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ABSTRACT

Deformable models are an attractive way for characterizing handwritten digits since they have

relatively few parameters, are able to capture many topological variations, and incorporate much

prior knowledge. We have described a system [8] that uses learned digit models consisting of

splines whose shape is governed by a small number of control points. Images can be classi�ed

by separately �tting each digit model to the image, and using a simple neural network to decide

which model �ts best. We use an elastic matching algorithm to minimize an energy function

that includes both the deformation energy of the digit model and the log probability that the

model would generate the inked pixels in the image. The use of multiple models for each digit

can characterize the population of handwritten digits better. We show how multiple models

may be used without increasing the time required for elastic matching.

1 Introduction

The goal of achieving close to human performance in recognizing hand printed digits

remains elusive. A major reason for this failure has been the inability to successfully
characterize the wide diversity inherent in handwritten digits, resulting from factors

such as regional styles, di�ering writing instruments and psycho-motoric e�ects [11].

One way to categorize the range of model-based approaches to handling this diversity
is to consider the complexity of the procedure used to match model to data (�gure 1).

Generally as the complexity of the matching increases, the number of models needed
decreases. At one end of the spectrum one could imagine a system that stores a large

number of di�erent instances of each digit and performs pure templatematches to �nd the
digit instance closest to the image. Unless the images are accurately normalized before

matching, this involves a huge number of matches. This number can be signi�cantly
reduced by considering a�ne transformations of digit instances. A recognizer [10] trained

to be tolerant to small a�ne tranformations of the input image had better generalization

compared to one that had no explicit knowledge about a�ne transformations. At the
other end of the spectrum are elastic deformable matches [3, 12] which attempt to capture

all variations with a single model, but using a much more complex matching scheme.

We have described an elastic model [8], based on splines and containing just a few pa-

rameters which manages to capture many of the variations of a given digit. Each elastic
model contains parameters that de�ne an ideal shape and a deformation energy for depar-

tures from this ideal. A�ne transformations are not counted as deformations since they
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Figure 1: A spectrum of approaches to handling diversity in handwritten character recognition.

Moving from left to right across the spectrum, matching complexity increases, while the number

of matches decreases.

preserve shape. Our original description used a single model for each digit-class. While
being able to capture many variations, it had di�culty characterizing very unusual digit

styles. After briey reviewing this model, we describe a simple extension involving more
than one model per digit-class but with very little additional computational overhead.

We believe that this allows us to better characterize the variations in the instances of
each digit while not increasing the matching complexity.

2 Elastic models

Each digit is modelled by a deformable spline whose shape is determined by the positions

of at most 8 control points.1 Every point on the spline is a weighted average of four
control points, with the weighting coe�cients changing smoothly as we move along the

spline. In computing the weighting coe�cients we use a cubic B-spline and treat the

�rst and last control points as if they were doubled. To generate an ideal example of a
digit we put the control points at their home locations. Deformations are incurred as

the control points move away from their home locations. The control points are assumed
to have independent, radial gaussian distributions about their home locations. So the

negative log probability of a deformation is proportional to the sum of the squares of the
departures of the control points from their home locations.

Using a spline it is easy to model topological variants of a digit. The loop of a 2, for

example, can smoothly turn into a cusp or an open bend. These variants are produced
by small changes in the relative locations of the relevant control points. This advantage

of spline models is pointed out by [7] who use a di�erent kind of spline that they �t to
on-line character data by directly locating candidate control points in the image.

The deformation energy function only penalizes shape deformations. Translation, rota-
tion, dilation, elongation, and shear do not change the shape of an object so we want

the deformation energy to be invariant under these a�ne transformations. We achieve
this by giving each model its own \object-based frame" and computing the deformation

energy relative to this frame. When we �t the model to data, we repeatedly recompute

the best a�ne transformation between the object-based frame and the image (see section
3). The repeated recomputation of the a�ne transform during the model �t means that

the shape of the digit is inuencing normalization. Having an explicit representation of
the a�ne transformation of each digit should prove very helpful for recognizing multiple

1Some digits can be adequately modelled with less control points, for example the one model needs
only 3 control points.



digits, since it will allow us to impose a penalty on di�erences in the a�ne transforma-
tions of neighbouring digits. Its use in isolated digit recognition is discussed in section

4.

Although we use our digit models for recognizing images, it helps to start by considering

how we would use them for generating images. The generative model is an elaboration of
the probabilistic interpretation of the elastic net given in [5]. To generate a noisy image

of a particular digit class, run the following procedure:

� Pick a deformation of the model (i.e. move the control points away from their home

locations). This de�nes the spline in object-based coordinates. The log probability of

picking a deformation is proportional to the sum of squares of the deformations.

� Pick an a�ne transformation2 from the model's intrinsic reference frame to the image

frame (i.e. pick a size, position, orientation, slant and elongation for the digit).

� Map the spline into image coordinates and space circular gaussian ink generators (beads)

uniformly along its length. The number of beads on the spline and their variance can

easily be changed without changing the spline itself.

� Repeat many times:

Either (with probability �n) add a randomly positioned noise pixel

Or pick a bead at random and generate an inked pixel from the gaussian

distribution de�ned by the bead.

3 Fitting a model to an image

When classifying an image, we �t each model to the data and choose the model that best
\explains" the image. Having selected a digit model, the �tting procedure can be viewed

as maximizing the probability of generating the image from a particular model m.

P (Ijm) =

Z
P (Ijm;�)P (�jm)d� (1)

where � is the vector of instantiation parameters for the model. We assume the integrand

in (1) has a strong peak around the best �tting model and so P (Ijm) can be approximated

by the integrand with best �tting instantiation parameters ��

:
3 Taking the negative log

of the approximate probability gives:

Em = � logP (��jm)� log P (Ij��

;m) + Const (2)

The �rst term in (2) is the log-likelihood of a particular deformation under the prior
that the control points come from a single multi-dimensional gaussian. We refer to

this term as the deformation energy, Edef and the second term as the data �t (Efit).

Using independent probabilities for each control point, Edef factorizes into the sum of
deformation energies for each separate control point. Similarly, by assuming that each

inked pixel in the image is generated independently from a distribution de�ned by the

2The one-model uses a similarity transform.
3Multiplied by some small volume �� which is incorporated into the constant in (2).



gaussian beads and a uniform noise �eld, the data �t term factorizes into a sum of log
probabilities of the inked pixels. The probability (Pi) of inking pixel i is:

Pi =
�n

N
+

1� �n

B

BX
b=1

Pib (3)

where N is the total number of pixels, B is the number of beads, �n is the mixing
proportion of a uniform noise �eld, and Pib is the probability of inking pixel i under

gaussian bead b.

The search for �� is performed using an iterative, continuation type method [1]. We start
with zero deformations and an initial guess for the a�ne parameters obtained by centering

the model over the image. A small number of gaussian beads of large variance are placed
along the spline. All beads have the same variance. The large variance beads form a

broad, smooth ridge along the spline allowing the model to quickly position itself close
to the data. The number of beads are gradually increased while their variance decreases

according to predetermined \annealing" schedule4. This �tting technique resembles the

elastic net algorithm of Durbin and Willshaw [6] except that our elastic energy function
is much more complex and we are also �tting an a�ne transformation.

Each iteration of the elastic matching algorithm involves three steps:

� Given the current locations of the gaussians, compute the responsibility that each

gaussian has for each inked pixel. This is just the probability of generating the
pixel from that gaussian, normalized by the total probability of generating the

pixel (Pib =
P

B

b=1
Pib).

� Assuming that the responsibilities remain �xed, as in the EM algorithm [4], we
invert a 16�16 matrix to �nd the image locations for the 8 control points at which

the forces pulling the control points towards their home locations are balanced by
the forces exerted on the control points by the inked pixels. The latter forces arise

via the pulls of the inked pixels on the beads.

� Given the new image locations of the control points, recompute the a�ne trans-
formation from the object-based frame to the image frame. We choose the a�ne

transformation that minimizes Edef .

Some stages in the �tting of a model to data are shown in Figure 2. The search technique
almost always avoids local minima when �tting models to isolated digits. If the image

is not clearly recognized, i.e. the image would be a candidate for rejection (see section
4), we try four other initial positions, translated right, above, left and below the original

one and choose the �t with the lowest Em.

4 Recognizing isolated digits

After �tting all the models to a particular image, we wish to evaluate which of the
models best \explains" the data. An obvious measure is the sum of Efit and Edef that

4Our current schedule starts with 8 beads increasing to 60 beads in 4 steps. The variance decreases
to about 1.5% of its initial value.



Figure 2: The sequence (a) to (d) shows some stages of �tting a model 3 to some data. The

circles represent the gaussian beads, with the radius representing the standard deviation. (a)

shows the initial con�guration, with eight beads equally spaced along the spline. In (b) and

(c) the variance is progressively decreased and the number of beads is increased. The �nal �t

using 60 beads is shown in (d). In this example, we used �n = 0:3 which makes it cheaper to

explain the extraneous noise pixels and the ourishes on the ends of the 3 as noise rather than

deforming the model to bring gaussian beads close to these pixels.

is minimized during the �tting process. However, performance is improved by including

four additional measures which are easily obtained from the �tted models.

The description of the generative model in section 3 is de�cient as a complete explanation

of the image as it does not explicitly penalize �ts where there are gaussian beads far from
any inked pixels, the \beads in white space" situation5. Snakes, [9] are spline contours

which are attracted to particular features in an image. Motivated by this concept, we

de�ned another energy term Ew to take into account beads in white space:

Ew = �
BX
b=1

log
NX
i=1

Pib (4)

A bead only makes a large contribution to this cost when all inked pixels are far from
the bead. It therefore has the e�ect of explicitly penalizing models which have beads in

white space. This energy term could be easily incorporated into the �tting procedure,
but in the present system we simply use it as an evaluated measure of the �nal �ts.

The �tting procedure does not penalize a�ne transformed images. After �tting a model,

there is an explicit representation of the a�ne for that digit-model. This information
should help classi�cation of an image. For example we may want to reject an explanation

that requires a model to be highly sheared or elongated. So the elongation, rotation and
shear of the a�ne are used as the remaining three measures for classi�cation.

IfM models are �tted to an image then the 6�M measures are used as input to a simple
post processing neural network. The network has 10 input vectors (one for each digit),

no hidden layers and uses a \softmax" output layer [2] with 10 output units. There are
no cross-connections between the input vectors and the output units. For example, there

5There is a small implicit penalty in that beads far from inked pixels are not available for accounting
for inked pixels. We have proposed a more elaborate generative model for both inked and non-inked
pixels [13].



are weights between the input vector from the four model and the 4 output unit, but not
to any other output unit. Including biases, the network has 70 weights and is trained

using conjugate gradient minimization to minimize a cross-entropy error function. After
training we classify an image according to which of the output units has the largest

activation. We reject classi�cations in which the maximum output activation is below
some threshold T .

5 Learning the models

Starting with hand crafted digit models we adjust the home control point locations so that
each model maximizes the likelihood of generating instances of that digit in a training

set. The maximization is performed iteratively using EM updates. This yields a simple

algorithm: the updated home location of each control point (in the object-based frame) is
the average location of that control point in the �nal �ts. Learning proceeds rapidly with

models learning their �nal con�gurations after only a few passes through the training set
(�gure 3), probably because we start o� with good models.
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Figure 3: The likelihood of the two-model at each pass through the training set. The model

has essentially completed its learning after the second pass through the training set.

An alternative to maximizing the likelihood of the image given the digit is to maximize

the mutual information between the correct digit class and the probabilities assigned
to the various classes by the digit models. The maximum mutual information criterion

emphasizes correct discrimination rather than correct modeling of the image data, and

it generally leads to better discriminative performance. Early experiments with both
methods gave similar results. However, maximum likelihood learning is much quicker

than discriminative learning as the latter requires �tting all models to each image.

6 Using a mixture of local models

Using spline models we can create good generators of digit images using only a small

number of parameters. Complete speci�cation of an instantiated model in the object
frame needs only the (x; y) locations of n control points. It can therefore be considered as

a point inR2n. The entire population of instances of a particular digit form a manifold in
this space. Up to this point we have assumed that a generative model based upon a single

hyperspherical gaussian can adequately model this distribution. For any deformation,



Edef can interpreted as a squared distance from the home locations of the generic model.
To improve discrimination, we would like the deformation energy to correspond to the

negative log probability density under a distribution that better represents the digit
instantiations.

Figure 4 demonstrates the situation in R2 and how we can get poor approximations.
For example, under a single gaussian approximation to the distribution, point A would

have higher probability than point B, which is clearly incorrect. One way of better
characterizing the distribution is to use a mixture of K gaussians:6

Pm(x) =
KX
i=1

�i

(2��2)n
expf�

kx� �ik2

2�2
g (5)

where �i is the mixing proportion for the ith local model in the mixture.

Figure 4: Illustrates how we might approximate some arbitary distribtion in R2, represented

by the shaded region, with a single gaussian of large variance. A better approximation would

be to use a mixture of gaussians each with a smaller variance. Under the single gaussian

approximation point A would be incorrectly considered to be more likely than point B

The centres (�) and common variance (�2) are computed using EM to maximize the log
likelihood of a training set under distribution (5). Figure 5 shows the 10 local models in

the mixture for the two-model. The mixture has been able to capture dominant styles.
For example, variations in the presence and size of the loop have been well represented.

One way to use this mixture is to �t each of the local models to an image. This has the
disadvantage of increasing the recognition time by a factor of K. Fortunately our generic

model nearly always �ts correctly. So an alternative strategy is to allow the generic model

to �t as before, but in place of evaluating Edef as the negative log probability under a
single gaussian, we compute it under the mixture distribution (5). This strategy is much

more e�cient since the most computation intensive portion, the �tting of the model to
the data, is done only once. Evaluating the distance of the �nal �t from each of the

local models in the distribution involves only computing 2n squared distances and so is
negligible compared to the amount of computation incurred in evaluating Efit.

6We have experimented with more complex variations such as, allowing each mixture component to
have its own adaptive variance, or kernel density estimation, but found no improvement in performance
over the more simple characterization.



Figure 5: Local models in the mixture for the 2 model. The generic model is shown in the

bottom right corner.

Figure 6 illustrates the added classi�cation power obtained using mixture of local models.

There is considerable overlap between the distributions of Edef for correct and incorrect
classi�cation when only a single generic model is used. The overlap has been diminished

and increased separation achieved with a mixture distribution. Figure 7 shows speci�c
examples where use of the mixture has been bene�cial. In the �t on the left, the model has

had to deform considerably from the generic model, yet it still lies within the expected
distribution of two's. It would correspond to point B in �gure 4. The right panel

illustrates a converse situation. In �tting to an image of an 8, the six model has not

deformed far from the generic model, but the deformation is most unusual. This is the
situation of point A in �gure 4.

There is another way in which the mixture of local models may be used. We would like
to retain the advantage of only having to �t a single model, but instead of keeping the

original generic model throughout the �t, we would like to modify the home locations of
the model during the �tting process to a digit instance. At various stages of the �t we

can recompute the mixing proportions of the local models and then create a new generic

model by choosing the single gaussian that best approximates the current mixture of
local models. One problem with this idea is that in some cases a wrong local model

dominates early in the �tting process and prevents the correct �t from being found.

7 Experimental results

The performance of the elastic net in recognizing isolated digits has been tested on
data from the CEDAR CDROM 1 database of Cities, States, ZIP Codes, Digits, and

Alphabetic Characters7. The br training set of binary segmented digits was subdivided
into 3 training sets of size 2000, 7000 and 2000 respectively. A validation set of 2000

7Made available by the Unites States Postal Service O�ce of Advanced Technology.
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Figure 6: The solid line is the Edef distribution of models when �tted to examples images

containing the correct digit (eg a three model �tted to an image of a 3). The dotted curve is

the Edef distribution of the models when �tted to incorrect data. (a) Using a single generic

model. (b) Using a mixture of local models. (Many instances of �tting to incorrect data in

panel (b) had very large Edef . For the sake of display all these were assigned the value 50,

accounting for the \spike" at the right edge of panel (b))

examples was also generated to tell us when to stop training the post-processing neural
net. The sets were constructed so as to ensure equal representation of all digits in each set.

The elastic models were trained (section 5) on the �rst set, the mixture of local models
on the second and the post processing net on the third set. The CEDAR database also

includes 2 test sets. The goodbs (2213 images) set is a subset of the bs (2711 images) set
containing only well segmented digits.

Validation goodbs bs

Set test set test set

Generic Model 97.5 97.2 95.0

Mixture of 98.2 97.5 95.3

local models

Table 1: Percentage of images correctly classi�ed by the elastic net

Table 1 shows the performance of the elastic net when the rejection threshold (section

4) was set to zero. Even though the di�erences between the generic and mixture of local
models are in the expected direction, they are not statistically signi�cant on testing sets

of this size.

Varying the rejection threshold in the post processing neural network allows us to trade

o� errors against rejects. Figure 8 shows error-rejection curves obtained on the validation
and test sets. Again notice that the curve with the mixture of local models consistently

lies below that of the single generic model for all data sets.



Figure 7: (a) The generic two-model (see bottom right in �gure 4) has had to deform signi�-

cantly in order to �t the data. Under the single gaussian approximation, Edef = �7:7. When

evaluated under the mixture of local models distribution is less, Edef = �16:7. (b) The six

model �tted to an image of an 8. The model has only a small deformation from the generic

model (Edef = �16:2), but the deformation does not lie close to the distribution of sixes in the

training set. Under the mixture distribution Edef = �1:45.
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Figure 8: Error-rejection relationships. The lower dashed curve uses the mixture of local

models while the upper solid curve uses a single generic model. (a) Validation set (b) goodbs

test set (c) bs test set.

8 Discussion

Our elastic spline models have a lot of prior knowledge about characters built in. This has
the advantage of needing only a small number of parameters to characterize the diversity

of handwritten digits. We have described a simple extension to better characterize the
distribution of handwritten digits without much additional computational e�ort. Our

preliminary experiments using this method indicate that it provides improved recognition
rates.
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