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Abstract

We present a framework for efficient inference in structured image models that ex-
plicitly reason about objects. We achieve this by performing probabilistic inference
using a recurrent neural network that attends to scene elements and processes them
one at a time. Crucially, the model itself learns to choose the appropriate number
of inference steps. We use this scheme to learn to perform inference in partially
specified 2D models (variable-sized variational auto-encoders) and fully specified
3D models (probabilistic renderers). We show that such models learn to identify
multiple objects – counting, locating and classifying the elements of a scene –
without any supervision, e.g., decomposing 3D images with various numbers of
objects in a single forward pass of a neural network at unprecedented speed. We
further show that the networks produce accurate inferences when compared to
supervised counterparts, and that their structure leads to improved generalization.

1 Introduction

The human percept of a visual scene is highly structured. Scenes naturally decompose into objects
that are arranged in space, have visual and physical properties, and are in functional relationships with
each other. Artificial systems that interpret images in this way are desirable, as accurate detection of
objects and inference of their attributes is thought to be fundamental for many problems of interest.
Consider a robot whose task is to clear a table after dinner. To plan its actions it will need to determine
which objects are present, what classes they belong to and where each one is located on the table.

The notion of using structured models for image understanding has a long history (e.g., ‘vision
as inverse graphics’ [4]), however in practice it has been difficult to define models that are: (a)
expressive enough to capture the complexity of natural scenes, and (b) amenable to tractable inference.
Meanwhile, advances in deep learning have shown how neural networks can be used to make
sophisticated predictions from images using little interpretable structure (e.g., [10]). Here we explore
the intersection of structured probabilistic models and deep networks. Prior work on deep generative
methods (e.g., VAEs [9]) have been mostly unstructured, therefore despite producing impressive
samples and likelihood scores their representations have lacked interpretable meaning. On the other
hand, structured generative methods have largely been incompatible with deep learning, and therefore
inference has been hard and slow (e.g., via MCMC).

Our proposed framework achieves scene interpretation via learned, amortized inference, and it
imposes structure on its representation through appropriate partly- or fully-specified generative
models, rather than supervision from labels. It is important to stress that by training generative
models, the aim is not primarily to obtain good reconstructions, but to produce good representations,
in other words to understand scenes. We show experimentally that by incorporating the right kinds of
structures, our models produce representations that are more useful for downstream tasks than those
produced by VAEs or state-of-the-art generative models such as DRAW [3].
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The proposed framework crucially allows for reasoning about the complexity of a given scene
(the dimensionality of its latent space). We demonstrate that via an Occam’s razor type effect,
this makes it possible to discover the underlying causes of a dataset of images in an unsupervised
manner. For instance, the model structure will enforce that a scene is formed by a variable number
of entities that appear in different locations, but the process of learning will identify what these
scene elements look like and where they appear in any given image. The framework also combines
high-dimensional distributed representations with directly interpretable latent variables (e.g., affine
pose). This combination makes it easier to avoid the pitfalls of models that are too unconstrained
(leading to data-hungry learning) or too rigid (leading to failure via mis-specification).

The main contributions of the paper are as follows. First, in Sec. 2 we formalize a scheme for
efficient variational inference in latent spaces of variable dimensionality. The key idea is to treat
inference as an iterative process, implemented as a recurrent neural network that attends to one object
at a time, and learns to use an appropriate number of inference steps for each image. We call the
proposed framework Attend-Infer-Repeat (AIR). End-to-end learning is enabled by recent advances
in amortized variational inference, e.g., combining gradient based optimization for continuous latent
variables with black-box optimization for discrete ones. Second, in Sec. 3 we show that AIR allows
for learning of generative models that decompose multi-object scenes into their underlying causes,
e.g., the constituent objects, in an unsupervised manner. We demonstrate these capabilities on MNIST
digits (Sec. 3.1), overlapping sprites and Omniglot glyphs (appendices H and G). We show that model
structure can provide an important inductive bias that is not easily learned otherwise, leading to
improved generalization. Finally, in Sec. 3.2 we demonstrate how our inference framework can be
used to perform inference for a 3D rendering engine with unprecedented speed, recovering the counts,
identities and 3D poses of complex objects in scenes with significant occlusion in a single forward
pass of a neural network, providing a scalable approach to ‘vision as inverse graphics’.

2 Approach

In this paper we take a Bayesian perspective of scene interpretation, namely that of treating this task
as inference in a generative model. Thus given an image x and a model pxθ (x|z)pzθ(z) parameterized
by θ we wish to recover the underlying scene description z by computing the posterior p(z|x) =
pxθ (x|z)pzθ(z)/p(x). In this view, the prior pzθ(z) captures our assumptions about the underlying
scene, and the likelihood pxθ (x|z) is our model of how a scene description is rendered to form an
image. Both can take various forms depending on the problem at hand and we will describe particular
instances in Sec. 3. Together, they define the language that we use to describe a scene.

Many real-world scenes naturally decompose into objects. We therefore make the modeling assump-
tion that the scene description is structured into groups of variables zi, where each group describes
the attributes of one of the objects in the scene, e.g., its type, appearance, and pose. Since the number
of objects will vary from scene to scene, we assume models of the following form:

pθ(x) =

N∑
n=1

pN (n)

∫
pzθ(z|n)pxθ (x|z)dz. (1)

This can be interpreted as follows. We first sample the number of objects n from a suitable prior
(for instance a Binomial distribution) with maximum value N . The latent, variable length, scene
descriptor z = (z1, z2, . . . , zn) is then sampled from a scene model z ∼ pzθ(·|n). Finally, we render
the image according to x ∼ pxθ (·|z). Since the indexing of objects is arbitrary, pzθ(·) is exchangeable
and pxθ (x|·) is permutation invariant, and therefore the posterior over z is exchangeable.

The prior and likelihood terms can take different forms. We consider two scenarios: For 2D scenes
(Sec. 3.1), each object is characterized in terms of a learned distributed continuous representation for
its shape, and a continuous 3-dimensional variable for its pose (position and scale). For 3D scenes
(Sec. 3.2), objects are defined in terms of a categorical variable that characterizes their identity, e.g.,
sphere, cube or cylinder, as well as their positions and rotations. We refer to the two kinds of variables
for each object i in both scenarios as ziwhat and ziwhere respectively, bearing in mind that their meaning
(e.g., position and scale in pixel space vs. position and orientation in 3D space) and their data type
(continuous vs. discrete) will vary. We further assume that zi are independent under the prior, i.e.,
pzθ(z|n) =

∏n
i=1 p

z
θ(z

i), but non-independent priors, such as a distribution over hierarchical scene
graphs (e.g., [28]), can also be accommodated. Furthermore, while the number of objects is bounded
as per Eq. 1, it is relatively straightforward to relax this assumption.
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Figure 1: Left: A single random variable z produces the observation x (the image). The relationship
between z and x is specified by a model. Inference is the task of computing likely values of z given x.
Using an auto-encoding architecture, the model (red arrow) and its inference network (black arrow)
can be trained end-to-end via gradient descent. Right: For most images of interest, multiple latent
variables (e.g., multiple objects) give rise to the image. We propose an iterative, variable-length
inference network (black arrows) that attends to one object at a time, and train it jointly with its model.
The result is fast, feed-forward, interpretable scene understanding trained without supervision.

2.1 Inference

Despite their natural appeal, inference for most models in the form of Eq. 1 is intractable. We therefore
employ an amortized variational approximation to the true posterior by learning a distribution
qφ(z, n|x) parameterized by φ that minimizes the divergence KL [qφ(z, n|x)||pzθ(z, n|x)]. While
amortized variational approximations have recently been used successfully in a variety of works
[21, 9, 18] the specific form of our model poses two additional difficulties. Trans-dimensionality: As a
challenging departure from classical latent space models, the size of the latent space n (i.e., the number
of objects) is a random variable itself, which necessitates evaluating pN (n|x) =

∫
pzθ(z, n|x)dz, for

all n = 1...N . Symmetry: There are strong symmetries that arise, for instance, from alternative
assignments of objects appearing in an image x to latent variables zi.

We address these challenges by formulating inference as an iterative process implemented as a
recurrent neural network, which infers the attributes of one object at a time. The network is run
for N steps and in each step explains one object in the scene, conditioned on the image and on its
knowledge of previously explained objects (see Fig. 1).

To simplify sequential reasoning about the number of objects, we parameterize n as a variable length
latent vector zpres using a unary code: for a given value n, zpres is the vector formed of n ones followed
by one zero. Note that the two representations are equivalent. The posterior takes the following form:

qφ(z, zpres|x) = qφ(zn+1
pres = 0|z1:n,x)

n∏
i=1

qφ(zi, zipres = 1|x, z1:i−1). (2)

qφ is implemented as a neural network that, in each step, outputs the parameters of the sampling
distributions over the latent variables, e.g., the mean and standard deviation of a Gaussian distribution
for continuous variables. zpres can be understood as an interruption variable: at each time step, if
the network outputs zpres = 1, it describes at least one more object and proceeds, but if it outputs
zpres = 0, no more objects are described, and inference terminates for that particular datapoint.

Note that conditioning of zi|x, z1:i−1 is critical to capture dependencies between the latent variables
zi in the posterior, e.g., to avoid explaining the same object twice. The specifics of the networks that
achieve this depend on the particularities of the models and we will describe them in detail in Sec. 3.

2.2 Learning

We can jointly optimize the parameters θ of the model and φ of the inference network by maximizing
the lower bound on the marginal likelihood of an image under the model: log pθ(x) ≥ L(θ, φ) =

Eqφ
[
log pθ(x,z,n)

qφ(z,n,|x)

]
with respect θ and φ. L is called the negative free energy. We provide an outline

of how to construct an estimator of the gradient of this quantity below, for more details see [23].

Computing a Monte Carlo estimate of ∂
∂θL is relatively straightforward: given a sample from the

approximate posterior (z, zpres) ∼ qφ(·|x) (i.e., when the latent variables have been ‘filled in’) we
can readily compute ∂

∂θ log pθ(x, z, n) provided p is differentiable in θ.

3



Computing a Monte Carlo estimate of ∂
∂φL is more involved. As discussed above, the RNN that

implements qφ produces the parameters of the sampling distributions for the scene variables z
and presence variables zpres. For a time step i, denote with ωi all the parameters of the sampling
distributions of variables in (zipres, z

i). We parameterize the dependence of this distribution on
z1:i−1 and x using a recurrent function Rφ(·) implemented as a neural network such that (ωi,hi) =
Rφ(x,hi−1) with hidden variables h. The full gradient is obtained via chain rule: ∂L/∂φ =∑
i ∂L/∂ωi× ∂ωi/φ. Below we explain how to compute ∂L/∂ωi. We first rewrite our cost function

as follows: L(θ, φ) = Eqφ [`(θ, φ, z, n)] where `(θ, φ, z, n) is defined as log pθ(x,z,n)
qφ(z,n,|x) . Let zi be an

arbitrary element of the vector (zi, zipres) of type {what, where, pres}. How to proceed depends on
whether zi is continuous or discrete.

Continuous: Suppose zi is a continuous variable. We use the path-wise estimator (also known as
the ‘re-parameterization trick’, e.g., [9, 23]), which allows us to ‘back-propagate’ through the random
variable zi. For many continuous variables (in fact, without loss of generality), zi can be sampled as
h(ξ, ωi), where h is a deterministic transformation function, and ξ a random variable from a fixed
noise distribution p(ξ) giving the gradient estimate: ∂L

∂ωi ≈ ∂`(θ, φ, z, n)/∂zi × ∂h/∂ωi.

Discrete: For discrete scene variables (e.g., zipres) we cannot compute the gradient ∂L/∂ωij by
back-propagation. Instead we use the likelihood ratio estimator [18, 23]. Given a posterior
sample (z, n) ∼ qφ(·|x) we can obtain a Monte Carlo estimate of the gradient: ∂L/∂ωi ≈
∂ log q(zi|ωi)/∂ωi `(θ, φ, z, n). In the raw form presented here this gradient estimate is likely
to have high variance. We reduce its variance using appropriately structured neural baselines [18]
that are functions of the image and the latent variables produced so far.

3 Models and Experiments

We first apply AIR to a dataset of multiple MNIST digits, and show that it can reliably learn to detect
and generate the constituent digits from scratch (Sec. 3.1). We show that this provides advantages over
state-of-the-art generative models such as DRAW [3] in terms of computational effort, generalization
to unseen datasets, and the usefulness of the inferred representations for downstream tasks. We also
apply AIR to a setting where a 3D renderer is specified in advance. We show that AIR learns to use
the renderer to infer the counts, identities and poses of multiple objects in synthetic and real table-top
scenes with unprecedented speed (Sec. 3.2 and appendix J).

Details of the AIR model and networks used in the 2D experiments are shown in Fig. 2. The
generative model (Fig. 2, left) draws n ∼ Geom(ρ) digits {yiatt}, scales and shifts them according to
ziwhere ∼ N (0,Σ) using spatial transformers, and sums the results {yi} to form the image. Each digit
is obtained by first sampling a latent code ziwhat from the prior ziwhat ∼ N (0,1) and propagating it
through a decoder network. The learnable parameters of the generative model are the parameters of
this decoder network. The AIR inference network (Fig. 2, middle) produces three sets of variables
for each entity at every time-step: a 1-dimensional Bernoulli variable indicating the entity’s presence,
a C-dimensional distributed vector describing its class or appearance (ziwhat), and a 3-dimensional
vector specifying the affine parameters of its position and scale (ziwhere). Fig. 2 (right) shows the
interaction between the inference and generation networks at every time-step. The inferred pose is
used to attend to a part of the image (using a spatial transformer) to produce xiatt, which is processed
to produce the inferred code zicode and the reconstruction of the contents of the attention window
yiatt. The same pose information is used by the generative model to transform yiatt to obtain yi. This
contribution is only added to the canvas y if zipres was inferred to be true.

For the dataset of MNIST digits, we also investigate the behavior of a variant, difference-AIR
(DAIR), which employs a slightly different recurrent architecture for the inference network (see
Fig. 8 in appendix). As opposed to AIR which computes zi via hi and x, DAIR reconstructs at
every time step i a partial reconstruction xi of the data x, which is set as the mean of the distribution
pxθ (x|z1, z2, . . . , zi−1). We create an error canvas ∆xi = xi − x, and the DAIR inference equation
Rφ is then specified as (ωi,hi) = Rφ(∆xi,hi−1).
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Figure 2: AIR in practice: Left: The assumed generative model. Middle: AIR inference for this
model. The contents of the grey box are input to the decoder. Right: Interaction between the inference
and generation networks at every time-step. In our experiments the relationship between xiatt and yiatt
is modeled by a VAE, however any generative model of patches could be used (even, e.g., DRAW).
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Figure 3: Multi-MNIST learning: Left above: Images from the dataset. Left below: Reconstructions
at different stages of training along with a visualization of the model’s attention windows. The 1st,
2nd and 3rd time-steps are displayed using red, green and blue borders respectively. A video of this
sequence is provided in the supplementary material. Above right: Count accuracy over time. The
model detects the counts of digits accurately, despite having never been provided supervision. Below
right: The learned scanning policy for 3 different runs of training (only differing in the random seed).
We visualize empirical heatmaps of the attention windows’ positions (red, and green for the first and
second time-steps respectively). As expected, the policy is random. This suggests that the policy is
spatial, as opposed to identity- or size-based.

3.1 Multi-MNIST

We begin with a 50×50 dataset of multi-MNIST digits. Each image contains zero, one or two
non-overlapping random MNIST digits with equal probability. The desired goal is to train a network
that produces sensible explanations for each of the images. We train AIR with N = 3 on 60,000 such
images from scratch, i.e., without a curriculum or any form of supervision by maximizing L with
respect to the parameters of the inference network and the generative model. Upon completion of
training we inspect the model’s inferences (see Fig. 3, left). We draw the reader’s attention to the
following observations. First, the model identifies the number of digits correctly, due to the opposing
pressures of (a) wanting to explain the scene, and (b) the cost that arises from instantiating an object
under the prior. This is indicated by the number of attention windows in each image; we also plot
the accuracy of count inference over the course of training (Fig. 3, above right). Second, it locates
the digits accurately. Third, the recurrent network learns a suitable scanning policy to ensure that
different time-steps account for different digits (Fig. 3, below right). Note that we did not have to
specify any such policy in advance, nor did we have to build in a constraint to prevent two time-steps
from explaining the same part of the image. Finally, that the network learns to not use the second
time-step when the image contains only a single digit, and to never use the third time-step (images
contain a maximum of two digits). This allows for the inference network to stop upon encountering
the first zipres equaling 0, leading to potential savings in computation during inference.

A video showing real-time inference using AIR has been included in the supplementary material.
We also perform experiments on Omniglot ([13], appendix G) to demonstrate AIR’s ability to parse
glyphs into elements resembling ‘strokes’, as well as a dataset of sprites where the scene’s elements
appear under significant overlap (appendix H). See appendices for details and results.
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Figure 4: Strong generalization: Left: Reconstructions of images with 3 digits made by DAIR
trained on 0, 1 or 2 digits, as well as a comparison with DRAW. Right: Variational lower bound, and
generalizing / interpolating count accuracy. DAIR out-performs both DRAW and AIR at this task.

3.1.1 Strong Generalization

Since the model learns the concept of a digit independently of the positions or numbers of times it
appears in each image, one would hope that it would be able to generalize, e.g., by demonstrating an
understanding of scenes that have structural differences to training scenes. We probe this behavior
with the following scenarios: (a) Extrapolation: training on images each containing 0, 1 or 2 digits
and then testing on images containing 3 digits, and (b) Interpolation: training on images containing
0, 1 or 3 digits and testing on images containing 2 digits. The result of this experiment is shown in
Fig. 4. An AIR model trained on up to 2 digits is effectively unable to infer the correct count when
presented with an image of 3 digits. We believe this to be caused by the LSTM which learns during
training never to expect more than 2 digits. AIR’s generalization performance is improved somewhat
when considering the interpolation task. DAIR by contrast generalizes well in both tasks (and finds
interpolation to be slightly easier than extrapolation). A closely related baseline is the Deep Recurrent
Attentive Writer (DRAW, [3]), which like AIR, generates data sequentially. However, DRAW has a
fixed and large number of steps (40 in our experiments). As a consequence generative steps do not
correspond to easily interpretable entities, complex scenes are drawn faster and simpler ones slower.
We show DRAW’s reconstructions in Fig. 4. Interestingly, DRAW learns to ignore precisely one digit
in the image. See appendix for further details of these experiments.

3.1.2 Representational Power
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Figure 5: Representational power: AIR achieves
high accuracy using only a fraction of the labeled
data. Left: summing two digits. Right: detecting
if they appear in increasing order. Despite produc-
ing comparable reconstructions, CAE and DRAW
inferences are less interpretable than AIR’s and
therefore lead to poorer downstream performance.

A second motivation for the use of structured
models is that their inferences about a scene
provides useful representations for downstream
tasks. We examine this ability by first train-
ing an AIR model on 0, 1 or 2 digits and then
produce inferences for a separate collection of
images that contains precisely 2 digits. We split
this data into training and test and consider two
tasks: (a) predicting the sum of the two digits
(as was done in [1]), and (b) determining if the
digits appear in an ascending order. We compare
with a CNN trained from the raw pixels, as well
as interpretations produced by a convolutional
autoencoder (CAE) and DRAW (Fig. 5). We optimize each model’s hyper-parameters (e.g. depth
and size) for maximal performance. AIR achieves high accuracy even when data is scarce, indicating
the power of its disentangled, structured representation. See appendix for further details.

3.2 3D Scenes

The experiments above demonstrate learning of inference and generative networks in models where
we impose structure in the form of a variable-sized representation and spatial attention mechanisms.
We now consider an additional way of imparting knowledge to the system: we specify the generative
model via a 3D renderer, i.e., we completely specify how any scene representation is transformed to
produce the pixels in an image. Therefore the task is to learn to infer the counts, identities and poses
of several objects, given different images containing these objects and an implementation of a 3D
renderer from which we can draw new samples. This formulation of computer vision is often called
‘vision as inverse graphics’ (see e.g., [4, 15, 7]).
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Figure 6: 3D objects: Left: The task is to infer the identity and pose of a single 3D object. (a) Images
from the dataset. (b) Unsupervised AIR reconstructions. (c) Supervised reconstructions. Note poor
performance on cubes due to their symmetry. (d) Reconstructions after direct gradient descent. This
approach is less stable and much more susceptible to local minima. Right: AIR can learn to recover
the counts, identities and poses of multiple objects in a 3D table-top scene. (e,g) Generated and real
images. (f,h) AIR produces fast and accurate inferences which we visualize using the renderer.

The primary challenge in this view of computer vision is that of inference. While it is relatively easy
to specify high-quality models in the form of probabilistic renderers, posterior inference is either
extremely expensive or prone to getting stuck in local minima (e.g., via optimization or MCMC). In
addition, probabilistic renderers (and in particular renderers) typically are not capable of providing
gradients with respect to their inputs, and 3D scene representations often involve discrete variables,
e.g., mesh identities. We address these challenges by using finite-differencing to obtain a gradient
through the renderer, using the score function estimator to get gradients with respect to discrete
variables, and using AIR inference to handle correlated posteriors and variable-length representations.

We demonstrate the capabilities of this approach by first considering scenes consisting of only one
of three objects: a red cube, a blue sphere, and a textured cylinder (see Fig. 6a). Since the scenes
only consist of single objects, the task is only to infer the identity (cube, sphere, cylinder) and pose
(position and rotation) of the object present in the image. We train a single-step (N = 1) AIR
inference network for this task. The network is only provided with unlabeled images and is trained to
maximize the likelihood of those images under the model specified by the renderer. The quality of
the inferred scene representations produced is visually inspected in Fig. 6b. The network accurately
and reliably infers the identity and pose of the object present in the scene. In contrast, an identical
network trained to predict the ground-truth identity and pose values of the training data (in a similar
style to [11]) has much more difficulty in accurately determining the cube’s orientation (Fig. 6c).
The supervised loss forces the network to predict the exact angle of rotation. However this is not
identifiable from the image due to rotational symmetry, which leads to conditional probabilities that
are multi-modal and difficult to represent using standard network architectures. We also compare
with direct optimization of the likelihood from scratch for every test image (Fig. 6d), and observe that
this method is slower, less stable and more susceptible to local minima. So not only does amortization
reduce the cost of inference, but it also overcomes the pitfalls of independent gradient optimization.

We finally consider a more complex setup, where we infer the counts, identities and positions of a
variable number of crockery items, as well as the camera position, in a table-top scene. This would
be of critical importance to a robot, say, which is tasked with clearing the table. The goal is to
learn to perform this task with as little supervision as possible, and indeed we observe that with
AIR it is possible to do so with no supervision other than a specification of the renderer. We show
reconstructions of AIR’s inferences on generated data, as well as real images of a table with varying
numbers of plates, in Fig. 6 and Fig. 7. AIR’s inferences of counts, identities and positions are
accurate for the most part. For transfer to real scenes we perform random color and size pertubations
to rendered objects during training, however we note that robust transfer remains a challenging
problem in general. We provide a quantitative comparison of AIR’s inference robustness and accuracy
on generated scenes with that of a fully supervised network in Fig. 7. We consider two scenarios: one
where each object type only appears exactly once, and one where objects can repeat in the scene. A
naive supervised setup struggles with object repetitions or when an arbitrary ordering of the objects
is imposed by the labels, however training is more straightforward when there are no repetitions. AIR
achieves competitive reconstruction and counts despite the added difficulty of object repetitions.
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Figure 7: 3D scenes details: Left: Ground-truth object and camera positions with inferred positions
overlayed in red (note that inferred cup is closely aligned with ground-truth, thus not clearly visible).
We demonstrate fast inference of all relevant scene elements using the AIR framework. Middle: AIR
produces significantly better reconstructions and count accuracies than a supervised method on data
that contains repetitions, and is even competitive on simpler data. Right: Heatmap of object locations
at each time-step (top). The learned policy appears to be more dependent on identity (bottom).

4 Related Work

Deep neural networks have had great success in learning to predict various quantities from images,
e.g., object classes [10], camera positions [8] and actions [20]. These methods work best when
large labeled datasets are available for training. At the other end of the spectrum, e.g., in ‘vision
as inverse graphics’, only a generative model is specified in advance and prediction is treated as an
inference problem, which is then solved using MCMC or message passing at test-time. These models
range from highly specified [17, 16], to partially specified [28, 24, 25], to largely unspecified [22].
Inference is very challenging and almost always the bottle-neck in model design.

Several works exploit data-driven predictions to empower the ‘vision as inverse graphics’ paradigm
[5, 7]. For instance, in PICTURE [11], the authors use a deep network to distill the results of slow
MCMC, speeding up predictions at test-time. Variational auto-encoders [21, 9] and their discrete
counterparts [18] made the important contribution of showing how the gradient computations for
learning of amortized inference and generative models could be interleaved, allowing both to be
learned simultaneously in an end-to-end fashion (see also [23]). Works like that of [12] aim to learn
disentangled representations in an auto-encoding framework using special network structures and / or
careful training schemes. It is also worth noting that attention mechanisms in neural networks have
been studied in discriminative and generative settings, e.g., [19, 6, 3].

AIR draws upon, extends and links these ideas. By its nature AIR is also related to the following
problems: counting [14, 27], pondering [2], and gradient estimation through renderers [15]. It is the
combination of these elements that unlocks the full capabilities of the proposed approach.

5 Discussion

In this paper our aim has been to learn unsupervised models that are good at scene understanding, in
addition to scene reconstruction. We presented several principled models that learn to count, locate,
classify and reconstruct the elements of a scene, and do so in a fraction of a second at test-time. The
main ingredients are (a) building in meaning using appropriate structure, (b) amortized inference that
is attentive, iterative and variable-length, and (c) end-to-end learning.

We demonstrated that model structure can provide an important inductive bias that gives rise to
interpretable representations that are not easily learned otherwise. We also showed that even for
sophisticated models or renderers, fast inference is possible. We do not claim to have found an ideal
model for all images; many challenges remain, e.g., the difficulty of working with the reconstruction
loss and that of designing models rich enough to capture all natural factors of variability.

Learning in AIR is most successful when the variance of the gradients is low and the likelihood is well
suited to the data. It will be of interest to examine the scaling of variance with the number of objects
and alternative likelihoods. It is straightforward to extend the framework to semi- or fully-supervised
settings. Furthermore, the framework admits a plug-and-play approach where existing state-of-the-art
detectors, classifiers and renderers are used as sub-components of an AIR inference network. We
plan to investigate these lines of research in future work.
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A Stochastic Gradient Estimators

In this section, we give further details behind the equations in Sec. 2. We simplify notation by not
referencing the model parameters θ and considering a single latent z at a time. Assume we have a
function `(z) and distribution qφ(z); we wish to estimate∇φE[`(z)].

A.1 Reparameterization trick

As per the main body, we supposed the existence of a differentiable function h and random variable ξ
with fixed noise distribution pξ(·) such that h(ξ, φ) ∼ qφ(·). It follows that:

∂

∂φ
Ez∼qφ [`(z)] =

∂

∂φ
Eξ∼pξ [`(h(ξ, φ))]

=Eξ∼pξ
[
∂

∂φ
`(h(ξ, φ))

]
=Eξ∼pξ

[
∂`

∂z

∂h

∂φ

]
=Ez∼qφ

[
∂`

∂z

∂h

∂φ

]
≈∂`(z)

∂z

∂h(ξ, φ)

∂φ
. (3)

In other words, an estimate of the gradient can be recovered by forwarding sampling the model by
using the reparameterization given by h, and backpropagating normally through h.

A.2 Likelihood ratio estimator

The likelihood ratio method simply uses the equality:

∂ log qφ(z)

∂φ
=

∂qφ(z)

∂φ

qφ(z)
(4)

to rewrite an integral as an expectation. Assuming that ∂qφ(z)∂φ exists and is continuous, we have:

∂

∂φ

∫
qφ(z)`(z)∂z =

∫
z

∂qφ(z)

∂φ
qφ(z)dz

=

∫
z

∂ log `φ(z)

∂θ
`φ(z)`(z)dz

= Eqφ(z)
[
∂ log qφ(z)

∂φ
`(z)

]
≈ ∂ log qφ(z)

∂φ
`(z). (5)

Note that if `(z) is a constant with respect to z, then the expression is clearly 0, since the integral
evaluates to the same constant.

B Prior for Unary Encoding

Recall that we can encode the number of objects n as a variable length unary code vector zpres

defined by zipres = 1 for i ≤ n, and zn+1
pres = 0 (more generally, it can be useful to implicitly define

zjpres = 0, for j > n). Consider an arbitrary distribution p(·) over n, and denote µ≥n =
∑
k≥n p(k)

the probability that there are at least n objects. We define a joint probability distribution for zpres and
show it is consistent with p(n).
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Figure 8: AIR vs. DAIR: Left: The standard AIR architecture. Right: The DAIR architecture. At
each time-step i, the latent variables produced so far are used to perform a partial rendering of the
scene. The difference of this partial rendering from the image under question is used infer zipres, z

i
what

and ziwhere in the current time-step.

Let p(zipres = 1|zi−1pres ) = zi−1pres
µ≥i

µ≥(i−1)
for i ≥ 2, and p(z1pres) = µ≥1. Note that if zipres = 0 for any i,

it follows immediately that zjpres = 0 for j ≥ i. The sampled vector is therefore a correct unary code.
Furthermore,

P (max{i : zipres = 1} = n)

= P (z1pres = 1, z2pres = 1, . . . , znpres = 1, zn+1
pres = 0)

=

(
n∏
i=1

P (zipres = 1|zi−1pres = 1)

)
P (zn+1

pres = 0|znpres = 1)

= µ≥1 ×
µ≥2
µ≥1

× µ≥3
µ≥2

. . .
µ≥n

µ≥(n−1)
×
(

1−
µ≥(n+1)

µ≥n

)
= µ≥n − µ≥(n+1)

= p(n)

It follows that for zpres following the distribution specified above, the corresponding maximum index
is distributed according to p(n) as desired.

C Details of 2D Experiments

All experiments were performed with a batch size of 64. Inference networks and decoders were
trained using a learning rate of 10−4 and baselines were trained using a higher learning rate of 10−3.
LSTMs had 256 cell units and object appearances were coded with 50 units. Images were normalized
to hold values between 0 and 1 and the likelihood function was a Gaussian with fixed standard
deviation equal to 0.3. The prior p(n) was fixed to a geometric distribution which favors sparse
reconstructions.

D Details of the DAIR Network

We assume that the renderer likelihood px(x|z1, z2, . . . , zi) has a link function I which maps a
sufficient statistic hi to the mean; hi can be iteratively updated from hi−1 and zi−1. this is the case
for instance for Gaussian and Bernoulli distributions (where hi is respectively taken to be the mean
and log-odds of the distribution). In DAIR, we use the error ∆xi between the partial reconstruction
I(hi−1) and the data x as inputs to a feed-forward neural network which predicts zi, zipres. DAIR can
be thought of as a special case of AIR with additional structure; namely, the recurrent aspect of AIR
is fixed to become a canvas-reconstruction network; see Fig. 8 for more details.

E Details of AIR vs. CNN vs. CAE vs. DRAW Experiments

The convolutional neural network uses a 64×(5×5)-64×(5×5)-64×(5×5)-512 architecture.
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Model Free Energy
Up to 2 digits Only 3 digits

DRAW −637 −406
AIR −620 −316

DAIR −611 −424

Table 1: Comparisons with state-of-the-art. DRAW achieves lower scores than AIR and DAIR on
up to 2 digits but is outperformed by DAIR when generalizing to 3 digits.
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Figure 9: Omniglot: AIR reconstructions at every time-step. AIR uses variable numbers of strokes
for digits of varying complexity.

The convolutional autoencoder uses a sequence of 3 64× (6× 6) (for slightly increased performance
over 5×5 filters) convolutions with 2×2 max-pooling layers for the encoding, and 3 full convolutions
(of the same sizes) and a 2× 2 nearest neighbor upsampler for the deconvolution.

The embeddings created by AIR, DRAW, or CAE are fed through a 4-layer network (each with 512
units) to produce the 19-way prediction of the sum or a 2-way prediction of the order.

F DRAW Comparisons

We compare AIR and DAIR to a state of the art DRAW network with 40 drawing steps with 4 latent
units per time step, 400 LSTM hidden units, spatial transformer [6] attention module, and single
read and write heads of size 16 × 16. We report free energy on two test sets: a test dataset with
0, 1 or 2 digits, and another with images with precisely 3 digits. The likelihood model was in all
cases Gaussian with fixed standard deviation of 0.3. DRAW outperforms AIR and DAIR on the
0/1/2 dataset; this is likely due to the fact that DRAW uses many more drawing steps (40) than AIR
and thus has an excellent statistical model of single digits. DRAW however does not conceptually
understand them as distinct units, as evidenced by its poor generalization on the 3-digits dataset,
where DAIR has both better score, and more meaningful reconstruction: DAIR partially generalizes
to a number of digit never seen (Fig. 4), while DRAW interestingly learns to perfectly ignore exactly
one digit in the image (see Fig. 4). More generally, the VAE subroutine present in AIR could be
replaced by a DRAW network, thus leading to a ‘best of both worlds’ model with excellent single
digit model and understanding of a scene in terms of its constituent parts.

G Omniglot Experiments

We also investigate the behavior of AIR on the Omniglot dataset [13] which contains 1623 different
handwritten characters from 50 different alphabets. Each of the 1623 characters was drawn online via
Amazon’s Mechanical Turk by 20 people. This means that the data was produced according a process
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(a)

(b)

(c)

Figure 10: Sprites overview: (a) Images from the dataset. (b) AIR reconstructions. We visualize the
model’s attention at every time-step (inferred object boundaries) in white. (c) A selection of samples
from the learned model.
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Figure 11: Sprites quantitative results: Left: Variational lower bound over the course of training.
Right: Sprite count accuracy.

(pen strokes) that is not directly reflected in the structure of our generative model. It is therefore
interesting to examine the outcome of learning under mis-specification. We train the model from the
previous section, this time allowing for a maximum of up to 4 inference time-steps per image. Fig. 9
shows that by using different numbers of time-steps to describe characters of varying complexity,
AIR discovers a representation consisting of spatially coherent elements resembling strokes, despite
not exploiting stroke labels in the data or building in the physics of strokes, in contrast with [13].
Further results can be found in the supplementary video.

H Sprites Experiments

We also consider a 50×50 dataset of sprites: red circles, green squares and blue diamonds. Each
image in the dataset contains zero, one or two sprites (see Fig. 10a). The images are composed
additively (sprites do not occlude each other). We use the exact same model structure as for the
multi-MNIST dataset.

At the end of unsupervised training, AIR successfully learns about the underlying causes of the
scenes (namely, the sprites), as well as their counts and locations, and also produces convincing
reconstructions (see Fig. 10b). Note that the inference network correctly detects the correct number
of sprites even when two overlapping sprites of the same type and color appear in the same image
(Fig. 10a,b, images 1 and 3). Also note that the reconstructions are accurate, meaning that the
inference network successfully produces the codes for each sprite despite the presence of the other
sprites in its field of view. Fig. 10c displays a collection of samples from the model after training. We
display quantitative evaluation of the network’s counting accuracy in Fig. 11, reconstructions over
the course of learning in Fig. 12, and a visualization of its scanning policy in Fig. 13.

Note that these tasks can only be successfully achieved once the inference network has learned a
sensible policy for scanning the image, e.g., one in which every object is attended to only once.
However the network must break multiple symmetries to achieve this, e.g., it does not matter which
object it explains first. In Fig. 13 we visualize the learned scanning policy for 3 different runs of
training (only differing in the random seed). In each case a unique policy is learned, and the policy
appears to be spatial (as opposed to one that is based on digit identity or size).

13



D
at

a
0

1k
10

k
20

0k

Figure 12: Sprites learning: Top: Images from the dataset. Bottom: Reconstructions at different
points during training. A video of this sequence is included in the supplementary material.

Figure 13: Sprites scanning policies: Empirical heatmaps of where the attention windows go to
(red, and green for the first and second time-steps respectively). As expected, the policy is random.
Each figure is for a different inference network that has been trained from scratch using a different
seed. This suggests that the policy is spatial, as opposed to identity- or size-based.

I Details of 3D Scene Experiments

The experiments in section 3.2 were performed using the rendering capabilities of the MuJoCo
physics simulator [26].

I.1 Gradient estimation

Differentiation of MuJoCo’s graphics engine was performed using forward finite-differencing (with a
constant ε = 10−4) with respect to the scene configuration. This is a generic procedure which would
work for any graphics engine; we chose MuJoCo because it is fast (using only the fixed functionality
of OpenGL) and because scenes are conveniently parameterized. Interestingly, despite the coarse
8-bit output of OpenGL, quantization errors appeared to average out reasonably well over the pixels.

I.2 Scene generation

Single object scenes: For the results shown in Fig. 6 we created a scene that contained a MuJoCo
box geom representing the table, 3 ‘objects’ (also in the form of MuJoCo geoms; cube, sphere,
textured cylinder), and a fixed camera. The objects could be moved in the plane of the table and
rotated along the axis orthogonal to it (i.e. 3 degrees of freedom per object). We created random
scenes containing at most one object by randomly sampling position, rotation angle, object presence
(visibility) and object type. (Geoms were made invisible by moving them out of the field of view of
the camera.) An illustration is shown in Fig. 14.

Tabletop scenes: For the results shown in Fig. 6 and 7 we used scenes with a box geom for the
table, and nine mesh geoms for the crockery items. The cup, pan, and plate were each replicated three
times to allow for arbitrary three-objects scenes. Each geom had three degrees of freedom (position
in the table plane and rotation). Random scenes with up to N = 3 objects were created by uniformly
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Figure 14: Left: Illustration of the setup for single-object scenes similar to Fig. 7 in the main text.
The illustration shows the fixed camera, the ground truth object (textured cylinder), and an example
inference (transparent red). Right: Rendering from camera as fed into the inference network (before
downsampling).

sampling position, rotation angle, object presence, and object type three times. As for the single
objects were rendered invisible by moving them outside of the field of view of the camera.

We experimented with two versions of the scene: one with a fixed camera, and one version where
the camera could be moved in an orbit around the table (i.e. one degree of freedom). We discuss the
experiment with the fixed camera in the main text. For the latter set of scenes, the camera position
was also chosen randomly and the image was rendered from the random camera position. Camera
movement was restricted to ± 40 degrees from the central position. In this experiment the model had
to learn to infer the camera position in addition to the objects on the table. The montage in Fig. 7
in the main text shows a ground truth scene (with camera) and the inferred identities and positions
of the objects as well as the inferred position of the camera. We show several examples of random
scenes with variable camera and the associated inferences in Fig. 15. For the most part the network
infers all scene parameters reliably.

Image preprocessing: We rendered all scene images at 128× 128 pixels. We down-sampled scene
images to 32 × 32 pixels for input to the network.

I.3 Model

We trained a network to perform inference in the following fixed generative model:

p(x, z1:Npres , z
1:N
where, z

1:N
what) = (6)

p(x|z1:Npres , z
1:N
where, z

1:N
what)

N∏
i=1

p(zipres)p(z
i
what)p(z

i
where),

where zipres is the visibility indicator: zipres ∼ Bernoulli(α) for object i; zwhere ∈ R3 indicates position
and rotation angle: ziwhere ∼ N (0,Σwhere); and ziwhat is a three-valued discrete variable indicating the
object type (mesh / geom type): ziwhat ∼ Discrete(β).

The marginal distribution over scenes under this model is the same as the marginal distribution
under a model of form described in Section 2 in the main text where p(n) = Binomial(N,α) and
n =

∑N
i=1 zi.

For the variable camera scenes the model included an additional random variable zcam ∈ R where
zcam ∼ N (0, σ2

cam).

To evaluate the likelihood term p(x|z) we (1) render the scene description using the MuJoCo rendering
engine to produce a high-resolution image y; (2) blur the resulting image y as well as x using a
fixed-with blur kernel; (3) compute N (x|y, Iσ2

x).
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Figure 15: 3D scenes with variable camera: AIR results for inferring the camera angle of the scene,
as well as the counts, identities and poses of multiple objects in a 3D table-top scene similar to the
results presented in Section 3.2 in the main text but with the additional complication of an unknown
camera angle. (a) Images from the dataset. (b) Reconstruction of the scene description inferred by
our AIR network. Note that due to the down-sampling of the images that were used as input to the
inference network and the blurring in the likelihood computation accurate estimation of the rotation
angle is essentially impossible.

I.4 Network

The AIR inference network for our experiments is a standard recurrent network (no LSTM) that is
run for a fixed number of steps (N = 1 or N = 3). In each step the network computes:

(ωipres, ω
i
what, ω

i
where,h

i) = R(x, zi−1pres , z
i−1
what, z

i−1
where,h

i−1),

where the ωi represent the parameters of the sampling distributions for the random variables: Bernoulli
for zpres; Discrete for zwhat; and Gaussian for zwhere. For the experiments with random camera angle
we use a separate network that computes ωcam = F (x) and we provide the sampled camera angle as
additional input to R at each time step.

I.5 Supervised learning

For the baselines trained in a supervised manner we use the ground truth scene variables
z1:Npres , z

1:N
where, z

1:N
what that underly the training scene images as labels and train a network of the same

form as the inference network to maximize the conditional log likelihood of the ground truth scene
variables given the image.
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J Inference Speed

For the MNIST experiments, upon completion of training each inference step takes 5.6 milliseconds
on average to execute on an Nvidia Quadro K4000 GPU (a step corresponds to inference of state
for a single object), in other words up to around 17 milliseconds per image for images of 3 digits.
Therefore running at around 59 frames per second, inference is significantly faster than real-time.

For 3D scenes, the equivalent numbers are around 2.3 milliseconds per step and 8 milliseconds per
image (due to absence of spatial transformers) on a CPU. Gradient-based optimization is slower,
taking 5 milliseconds per gradient step per object, and tens or hundreds of steps per image, depending
on the choice of optimizer.

Training for the MNIST model converges in around 2 days, and in around 3 days for the 3D scenes.

17


	1 Introduction
	2 Approach
	2.1 Inference
	2.2 Learning

	3 Models and Experiments
	3.1 Multi-MNIST
	3.1.1 Strong Generalization
	3.1.2 Representational Power

	3.2 3D Scenes

	4 Related Work
	5 Discussion
	A Stochastic Gradient Estimators
	A.1 Reparameterization trick
	A.2 Likelihood ratio estimator

	B Prior for Unary Encoding
	C Details of 2D Experiments
	D Details of the DAIR Network
	E Details of AIR vs. CNN vs. CAE vs. DRAW Experiments
	F DRAW Comparisons
	G Omniglot Experiments
	H Sprites Experiments
	I Details of 3D Scene Experiments
	I.1 Gradient estimation
	I.2 Scene generation
	I.3 Model
	I.4 Network
	I.5 Supervised learning

	J Inference Speed

