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ien
e, Univ. of Toronto10 King's College Road, Toronto, M5S 3G5 Canada.fwelling,hintong�
s.toronto.eduAbstra
t. We present a new learning algorithm for Mean Field Boltz-mann Ma
hines based on the 
ontrastive divergen
e optimization 
rite-rion. In addition to minimizing the divergen
e between the data dis-tribution and the equilibrium distribution, we maximize the divergen
ebetween one-step re
onstru
tions of the data and the equilibrium distri-bution. This eliminates the need to estimate equilibrium statisti
s, so wedo not need to approximate the multimodal probability distribution ofthe free network with the unimodal mean �eld distribution. We test thelearning algorithm on the 
lassi�
ation of digits.1 Introdu
tionA network of symmetri
ally-
oupled binary (0/1) threshold units has a simplequadrati
 energy fun
tion that governs its dynami
 behavior [4℄.E(v;h) = �(12vTVv + 12hTWh+ vTJh) (1)where v represent visible units whose states are �xed by the data fd1:Ng, hrepresent hidden units, and where we have added one unit with value always 1,whose weights to all other units represent the biases. The energy fun
tion 
anbe viewed as an indire
t way of de�ning a probability distribution over all thebinary 
on�gurations of the network [2℄ and if the right sto
hasti
 updating ruleis used, the dynami
s eventually produ
es samples from this Boltzmann distri-bution, P (v;h) = e�E(v;h)=Z where Z denotes the normalization 
onstant orpartition fun
tion. This \Boltzmann ma
hine" (BM) has a simple learning rule[2℄ whi
h minimizes the Kullba
k-Leibler divergen
e between the data distribu-tion P0(v;h) = P (hjv) ~P0(v) (where ~P0(v) is the empiri
al data distribution)and the equilibrium distribution PEQ(v;h).ÆW / hhhT i0�hhhT iEQ ÆV / hvvT i0�hvvT iEQ ÆJ / hvhT i0�hvhT iEQ(2)This learning rule is both simple and lo
al, but the settling time required to getsamples from the right distribution and the high noise in the estimates of the
orrelations make learning slow and unreliable.



To improve the eÆ
ien
y of the BM learning algorithm Peterson and An-derson [6℄ introdu
ed the mean �eld (MF) approximation whi
h repla
es theaverages in eqn. 2 with averages over fa
torized distributions.hhhT i0 ! 1N NXn=1q0;nqT0;n hvvT iEQ ! rEQrTEQ hhhT iEQ ! qEQqTEQ (3)where the parameters q0;n, rEQ and qEQ are 
omputed through the mean �eldequations,q0;n = � �Wq0;n + JTdn� rEQ = � (VrEQ + JqEQ) qEQ = � �WqEQ + JT rEQ�(4)and � denotes the sigmoid fun
tion. These learning rules perform gradient de-s
ent on the 
ost funtionFMF = FMF0 � FMFEQ with FMFQ = hEiQ �H(Q) (5)where Q =Qi qsii (1� qi)1�si is a fa
torized MF distribution, E is the energy ineqn. 1 and H denotes the entropy of Q.The main drawba
k of training BMs using MF distributions is that we areapproximating distributions whi
h are potentially highly multimodal with a uni-modal fa
torized distribution. This is espe
ially dangerous in the negative phasewhere no units are 
lamped to data and the equilibrium distribution is expe
tedto have many modes.2 Contrastive Divergen
e LearningContrastive Divergen
e (CD) learning was introdu
ed in [1℄, to train\Produ
tsof Experts" models from data. We start by re
alling that the KL-divergen
ebetween the data distribution and the model distribution 
an be written as adi�eren
e between two free energies,KL[P0(v)jjPEQ(v)℄ = KL[P0(v;h)jjPEQ(v;h)℄ = F0 � FEQ � 0 (6)To get samples from the equilibrium distribution we imagine running a Markov
hain, �rst sampling the hidden units with the data 
lamped to the visible units,then �xing the hidden units and sampling the visible units and so on until weeventually rea
h equilibrium. It is not hard to show that at every step of Gibbssampling the free energy de
reases on average, F0 � Fi � FEQ. It must thereforebe true that if the free energy hasn't 
hanged after i steps of Gibbs sampling (forany i), either P0 = PEQ or the Markov 
hain does not mix (whi
h must thereforebe avoided). The above suggests that we 
ould use the following 
ontrastive freeenergy (setting i = 1),CD = F0 � F1 = KL [P0(v;h)jjPEQ(v;h)℄�KL [P1(v;h)jjPEQ(v;h)℄ � 0 (7)as an obje
tive to minimize. The big advantage is that we do not have to waitfor the 
hain to rea
h equilibrium. Learning pro
eeds by taking derivatives with



respe
t to the parameters and performing gradient des
ent on CD. The derivativeis given by, �CD�� = ��E�� �0 ���E�� �1 � �F1�P1 �P1�� (8)with � = fV;W;Jg. The last term is hard to evaluate, but small 
ompared withthe other two. Hinton [1℄ shows that this awkward term 
an be safely ignored.For the BM, this results in the following learning rules,ÆW / hhhT i0�hhhT i1 ÆV / hvvT i0�hvvT i1 ÆJ / hvhT i0�hvhT i1 (9)Intuitively, these update rules de
rease any systemati
 tenden
y of the one-stepre
onstru
tions to move away from the data-ve
tors.Although some progress has been been made, this algorithm still needs equi-librium samples from the 
onditional distribution P (hjv) 1. Unfortunately, thisimplies that in the presen
e of lateral 
onne
tions among hidden units furtherapproximations remain desirable.3 Contrastive Divergen
e Mean Field LearningIn this se
tion we formulate the deterministi
 mean �eld variant of the 
on-trastive divergen
e learning obje
tive. First, let's assume that the MF equationsminimize the MF free energy FMFQ = hEiQ�H(Q). Imagine N independent sys-tems where data-ve
tors dn are 
lamped to the visible units and MF equationsare run to solve for the means of the hidden units q0;n. The sum of the resultantMF free energies is denoted with FMF0 = Pn FMF0;n . Next, we �x the means ofthe hidden units, initialize the means of the visible units at the data and takea few steps downhill on the MF free energy. For 
onvenien
e we will assumethat a few iterations of the MF equations a
hieves this2 but alternative des
entmethods are 
ertainly allowed. Finally, we �x these re
onstru
tions of the datar1;n, initialize the means of the hidden units at q0;n and run the MF equationsto 
ompute q1;n. Call the sum of the resultant free energies FMF1 = Pn FMF1;n .Summarizing the above with equations we haveq0;n = �(Wq0;n+JTdn)! r1;n = �(Vr1;n+Jq0;n)! q1;n = �(Wq1;n+JT r1;n)(10)The last argument in the sigmoid is �xed and a
ts as a bias term. By the as-sumption that the MF equations minimize the MF free energy, we may interpretthe above pro
edure as 
oordinate des
ent on the MF free energy in the variablesfq; rg. When this 
oordinate des
ent pro
edure is performed until 
onvergen
e,ea
h 
hain, initialized at a parti
ular data-ve
tor, ends up in some lo
al mini-mum. The sum of the resultant free energies will be 
alled FMF1 =Pn FMF1;n. The1 However, when initialized at the data, brief sampling from P (vjh) is suÆ
ient.2 By running the MF equations sequentially, or by damping them suÆ
iently this 
aneasily be a
hieved.



global minimum is denoted as FMFEQ . It is now easy to verify that the followinginequalities must hold. FMF0 � FMF1 � FMF1 � N FEQ (11)By analogy with the sto
hasti
 
ontrastive divergen
e obje
tive we now proposethe following 1-step MF 
ontrastive divergen
e (CDMF) obje
tive,CDMF = FMF0 � FMF1 = KL[Q0(v;h)jjPEQ(v;h)℄ �KL[Q1(v;h)jjPEQ(v;h)℄ � 0(12)where Q0(v;h) = ~P0(v)Q0(hjv) and Q1 is the MF distribution after one step of
oordinate des
ent in the variables fq; rg. Due to the inequalities in eqn. 11 thisobje
tive is always positive. Noti
e that the only di�eren
e with the usual MFobje
tive (eqn. 5) is the fa
t that we have repla
ed QEQ with Q1. The above 
ost-fun
tion is minimized when the distribution of re
onstru
tions Q1 � fr1;n;q1;ngafter one step of MF 
oordinate des
ent does not show any average tenden
y todrift away from the data distribution Q0 � fdn;q0;ng. One 
ould envision ballsinitialized at the data whi
h roll down towards their respe
tive lo
al minima inthe MF free energy surfa
e over a distan
e FÆt. When the shape of the surfa
e issu
h that the outer produ
ts of all for
es F (instead of distan
es to the minima)
an
el, learning stops.To 
ompute the update rules we take the derivatives of the CDMF obje
tivewith respe
t to the weights,�CDMF�� = ��E�� �Q0 ���E�� �Q1 � �FMF�Q1 �Q1�� (13)where � = fV;W;Jg. The last term represents the e�e
t that the parametersfq1;n; r1;ng will have di�erent values when we 
hange the shape of the surfa
eon whi
h we perform 
oordinate des
ent to 
ompute them. This term vanishesfor the usual MF obje
tive sin
e in that 
ase we have �FMF=�Q1 = 0. Althoughthis term is awkward to 
ompute, it turns out to be mu
h smaller than the othertwo in eqn. 13 and 
an be safely ignored. In se
tion 4 we show experimentaleviden
e to support this 
laim. Thus, the following update rules 
an be derivedto minimize the CDMF obje
tive eqn. 12,ÆW /Xn �q0;nqT0;n � q1;nqT1;n� ÆV /Xn �dndTn � r1;nrT1;n�ÆJ /Xn �dnqT0;n � r1;nqT1;n� (14)The main advantage of the above learning algorithm is that it only runs MFequations (until 
onvergen
e) over the hidden units 
onditioned on data-ve
torsor one-step re
onstru
tions of these data-ve
tors3. Most importantly, MF equa-tions on the highly multimodal energy surfa
e of the free network are entirelyavoided.3 In fa
t, for the q1;n a few steps downhill on the MF free energy is suÆ
ient.



a 
 e g ib d f h jFig. 1. (a,b)-Two examples of the weights from one hidden unit to all visible units(features) whi
h 
an be interpreted as thinning (a) and shifting (b) operators. (
)-Visible-to-visible weights for one unit. (d)-ZCA-whitening �lter for the same unit asin (
), providing eviden
e that the visible weights de
orrelate the data. (e,f)-Two datave
tors. (g,h)-One-step re
onstru
tions of (e,f) by the two-model. (i,j)-Lo
al minimaof the two-model 
orresponding to (e,f). Note that the \8" is being re
onstru
ted as a\2".4 ExperimentsIn the experiments des
ribed below we have used 16 � 16 real valued digitsfrom the \br" set on the CEDAR 
drom # 1. There are 11000 digits availableequally divided into 10 
lasses. The �rst 7000 were used for training, while we
y
led through the last 4000, using 3000 as a validation set and testing on theremaining 1000 digits. The �nal test-error was averaged over the 4 test-runs. Alldigit-images were separately s
aled (linearly) between 0 and 1, before presen-tation to the algorithm. Separate models were trained for ea
h digit, using 700training examples. Ea
h model was a fully 
onne
ted MF-BM with 50 hiddenunits. A total of 2000 updates were performed on mini-bat
hes of 100 data-ve
tors using a small weight-de
ay term and a momentum term. When trainingwas 
ompleted, we 
omputed the free energy FMF0 for all data on all models(in
luding validation and test data). Sin
e it is very hard to 
ompute the termFMFEQ , we �t a multinomial logisti
 regression model to the training data plus thevalidation data, using the 10 free energies FMF0 for ea
h model as \features". Thepredi
tion of this logisti
 regression model on the test data is �nally 
omparedwith ground truth, from whi
h a 
onfusion matrix is 
al
ulated (�gure 2-a). Thetotal averaged 
lassi�
ation error is 2:5% on this data set, whi
h is a signif-i
ant improvement over simple 
lassi�ers su
h as a 1-nearest-neighbor (5:5%)and multinomial logisti
 regression (6:4%). By 
omparison, a (sto
hasti
) RBMwith 50 and 100 hidden units, trained and tested using the same pro
edure, s
ore3:1% and 2:4% mis
lassi�
ation respe
tively. Figures 1 and 2 show some furtherresults for this experiment (see �gure 
aptions for explanation).5 Dis
ussionIn this paper we have shown that eÆ
ient 
ontrastive divergen
e learning 
an beused for BMs with lateral 
onne
tions by repla
ing expensive Gibbs samplingwith MF equations. During learning the negative phase is repla
ed with a \one-step-re
onstru
tion" phase, for whi
h the unimodal mean �eld approximation is
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Fig. 2. (a)-Confusion matrix for the digit 
lassi�
ation task. (b)-Contrastive MF freeenergy (
omputed every 20 iterations). (
)-Change in 
ontrastive MF free energy. Notethat this 
hange is always negative supporting our 
laim that the ignored term in eqn.13 is mu
h smaller than the other two.expe
ted to be appropriate. Re
ently (see [7℄ in this volume) this algorithm hasbeen su

esfully applied to the study of asso
iative mental arithmeti
.The approa
h presented in this paper is straightforwardly extended to su-pervised learning (see [5℄ for related work) but seems less su

essful on the digitre
ognition task.CD-learning is a very general method for training undire
ted graphi
al mod-els from data. The ideas presented in this paper are easily modi�ed to moresophisti
ated deterministi
 approximations of the free energy like the TAP andBethe approximations. Also, both the sto
hasti
 and deterministi
 versions areeasily extended to dis
rete models with an arbitrary number of states per unit.We have re
ently also applied CD-learning to models with 
ontinuous states,where Hybrid Monte Carlo sampling was used to 
ompute the one-step re
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