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Abstract. We present a new learning algorithm for Mean Field Boltz-
mann Machines based on the contrastive divergence optimization crite-
rion. In addition to minimizing the divergence between the data dis-
tribution and the equilibrium distribution, we mazimize the divergence
between one-step reconstructions of the data and the equilibrium distri-
bution. This eliminates the need to estimate equilibrium statistics, so we
do not need to approximate the multimodal probability distribution of
the free network with the unimodal mean field distribution. We test the
learning algorithm on the classification of digits.

1 Introduction

A network of symmetrically-coupled binary (0/1) threshold units has a simple
quadratic energy function that governs its dynamic behavior [4].

E(v,h) = —(%VTVV + %hTWh +v'Jh) (1)
where v represent visible units whose states are fixed by the data {d;.n}, h
represent hidden units, and where we have added one unit with value always 1,
whose weights to all other units represent the biases. The energy function can
be viewed as an indirect way of defining a probability distribution over all the
binary configurations of the network [2] and if the right stochastic updating rule
is used, the dynamics eventually produces samples from this Boltzmann distri-
bution, P(v,h) = e~¥(V:?) /7 where Z denotes the normalization constant or
partition function. This “Boltzmann machine” (BM) has a simple learning rule
[2] which minimizes the Kullback-Leibler divergence between the data distribu-
tion Py(v,h) = P(h|v)Py(v) (where Py(v) is the empirical data distribution)
and the equilibrium distribution Pyq(v,h).

SW o (hhT)g — (hh')., 6V o (vvT)o = (vvT)py 63 o< (vhT)g — (vhT),,

(2)
This learning rule is both simple and local, but the settling time required to get
samples from the right distribution and the high noise in the estimates of the
correlations make learning slow and unreliable.



To improve the efficiency of the BM learning algorithm Peterson and An-
derson [6] introduced the mean field (MF) approximation which replaces the
averages in eqn. 2 with averages over factorized distributions.

hhT 0 - = Z o, an n (VVT>EQ — I'EQI{Q (hhT>EQ — QEqu;Q (3)

where the parameters qg , req and qgq are computed through the mean field
equations,

Qo,n = O (WQOm + JTdn) I'nq =0 (VrEQ + JqEQ) Qrq = O (WqEQ + JTrEQ)
(4)
and o denotes the sigmoid function. These learning rules perform gradient de-
scent on the cost funtion
FM' = g™ — Foy with PG = (E)g — H(Q) (5)
where Q =[], ¢;"(1 — ¢;)* ** is a factorized MF distribution, E is the energy in
eqn. 1 and H denotes the entropy of Q.

The main drawback of training BMs using MF distributions is that we are
approximating distributions which are potentially highly multimodal with a uni-
modal factorized distribution. This is especially dangerous in the negative phase
where no units are clamped to data and the equilibrium distribution is expected
to have many modes.

2 Contrastive Divergence Learning

Contrastive Divergence (CD) learning was introduced in [1], to train“Products
of Experts” models from data. We start by recalling that the KL-divergence
between the data distribution and the model distribution can be written as a
difference between two free energies,

KL[Py (V)| Pea (v)] = KLIPy (v, )[| Pog (v, h)] = Fy — Foq 20 (6)

To get samples from the equilibrium distribution we imagine running a Markov
chain, first sampling the hidden units with the data clamped to the visible units,
then fixing the hidden units and sampling the visible units and so on until we
eventually reach equilibrium. It is not hard to show that at every step of Gibbs
sampling the free energy decreases on average, Fy > F; > Fgq. It must therefore
be true that if the free energy hasn’t changed after i steps of Gibbs sampling (for
any 1), either Py = Pyq or the Markov chain does not mix (which must therefore
be avoided). The above suggests that we could use the following contrastive free
energy (setting i = 1),

CD = Fy — Fy = KL [Py(v, h)||Peq (v, h)] — KL [Py (v, h)|| Peq(v,h)] > 0 (7)

as an objective to minimize. The big advantage is that we do not have to wait
for the chain to reach equilibrium. Learning proceeds by taking derivatives with



respect to the parameters and performing gradient descent on CD. The derivative

is given by,
oCD _ /OE\ _ [OE\ _OF 0P -
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with 8§ = {V, W,J}. The last term is hard to evaluate, but small compared with
the other two. Hinton [1] shows that this awkward term can be safely ignored.
For the BM, this results in the following learning rules,

oW (hhT)o — (hhT>1 0V x (va>0 — (va)1 0J <VhT>0 — (th)1 9)

Intuitively, these update rules decrease any systematic tendency of the one-step
reconstructions to move away from the data-vectors.

Although some progress has been been made, this algorithm still needs equi-
librium samples from the conditional distribution P(h|v) . Unfortunately, this
implies that in the presence of lateral connections among hidden units further
approximations remain desirable.

3 Contrastive Divergence Mean Field Learning

In this section we formulate the deterministic mean field variant of the con-
trastive divergence learning objective. First, let’s assume that the MF equations
minimize the MF free energy F§y* = (E)q — H(Q). Imagine N independent sys-
tems where data-vectors d,, are clamped to the visible units and MF equations
are run to solve for the means of the hidden units qg . The sum of the resultant
MF free energies is denoted with Fy"" = 3 Fg% . Next, we fix the means of
the hidden units, initialize the means of the visible units at the data and take
a few steps downhill on the MF free energy. For convenience we will assume
that a few iterations of the MF equations achieves this?> but alternative descent
methods are certainly allowed. Finally, we fix these reconstructions of the data
ri n, initialize the means of the hidden units at qo , and run the MF equations
to compute qq . Call the sum of the resultant free energies F{** = > FMb.
Summarizing the above with equations we have

qo,n — U(WqOm‘I’JTdn) —Tipn = U(Vrl,n‘l"]qo,n) —d1,n = U(Wq1,n+JTr1,n)

(10)
The last argument in the sigmoid is fixed and acts as a bias term. By the as-
sumption that the MF equations minimize the MF free energy, we may interpret
the above procedure as coordinate descent on the MF free energy in the variables
{q,r}. When this coordinate descent procedure is performed until convergence,
each chain, initialized at a particular data-vector, ends up in some local mini-
mum. The sum of the resultant free energies will be called F3" = > F3.F,. The

! However, when initialized at the data, brief sampling from P(v|h) is sufficient.
2 By running the MF equations sequentially, or by damping them sufficiently this can
easily be achieved.



global minimum is denoted as Fig . It is now easy to verify that the following
inequalities must hold.

F)™ > FM° > FY* > N Fy, (11)

By analogy with the stochastic contrastive divergence objective we now propose
the following 1-step MF contrastive divergence (CDYF) objective,

CD™ = Fy* — F}* = KL[Qo (v, b)|| Pac (v, b)] — KL[Q:1 (v, b)][ Pacq (v, )] > 0
(12)
where Qo(v,h) = Py(v)Qo(h|v) and Q; is the MF distribution after one step of
coordinate descent in the variables {q,r}. Due to the inequalities in eqn. 11 this
objective is always positive. Notice that the only difference with the usual MF
objective (eqn. 5) is the fact that we have replaced Qq with @)1. The above cost-
function is minimized when the distribution of reconstructions @1 ~ {ri »,d1,n}
after one step of MF coordinate descent does not show any average tendency to
drift away from the data distribution Qg ~ {d,, do »}. One could envision balls
initialized at the data which roll down towards their respective local minima in
the MF free energy surface over a distance Fdt. When the shape of the surface is
such that the outer products of all forces F (instead of distances to the minima)
cancel, learning stops.
To compute the update rules we take the derivatives of the CD™" objective
with respect to the weights,

oCcD™ < 6E> < 8E> OF™F 00, (13)
00 98 / o, 98 /o, Q. 06

where § = {V, W, J}. The last term represents the effect that the parameters
{q1,n,r1,,} will have different values when we change the shape of the surface
on which we perform coordinate descent to compute them. This term vanishes
for the usual MF objective since in that case we have OF™" /0Q» = 0. Although
this term is awkward to compute, it turns out to be much smaller than the other
two in eqn. 13 and can be safely ignored. In section 4 we show experimental

evidence to support this claim. Thus, the following update rules can be derived
to minimize the CD™" objective eqn. 12,

OW Z (qO,nq%:n - ql,nq{n) 0V x Z (dndg — I‘17nl‘{n)

0J o< Z (dnqg,n — anq{n) (14)

The main advantage of the above learning algorithm is that it only runs MF
equations (until convergence) over the hidden units conditioned on data-vectors
or one-step reconstructions of these data-vectors®. Most importantly, MF equa-
tions on the highly multimodal energy surface of the free network are entirely
avoided.

% In fact, for the qi,, a few steps downhill on the MF free energy is sufficient.
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Fig.1. (a,b)-Two examples of the weights from one hidden unit to all visible units
(features) which can be interpreted as thinning (a) and shifting (b) operators. (c)-
Visible-to-visible weights for one unit. (d)-ZCA-whitening filter for the same unit as
in (c), providing evidence that the visible weights decorrelate the data. (e,f)-Two data
vectors. (g,h)-One-step reconstructions of (e,f) by the two-model. (i,j)-Local minima

of the two-model corresponding to (e,f). Note that the “8” is being reconstructed as a
“277 .

4 Experiments

In the experiments described below we have used 16 x 16 real valued digits
from the “br” set on the CEDAR cdrom # 1. There are 11000 digits available
equally divided into 10 classes. The first 7000 were used for training, while we
cycled through the last 4000, using 3000 as a validation set and testing on the
remaining 1000 digits. The final test-error was averaged over the 4 test-runs. All
digit-images were separately scaled (linearly) between 0 and 1, before presen-
tation to the algorithm. Separate models were trained for each digit, using 700
training examples. Each model was a fully connected MF-BM with 50 hidden
units. A total of 2000 updates were performed on mini-batches of 100 data-
vectors using a small weight-decay term and a momentum term. When training
was completed, we computed the free energy Fjy'™" for all data on all models
(including validation and test data). Since it is very hard to compute the term
F3y', we fit a multinomial logistic regression model to the training data plus the
validation data, using the 10 free energies Fj'™™ for each model as “features”. The
prediction of this logistic regression model on the test data is finally compared
with ground truth, from which a confusion matrix is calculated (figure 2-a). The
total averaged classification error is 2.5% on this data set, which is a signif-
icant improvement over simple classifiers such as a l-nearest-neighbor (5.5%)
and multinomial logistic regression (6.4%). By comparison, a (stochastic) RBM
with 50 and 100 hidden units, trained and tested using the same procedure, score
3.1% and 2.4% misclassification respectively. Figures 1 and 2 show some further
results for this experiment (see figure captions for explanation).

5 Discussion

In this paper we have shown that efficient contrastive divergence learning can be
used for BMs with lateral connections by replacing expensive Gibbs sampling
with MF equations. During learning the negative phase is replaced with a “one-
step-reconstruction” phase, for which the unimodal mean field approximation is
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Fig. 2. (a)-Confusion matrix for the digit classification task. (b)-Contrastive MF free
energy (computed every 20 iterations). (c)-Change in contrastive MF free energy. Note
that this change is always negative supporting our claim that the ignored term in eqn.
13 is much smaller than the other two.

expected to be appropriate. Recently (see [7] in this volume) this algorithm has
been succesfully applied to the study of associative mental arithmetic.

The approach presented in this paper is straightforwardly extended to su-
pervised learning (see [5] for related work) but seems less successful on the digit
recognition task.

CD-learning is a very general method for training undirected graphical mod-
els from data. The ideas presented in this paper are easily modified to more
sophisticated deterministic approximations of the free energy like the TAP and
Bethe approximations. Also, both the stochastic and deterministic versions are
easily extended to discrete models with an arbitrary number of states per unit.
We have recently also applied CD-learning to models with continuous states,
where Hybrid Monte Carlo sampling was used to compute the one-step recon-
structions of the data [3].
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