is represented by activity in a single unit. Localist representations 
are efficient if a significant fraction of the possible entities are present on any 
one occasion or if the knowledge associated with each entity has little in 
common with the knowledge associated with other,  alternative entities. Both 

7 We use this as the standard, concrete example of a part-whole hierarchy because it has clearly 
defined levels and the parts have convenient names, but this paper is not about word recognition. 
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these conditions hold quite well at the level of letter recognition. For the more 
natural part-whole hierarchies that occur in everyday scenes, neither condition 
holds. Only a tiny fraction of the possible objects are present on any one 
occasion, so if one unit is devoted to each possible object almost all the units 
will be inactive. This is a very inefficient way to use the representational 
capacity. Also, different objects, like a cup and a mug, may have similar 
appearances and may make similar predictions. This means that there can be a 
lot of useful sharing of units and connections. Most of what we know about 
cups and mugs could be associated with a unit that is active for either a cup or 
a mug. If this method of sharing is taken to its logical conclusion we arrive at 
distributed representations in which each object is represented by activity in 
many units and each unit is involved in the representation of many objects [13]. 

One way of viewing a distributed representation is as a description of an 
object in terms of a set of primitive descriptors. The description denotes the 
intersection of the sets of objects denoted by each of the individual descriptors. 
It is natural to assume that the individual units correspond to fixed primitive 
descriptors, but a more interesting possibility is that the primitive descriptors 
continually change their meanings. Each time a new object is encountered, 
many connection strengths change slightly and this causes slight changes in the 
circumstances in which each unit becomes active and in the effect that its 
activity has on the rest of the network. In the short term, the meanings of the 
primitive descriptors are fairly stable, but over a longer time scale they shift 
around and move towards a vocabulary that makes it easy to express the 
structure of the network's environment in the connection strengths [10]. 

One major advantage of using descriptions rather than single units as 
representations is that it is possible to create representations of novel Objects 
(and also novel role-specific representations) by using novel combinations of 
the same set of primitive descriptors. This avoids the problem of having to find 
a suitably connected unit for each novel object. 

5.2. Sharing units between similar roles 

So far, we have assumed that each role within a structure has its own dedicated 
set of "role-specific" units. Each of these units may use "coarse-coding" in the 
space of possible identities for the role-filler, but it is entirely specific about the 
role. This way of localising the roles is reasonable if there are only a few 
possible roles (such as the four letter positions in the McClelland and 
Rumelhart  model), but it has difficulty dealing with structures that have a large 
or indefinite number of potential roles. If, for example, we consider the 
semantic cases in English sentences, it is very hard to decide how many cases 
there really are, and it is also clear that some cases are very similar to others. 
In the sentences "Mary beat John at tennis" and "Mary helped John with his 
algebra" it is clear that tennis and algebra occupy similar but not quite identical 
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semantic roles. A natural way to handle this phenomenon is to use conjunctive 
units that are coarse-coded in role-space as well as in identity space [9]. An 
instantiated structure then consists of a set of activations in these units, and 
each binding of an identity to a role is encoded by many of these coarse-coded 
units. Naturally, the representation becomes ambiguous if we simultaneously 
encode many bindings of similar identities to similar roles, but people also fail 
in these circumstances. Smolensky (this issue) gives a formal treatment of this 
type of representation using the formalism of tensor products. 8 

5.3. Disadvantages of the fixed mapping approach 

The major problems of the fixed mapping approach are: 

(1) Extra hardware is required to replicate the recognition apparatus across 
all roles. 

(2) Extra learning time is required to train all the separate replicas of the 
same recognition apparatus. 

(3) The replication raises the issue of how, if at all, different role-specific 
representations of the same entity are related to one another. 

(4) The model presupposes some input apparatus for transforming the 
retinal image of a word into the primitive features that are used for 
recognition. As the word changes its position on the retina, the very 
same set of primitive feature units must remain active. It seems sensible 
to perform recognition by using a fixed network in which every connec- 
tion implements a particular piece of knowledge about how things go 
together in good interpretations, but this can only work if there is a way 
of correctly mapping the external world into the bottom level units of 
the fixed network. Much of the difficulty of recognition lies in discov- 
ering this mapping. 

(5) As we go down the hierarchy, there are fewer and fewer units available 
for representing each constituent. For relatively shallow, man-made 
hierarchies of the kind that are important in reading or speech recogni- 
tion, it may be tolerable to always devote fewer units to representing 
smaller fragments of the overall structure. But for domains like normal 
visual scenes this strategy will not work. A room, for example, may 
contain a wall, and the wall may contain a picture, and the picture may 
depict a room. We need to be able to devote just as much apparatus to 
representing the depicted room as the real one. Moreover,  the very 
same knowledge that is applied in recognizing the real room needs to be 

81 suspect that extreme coarse-coding in role-space is a mistake. In a nonlinear system, it is 
probably easier to make use of the information about the fillers of roles if this information is 
localised (as it was in the family-trees example described in Section 4). 
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applied in recognizing the room in the picture. If this knowledge is in the 
form of connections and if the knowledge is not duplicated there must be 
a way of mapping the depicted room into an activity pattern on the very 
same set of units as are used for representing the real room. 

6. Within-level Timesharing 

Distributed representations provide a way of sharing units and connections 
between alternative objects or alternative role-specific representations. In this 
respect they work just like pointers in a conventional computer memory. 
Instead of using a separate bit for each possible object that could be pointed 
to, each bit is shared between many possible alternative objects. As a result, a 
word of memory can only point to one object at a time. 9 The following analysis 
of the functions performed by a role-specific representation suggests a quite 
different and complementary method of sharing which can be used to share 
connectionist apparatus between the different role-specific instances that occur 
within one whole. 

In the McClelland and Rumelhart model each role-specific letter unit has 
three functions: 

(1) It recognizes the occurrence of that letter in that spatial role. The 
recognition is accomplished by having appropriately weighted connec- 
tions coming from units at the feature level. 

(2) It contributes to the recognition of words. This is accomplished by its 
connections to units at the word level. 

(3) Its activity level stores the results of letter recognition. 

There is an alternative way of mapping the part-whole hierarchy into a 
connectionist network that uses role-specific letter units for functions (2) and 
(3), but not for function (1). Instead, the alternative method uses a single 
letter-recognition module which is applied to one position within the word at a 
time. Once the letter at the current position has been recognized, the combina- 
tion of its identity and its position within the word activates a role-specific 
letter unit which acts as a temporary memory for the results of the recognition 
and also contributes to the recognition of the word (see Fig. 7.) This method is 
called "within-level" sharing because a single recognition module is shared 
across the entities within one level. 

The letter-recognition module must be applied to one letter at a time and so 
there must be extra "attentional" apparatus that selects out one portion of the 
parallel input (which contains features of all the letters), maps this portion into 

9 Some ancient implementations of LISP actually use two separate role-specific representations 
within one word so that the first part of a word can point to one object and the second part can 
point to another. 
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Fig. 7. Some of the apparatus required to store the sequence of outputs of a single, sequential 
letter-recognition module in order to recognize a word. The network is "attending" to the second 
letter of the word. Notice that the role-specific units do not need to be able to recognize letters, 
The apparatus required for mapping the appropriate part of the input into the letter recognition 

module is not shown. 

the input of the letter-recognition module,  and also creates an explicit repre- 
sentation of where the currently selected letter lies within the word. Actually, 
the McClelland and Rumelhar t  model implicitly presupposes that there is 
apparatus of a similar kind in order to pick out the features of one word within 
a sentence or to cope with changes in the position of a word. So the new model  
does not require any qualitatively new attentional apparatus,  it merely requires 
it at the level of letters instead of at the level of words. Also, it makes  explicit 
the requirement  for attentional apparatus,  storage apparatus,  and control 
apparatus.  

7. Between-level Timesharing 

There  is one limitation of within-level sharing that is unimportant  in the 
domain of reading but is very important  in most  other domains where the same 
knowledge can be applied at many different levels. For reading, the knowledge 
is quite different at each level: Knowledge about  the shape of a letter is quite 
different from knowledge about  which sequences of letters make words, so 
there is little point in trying to use the same set of connections to encode both 
kinds of knowledge. In most natural domains,  however,  wholes and their parts 
have much in common.  One example has already been given in which a room 
contains a picture that depicts a room. Another  example is the sentence "Bill 
was annoyed that John disliked Mary ."  One of the constituents of this 
sentence, "John  disliked Mary ,"  has a lot in common with the whole sentence. 
The same kind of knowledge is needed for understanding the constituent as is 
needed for understanding the whole. This is also typical of natural visual scenes 
which generally have just as much richness at every level of detail. 
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To share the knowledge in the connections between different levels in the 
part-whole hierarchy, it is necessary to use flexible mappings between the 
entities in the part-whole hierarchy and the groups of units in the connectionist 
network. The hardware is viewed as a window that can be moved up and down 
(in discrete steps) over the part-whole hierarchy (see Fig. 8). One node in the 
hierarchy is chosen as the current whole and all of the units in the main 
network are then devoted to recognizing and representing this whole. Some 
units are used for describing the global properties of the whole, and others are 
used for role-specific descriptions of the major constituents of the whole. The 
entire pattern of activity will be called the "Gestalt" for the current whole. 

The crucial property of the moveable window scheme is that the pattern of 
activity that represents the current whole is totally different from the pattern of 
activity that represents the very same object when it is viewed as being a 
constituent of some other whole. 1° In one case the representation of the object 
and its parts occupies all of the main network and in the other case it is a 
role-specific description that occupies only the units devoted to that role. 

The idea that the very same object can be represented in different ways 
depending on the focus of attention is a radical proposal which violates the 
very natural assumption that each entity in the world has a unique correspond- 
ing representation in the network. Violating this assumption leads to so many 
obvious difficulties, that few researchers have considered it seriously, but these 
problems must be faced if we are to capture between-level regularities in a 
connectionist network. The problems include: 

1 2 ~ . . - -  - - - - - - , . - - . %  . . . . . .  

~ R o l e  3 

Fig. 8. The solid and dashed lines show two different ways of mapping a part-whole hierarchy (on 
the left) into the same connectionist hardware (on the right). Notice that node D in the hierarchy 

can be represented by two totally different activity patterns that have nothing in common. 

]o Charniak and Santos [3] describe a connectionist parser in which the hardware acts as a 
window that slides over the parse-tree, but they do not use the idea of reduced descriptions: To 
move the hardware window up the hierarchy they simply copy the representations from one 
hardware level to the next level down. 
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(1) When the mapping between the world and the network is changed in 
such a way that one constituent of the previous whole becomes the new 
focus of attention, what kind of internal operations are required to 
convert the previous, role-specific description of that constituent into a 
full description that occupies the whole of the main network? 

(2) How is temporary information about recent Gestalts stored so that the 
network can return to them later? The information cannot be stored as 
the activity pattern that the network settles to when the Gestalt is 
created because the very same network is needed for creating the next 
Gestalt. 

(3) How is the next mapping chosen? Is the choice made by a separate 
parallel computation,  or can it be part of the same computation that is 
involved in forming the Gestalt? This is not a problem for the fixed 
mapping approach because all the parts of the hierarchy are represented 
simultaneously in a single large network. 

The following subsections address these issues. 

7.1. Moving up and down the part-whole hierarchy 

Figure 9 shows some of the extra apparatus that might be required to allow a 
connectionist network to move down the par t -whole  hierarchy by expanding a 
role-specific, reduced description into a full description of the role-filler. This 
corresponds to following a pointer in a conventional implementation. Notice 
that it is a slow and cumbersome process. Moving back up the hierarchy is even 
more difficult. First, the full description of a part must be used to create the 
appropriate role-specific, reduced description of that part. This involves using 
the apparatus of Fig. 9 in the reverse direction. Then the role-specific, reduced 
description must be used to recreate the earlier full description of which it is a 
constituent. If the hierarchical structure is highly overlearned, it is possible to 
train a network to recover the full description [23], but if the hierarchy is a 
novel one, the only way to move back up it without additional external 
guidance is to use some kind of content-addressable working memory for 
earlier Gestalts. Traversing the par t -whole  hierarchy can be made simpler by 
using reduced descriptions whose microfeatures are systematically related to 
the microfeatures of the corresponding full descriptions. Even though the 
reduced and full descriptions correspond to quite different patterns of activity, 
it is much easier to generate one from the other if the patterns of activity are 
related in a non-arbitrary way. 

The obvious way to implement the working memory required for recovering 
earlier Gestalts is to set aside a separate group of "working memory"  units. If 
it is only necessary to remember  one Gestalt at a time, this group can simply 
contain a copy of the pattern of activity in the network where Gestalts are 
formed. If several Gestalts need to be remembered at a time, several different 
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Fig. 9. One way of using some additional hardware to allow the network to access the full 
description of node D from a role-specific reduced description. 

groups could be used. Alternatively, a single group could be used provided that 
the various patterns of activity that need to be stored are first recoded in such a 
way that they can be superimposed without confusing them with one another. 
Examples of such encodings are described in [29, 32]. Touretzky [30, 31] shows 
how this kind of working memory can be used to traverse and transform tree 
structures. 

An interesting alternative implementation of working memory uses tempo- 
rary modifications of the connection strengths in the network that is used for 
creating the Gestalt. Each internal connection in this network can be given two 
different weights: A long-term weight which changes relatively slowly and a 
short,term weight which is limited in magnitude, changes rapidly, and sponta- 
neously decays towards zero. The effective connection strength at any time is 
simply the sum of the short-term and long-term weights. The long-term weights 
encode knowledge about which patterns of activity constitute good interpreta- 
tions of the input to the network (i.e. familiar or plausible Gestalts). The 
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short-term weights act as a contextual overlay ~ that encodes information about 
which patterns of activity occurred recently. If the network receives a rich 
external input which is incompatible with recently occurring Gestalts, it will 
settle to a new Gestalt and the short-term weights will act as noise (to which 
these networks are very resistant). If, however, parts of the external input are 
missing and the remainder fits some recently occurring Gestalt, the short-term 
weights will favor this Gestalt over other alternative Gestalts which would fit 
the partial input just as well if the short-term weights were not considered. So 
the short-term weights will implement a content-addressable memory for 
recent Gestalts. 

Some unpublished simulations I performed in 1973 showed that short-term 
weights could be used to allow a network to return to a partially completed 
higher-level procedure after using between-level sharing to execute a recursive 
call of the same procedure in the same hardware. In these simulations desired 
states were specified for all the units at all times so there were no hidden units 
and a variation of the perceptron convergence procedure could be used to 
learn the appropriate long-term weights. The short-term weights were adapted 
by a simple local rule that combined a decay term with a term that increased 
the weight between two unit-states that occurred in close temporal proximity. 

With the advent of the backpropagation learning procedure,  it is now 
possible to use backpropagation through time to adapt the long-term weights of 
hidden units in such a way that a recurrent  network can learn for itself how to 
store and retrieve temporary information in the short-term weights. This 
modification of the backpropagation procedure is rather complex, since it 
requires the backpropagated derivatives to take into account indirect effects of 
the following form: A change in a long-term weight at time t causes activity 
levels to change at time t + 1 which causes short-term weights to change at time 
t + 2 which causes activity levels to change at all subsequent times. A much 
simpler alternative is to ignore these complicated components of the deriva- 
tives and to rely on the fact that a simple hebbian rule for incrementing the 
short-term weights will typically cause these weights to store the information 
that is required a short time later. This simplification is similar to the 
simplification often used in recurrent nets in which derivatives are not back- 
propagated through time in a recurrent network. Instead, it is assumed that the 
hidden units will fortuitously encode the historical information that is sub- 
sequently required for performing the task [16]. 

7.2. Choosing mappings 

Decisions about which parts of the world or the task should be mapped into 

HA very different use of this contextual overlay is described in [14]. It can be used to 
approximately cancel out recent changes in the long-term weights, thus allowing earlier memories 
to be "deblurred." 
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which parts of the connectionist hardware are clearly of central importance and 
would form a major part of any account of how a particular network performed 
a particular rational inference. The purpose of this subsection is simply to point 
out that there is an interesting spectrum of possible ways in which a network 
might focus its attention on a particular piece of the domain. At one end of the 
spectrum, a separate "executive" module would select the current mapping 
without using any information about the representations that were then 
generated using that mapping. The choice of mapping would be based on 
previously generated representations, but not on the representation generated 
using the current mapping. At the other end of the spectrum, the desired 
mapping could be defined in terms of the representations it produced, so that 
the network would have to simultaneously settle on the mapping and the 
representation. Although this search might involve many iterations, it would 
not be sequential in the sense in which rational inference is sequential: It would 
not involve a sequence of settlings. So in the description of the rational 
inference, the network would just intuitively choose the appropriate mappings 
to generate the required representations at each step. 

A working example of this way of choosing mappings is described in [12]. A 
network that is trying to locate a letter in an image that contains several letters 
can activate the desired shape representation and use this to select the correct 
mapping of the image onto the recognition apparatus. 

7.3. An example of between-level sharing 

So far, the discussion of between-level sharing has been rather abstract, mainly 
because there is no working implementation that properly illustrates the 
approach. Even without an implementation, however, the ideas may be clearer 
in the context of a specific task. 

Consider a network that is trying to arrive at a plan of action that satisfies 
several goals such as arriving home on time with the TV guide, the wine and 
the pizza. Given enough units, it is possible to design a network in which all 
the possible choices and all the constraints between them can be simultaneous- 
ly represented. Then, if the activities of some units are clamped to represent 
the satisfied goals, a single settling of this whole network can arrive at a set of 
choices that are consistent and that satisfy the goals. Given fewer units, 
however, this fixed mapping approach is not feasible and it is necessary to solve 
the overall task one piece at a time. 

If there were no interactions between the subtasks, the serial computation 
would be relatively simple, and the connectionist implementation would be 
relatively uninteresting. But to arrive home on time, it may be necessary to 
choose a single store that sells several of the desired items, or a set of stores 
that are close to one another. Instead of solving the subtasks one at a time, it 
may be better to first settle on a rough overall plan, and to leave the details 
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until later. The rough overall plan may contain reduced descriptions of the way 
each subtask will be solved. These reduced descriptions must have sufficient 
detail to ensure that the solutions to the subtasks fit together properly, but they 
do not require the full details of the solution. Of course, when the network 
later focusses its attention on a subtask, it may turn out to be impossible to fill 
in the details in a way that is consistent with the assumed solutions of the other 
subtasks, in which case a new overall rough plan will have to be formulated. 

By sequentially re-using the same hardware for settling on the detailed 
solutions to the subtasks, the network can share the knowledge in the 
connections between these subtasks. However, the need to go back and 
reformulate the overall plan when its parts cannot be implemented consistently 
illustrates the major drawback of this kind of sharing: If the constraints are not 
all satisfied at the same time, it may be necessary to change the focus of 
attention many times before arriving at a solution which is consistent at all 
levels. For a network to avoid this kind of sequential "thrashing" it must use 
reduced descriptions of the subtasks that are compact enough to allow the 
global constraint satisfaction, but detailed enough to ensure that the parts of 
the global solution are locally feasible. For genuine puzzles, this may not be 
possible, but for normal common sense reasoning where there are many 
possible solutions it should be possible to learn appropriate reduced descrip- 
tions that allow large but friendly real-world constraint satisfaction problems to 
be hierarchically partitioned into manageable pieces. Whether this can actually 
be done remains to be seen. 

7.4. Capturing regularities versus parallel recognition 

The use of between-level sharing allows a connectionist network to capture 
certain kinds of regularity, but only by resorting to serial processing, and the 
loss of parallel processing seems like a very high price to pay. Connectionists 
would like their models to have all three of the following properties: 

(1) All the long-term knowledge should be in the connection strengths. 
(2) The network should capture the important regularities of the domain. 
(3) Rapid recognition should be achieved by recognizing the major parts of 

a whole in parallel. 

Unfortunately, it is very hard to achieve all three properties at once. If the 
knowledge is in the connections, and if the same knowledge is required to 
recognize several different parts of the same object (e.g. the letters in the word 
"banana") it seems as if we have to make an unpalatable choice. We can either 
capture the regularities in the appearances of different tokens of the same 
letter by sequentially re-using the very same connections to recognize the 
different instances of the letter "a ,"  or we can achieve parallel recognition by 
replicating "a" recognizers across all the different positions in the word. 
McClelland [20] describes a clever but inefficient way out of this dilemma: 
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There is a single canonical representation of the knowledge whose weights are 
copied during recognition to produce the required parallel recognizers. An 
alternative way out of the dilemma is to use the learning process to transfer the 
knowledge from a canonical representation to a set of role-specific recognizers. 
The knowledge transfer is much slower than in McClelland's scheme, but it 
requires far fewer connections because weights are not transferred explicitly, 
and once the learning has been done, no transfer is required during recogni- 
tion. This idea has strong similarities to a method that has been used by 
linguists to escape from the same dilemma. Some regularities of English that 
appear to require a context-sensitive grammar can actually be captured by 
generating sets of specific context-free rules from some underlying context-free 
meta-rules [7]. The whole system is context-free, and although there is great 
redundancy among sets of specific context-free rules, the regularity is neverthe- 
less captured by the fact that the members of each set were all generated from 
the same underlying meta-rule. 

Figure 7 suggests one way of using learning to transfer knowledge. The serial 
recognizers can be used to train the parallel, role-specific recognizers. A 
network that timeshares a serial recognizer already requires role-specific units 
for storing its successive outputs. If these role-specific units have some connec- 
tions to the perceptual input, these connections can be trained by assuming 
that the outcome of the serial recognition is the desired outcome of the parallel 
recognition. The canonical, timeshared representation of the knowledge would 
then be acting as an internal local teacher for the parallel recognition hard- 
ware. This resembles the way in which the outcome of a serial mini-max tree 
search can be used to evaluate a position and hence to specify the desired 
outcome of a "parallel" board evaluation [25]. In the language of Section 3, 
rational inference can be used to train intuitive inference. 

The usefulness of this method of transferring knowledge obviously depends 
on how much faster the learning is with an internal local teacher. This, in turn, 
depends on whether the canonical representations and the role-specific repre- 
sentations are distributed. If the representations are distributed, and if there is 
a non-arbitrary mapping between the canonical and the role-specific repre- 
sentations of the same entity, then the role-specific representations can be 
learned much faster because the canonical representations provide detailed 
information about what pattern of activity to use. This is equivalent to 
specifying desired values for the hidden units of a network. Connectionist 
learning is slow when it has to construct hidden representations and it is much 
faster when all units have their desired values specified. 

8. Are These Just Implementation Details? 

Proponents of the "classical" symbol processing approach to cognition have 
argued that many of the issues discussed in this paper are mere implementation 
details [6]. My view of this claim is best expressed by an analogy. Consider the 
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theory that all locomotion requires wheels. A proponent of this theory could 
reasonably argue that people have wheels. Since people move over rough 
ground, they need very large diameter wheels with very springy suspension. 
They achieve this by implementing one spoke and one piece of rim for each 
wheel and then timesharing it. The only problem with this argument is that 
many of the "obvious" properties of wheels that we normally take for granted 
do not hold in this biological implementation. The timesharing removes the 
need for a fully revolving bearing, but it requires repeated accelerations and 
decelerations that make the system energetically inefficient at high speeds. 
Also, the timeshared spokes can be used in many other ways that do not at all 
resemble uses of normal wheels. If we insist on viewing connectionist networks 
as just a novel implementation of classical symbol processing, we should expect 
many of the standard intuitions we derive from classical systems to be equally 
misleading. 

One major contribution of the connectionist approach is that it focusses 
attention on the distinction between rational and intuitive inference. Classical 
symbol processing takes rational inference as its paradigm. On a serial machine 
it is easy to program the kind of deliberate reasoning that occurs when a person 
sorts a list of numbers into ascending order. This is no coincidence: serial 
machines were designed to model this kind of deliberate reasoning, and so they 
are easy to program whenever a task can be reduced to straightforward 
deliberate reasoning. From the connectionist perspective, this is unsurprising 
and provides no justification for the idea that the kinds of inference which we 
make fast and intuitively should also be modeled by the same kind of symbol 
processing. The idea that fast intuitive inference is similar in form to conscious 
inference, but without the consciousness, seems to me to be a major psycholog- 
ical error. So long as we only consider serial machines, however, there is not 
much motivation for using a quite different model for fast intuitive inference, 
because the motivation comes from considerations about what kind of process- 
ing can be done fast in a connectionist network. 12 

A major weakness of the connectionist systems that have been sketched out 
in this paper is that they have great difficulty handling quantifiers and variable 
binding. A primitive scheme for variable binding is described in [32], but 
connectionist networks would be more convincing if they could rapidly con- 
struct complex, plausible scenarios in which many instantiated schemas fit 
together appropriately. Shastri [26] has recently described one way of doing 
this using localist representations. Each schema has its own dedicated hardware 
including dedicated hardware for representing the fillers of its slots. Shastri 
uses temporal phase as a temporary symbol for a slot-filler, but the same basic 

,2 Tractability may also provide a motivation for some limited form of inference, but it is not 
clear why the same tractability a rgument  should not  also be applied to rational inference. 



P A R T - W H O L E  H I E R A R C H I E S  IN C O N N E C T I O N I S T  NETS 73 

scheme could be implemented using reduced descriptions. This may allow fast, 
parallel, intuitive inference to do much more than simply completing the 
instantiation of a single schema. 13 

9. Summary of the Three Types of Mapping 

If we consider how to map a part-whole hierarchy into a finite amount of 
parallel hardware there are three broad approaches: Fixed mappings, within- 
level timesharing, and between-level timesharing. These three approaches can 
be distinguished by abstract properties of the mappings involved: 

(1) The fixed mapping uses a one-to-one mapping. Each object in the 
part-whole hierarchy is always mapped into a pattern of activity in the 
same set of units, and each set of units is always used to represent the 
same object. 

(2) Within-level sharing uses a many-to-one mapping. Many different ob- 
jects at the same level can be mapped into the same set of units in the 
serial recognition apparatus. But whenever one of these objects is 
recognized, it is represented in the same units. 

(3) Between-level sharing uses a many-to-many mapping. It allows many 
different objects at the same level to be mapped into the same set of 
units, but it also allows the same object to be mapped into different sets 
of units depending on the level at which attention is focussed. 

I0. Conclusions 

An important consequence of using role-specific reduced descriptions to imple- 
ment pointers is that the relationship between a pointer and the thing it points 
to is not arbitrary. So computations, such as inferring the filler of one role 
when given the fillers of other roles, that would normally require a lot of 
sequential pointer-chasing, can be performed without accessing the full descrip- 
tions of the fillers. This means that the process of using a reduced description 
to gain access to the corresponding full description can be a relatively rare and 
slow event. 

The combination of slow sequential access to full descriptions and fast 
parallel constraint-satisfaction using reduced descriptions is a style of computa- 
tion that is well-suited to neural networks. The parallel inner loop allows the 
network to perform a great deal of computation by settling into a state that 

13 In [9] I rejected the idea of using separate hardware for each schema because I thought  this 
would make  it impossible to share common  information between schemas.  Now I can see a way out  
of  the dilemma: For parallel inference,  we give each schema its own hardware,  but to capture the 
regularities among  different schemas  we have additional hardware for the fully-articulated repre- 
sentat ion of a schema.  In this additional hardware,  different schemas correspond to alternative 
activity patterns.  



74 G.E. HINTON 

satisfies constraints that are encoded in the connections. So if the appropriate 
representations are known, a lot of useful computation can be done by a single 
intuitive inference. More elaborate computations which cannot be performed 
in a single settling using the current representations are performed by a 
sequence of settlings, and after each settling the mapping between the world 
and the network is changed. The ability to change the mapping is what allows 
the knowledge in any particular set of connections to be brought to bear on any 
part of the task, and thus provides the great flexibility that is characteristic of 
rational human thought. 
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