1967

Connectionist
~ Architectures for
Artificial Intelligence

Scott E. Fahlman and Geoffrey E. Hinton

Massively parallel
networks of simple
neuron-like processing
elements may hold the
key to some important
aspects of intelligence
not captured by
existing Al technology
on serial machines.

Carnegie-Mellon University

arrent Al technology can do a-
‘ good job of emulating many of

man’s higher mental functions,
but some of the most fundamental aspects
of human intelligence have proven more
elusive. Al can match the best human ex-
perts on certain narrow technical prob-
lems, but it cannot begin to approach the
comumon sense and sensory abilities of a
five-year-old child. Some important ingre-
dients of intelligence seem to be missing,
and our technology of symbolic represen-
tation and heuristic search, based on serial
computers, does not seem1o be closing the
gap. Among the missing elements are the
following:

» The human memory can store a huge
quantity and variety of knowledge, and
can find relevant items in this storehouse
very quickly and without apparent effort.
The phenomenon we call common sense is
complex, but it derives in part from the
ready availability of a large body of
assorted knowledge about the world. Our
serial machines can store large amounts of
information, but it is very hard to make
this knowledge an effective part of the
machine’s activities.

e In many domains, human recognition
abilities far exceed what our machines can
accomplish. Whether the domain is speech
recognition, vision, or some higher-level
task like medical diagnosis, the key opera-
tion seems to be an ability to locate, from
among all kniown candidates, the one that
best matches the sample to be identified.
We humans can do this even with noisy,
distorted input data and faulty expecta-
tions. For us, this is quick and secmingly
effortless.

0018-9162/87/0100-0100501.00 © 1987 IEEE

¢ In many cases, hurnans seem to han-
dle information in some form other than
the symbolic assertions of traditional Al
We can all recognize an elephant, but few
of us can describe its appearance sym-
bolically in an unambiguous way. We have
difficulty coming up with formal symbolic
descriptions for movements, shapes,
sounds, and spatial relationships, and yet
people work easily in all these domains. It
can be argued that we humans use internal
symbolic representations that we, cannot
access consciously, but it seems more
plausible that some. other kinds of
representations are in use.

The traditional Al approach to knowl-
edge and recognition problems is to use
ever more complex and clever strategies to
reduce the need for excessive search and
computation. An alternative is to solve
stich problems with a less complicated but
very cycle-intensive approach, using very
large numbers {millions) of very simple
processors to get the job done in a reason-
able time. For example, one approach o
interpreting visual input is to use clever
reasoning to restrict the areas in which a
computationally expensive edge-finder is
applied. The alternativeisto simply accept
the cost of doing high-quality edge finding
all over the image—even in places that will
turn out not to be critical to later stages of
interpretation.

A number of researchers have begun ¢x-
ploring the use of massively paralle] ar-
chitectures in an attempt to get around the

fimitations of conventional symbol pro-

cessing. Many of these paraliel architec-
tures are connectionist: The system’s col-
fection of permanent knowledge is stored

COMPUTER

T

THET

as a pattern of connections or connection
strengths among the processing elements,
so the knowledge directly determines how
the processing elements interact rather
than sitting passively in a memory, waiting
to be looked at by the CPU. Some connec-
tionist schemes use formal, symbolic
representations, while others use more
analog approaches. Some even develop
their own internal representations after
seeing examples of the patterns they are to
recognize or the relationships they are to
store.

Connectionism is somewhat controver-
sial in the Al community. It is new, still un-
proven in large-scale practical applica-
tions, and very different in style from the
traditional AI approach. We have only
begun to explore the behavior and poten-
tial of connectionist networks. In this arti-
cle, we describe some of the central issues
and ideas of connectionism, and also some
of the unsolved problems facing this ap-
proach. Part of the motivation for connec-
tionist research is the possible similarity in
function between connectionist networks
and the neural networks of the human cor-
tex, but we concentrate here on connec-
tionism’s potential as a practical technolo-
gy for building intelligent systems.

What is connectionism?

Jerry Feldman coined the term “‘con-
nectionism®’ to refer to the study of a cer-
taint ¢lass of massively parallel architectures
for artificial intelligence. A connectionist
system uses a large number of simple pro-
cessing elements or units, each connected
to some number of other units in the sys-
tem. The uniis have little information
stored internally, typically only a few
marker bits or a single scalar activity-level,
used as a sort of short-term working
memory. The long-term storage of infor-
mation is accomplished by altering the
pattern of interconnections among the
units, or by medifying a quantity called
the weight associated with each connec-
tion. This use of connections, rather than
memory <¢ells, as the principal means of

" storing information motivated the name
connectionism.

The parallel processing units in a con-
nectionist network do not follow individu-
-al programs. The units are capabie of only
a few simple actions such as accepting in-
coming signals, performing some Boolean
or arithmetic processing on the data, and
sending signals out over some or all of the

January 1987

connections. These operations may be
completely autonomous—part of a unit’s
built-in behavior—or they may be con-
trolled by commands broadcast by some
external controller, perhaps a serial com-
puter of the traditional kind.

- Since all of the connections can carry
signals simultaneously, and all of the pro-
cessing elements can act in parallel to in-
tegrate their arriving data, a connectionist
system can bring a large amount of knowi-
edge to bear simultaneously when making
a decision, and can weigh many choices at
once.

In some connectionist systems, the par-
allelism is used to implement a sort of si-
multaneous brute-force search through
units, each representing a single item in the
knowledge base. In other systems, the par-
allelism is used to aliow richer representa-
tions; the pattern of activity in a large

- group of units represents an item, and dif-

ferent items are represented by alternative
patterns of activity. Given some inputs and
an initial state of the network, one of these
patterns will emerge. Many connections,
representing many small pieces of knowl-
edge, will play a role simultaneously in
determining which alternative will win.
Whichever strategy is used, this ability to
bring a Iot of knowledge into the game at
once is @ major reason for the growing in-
terest in connectionism.

The interunit signals sent through the
connections are typically single-bit mark-
ers or continuous scalar vahies. Thus, we
speak of marker-passing or value-passing
parallelism. A unit can receive many of
these signals at once, each arriving over a
different connection. These multiple sig-
nals are combined upon receipt: Multiple
instances of the same marker bit aresimply
OR’ed into one, and multiple scalar values
are usually just combined into a weighted
sum as they arrive at the destination unit.
Systems that send more complex symbolic
messages from unit to unit, the so-cailed
message-passing parallel systems, are not
usually considered connectionist systems
because they require much more complex
processing units with a considerable
amount of storage for the messages.

An important difference between the
connectionist approach and the more con-
ventional ‘““modestly parallel” architec-
tures for Al is that the connectionists are
willing to assign.a processing element to
each tiny subtask (one element for every
item of knowledge in the system, for ex-

ample) and to postulate that there are

enough of these simple processing ele-
ments to handle the task at hand. The

more conventional approach assumes a
fixed number of larger processors (typical-
ly between 2 and 1024) and tries to find
ways of cutting the problem up into that
many pieces, all of which can be worked
on concurrently.

In a serial systemn, the time required to
sift through a finite set of itemns in memory
or to consider a finite set of hypothesesina
recognition task grows linearly with the
size of the set. The modestly parallel ap-
proach attempts to approach N-fold
speedup from N processors. The connec-
tionist thinks in terms of performing these
simple tasks in constant time, while the
amount of hardware grows linearly with
the number of memory items or the num-
ber of hypotheses to be considered at

once. This view may seem less radical if we .

think of a connectionist unit not asa CPU
but as a fancy kind of memory cell that
stores knowledge in its connectivity or
connection weights. We need enough of
these memory cells to hold the system’s
knowledge.

Many kinds of connectionist architec-
tures are being investigated by the small
but growing community of researchers in-
terested in this kind of parallelism. It is
hard to say much more about these sys-
tems as a class, and in an article of this
length it is impossible to mention all of the
connectionist research going on. We will
describe some of the key issues and ideas
that seem important to us, and mention
one or two pieces of work exemplifying
each of these key ideas.

Distributed
representations

The simplest way to represent thingsina

massively parallel network is to use local

representations, in which each concept or
feature is represented by a specific piece of
hardware. For example, when the system
wants to work with the concept of ‘“ele-
phant,”’ it turns on the elephant unit. This
kind of representation is easy to create and
easy to understand. Unfortunately, if the
elephant unit breaks, the system loses all
of the knowledge tied to it. This creates
some obvious reliability problems: In a
system with millions of processing ele-
ments, not all of them will be working all
the time. It also means that most of the
units will be idle most of the time.

Many neuroscientists believe that the
brain does not work this way, that instead
it uses some sort of distributed representa-

101

m

PRI T AT

) Living thing

Oxygen

Color of

® Eleph-an't O Gray

O
Clyde Bertha

Figure 1. A portion of a NETL semantic network. This fragment describes Clyde

the elephant and related information. (Source: Artificial Intelligence, Vol. 1, 1985.

Used by the courtesy of MIT Press, publisher.)

oI

"Elephant” N
nede- unit

"S au 1] ‘?
link unit - Switching
network

s

L)

“Clyde"
node unit

Shared bus

Serial
control _
computer

Figure 2. NETL hardware corresponding to <Clyde is an Elephant.”’ (Source:
Artificial Intelligence, Vol. 1; 1985. Used by the courtesy of MIT Press,’

~ 777~ publisher.)

102~

tion: A concept like ‘‘elephant’ is repre-,
sented not by a single néuron, but byapat-
tern of activation over a large number of
neurons. They often use the analogy of a
hologram, in which each point of the im-
age is constructed from information from
all over the film; if some part of the holo-
gram is destroyed, the total image is de-
graded slightly, but no part of the image is
completely lost. A distributed represen-
tation in a massively parallel network
(whether built from neurons or silicon)
would have a similar kind of reliability: If
a few of the units malfunction, the result-
ing pattern is imperfect but still usable.
Each macroscopically important behavior
of the network is implemented by many
different microscopic units, so any small
random subset can disappear without
changing the macroscopic description of
the network’s behavior.

This kind of inherent fanit-tolerance
has important implications for the con-
struction of large-scale parallel networks.
For example, wafer-scale integration be-
comes more feasible, since a few matfunc-
tioning units in the wafer would simply be
ignored. It is almost certainly easier to
build a billion-transistor system, in which
only 95 percent of the circuit elements
have to work, than to build a million-tran-
sistor system that has to be perfect. It can
also be shown ! that in many situationsitis
much more efficient, in terms of the num-
ber of units required, to represent 2 value
using a coarse-coded distributed scheme
than to assign a single unit to represent
each small interval in the range. In the
coarse-coded scheme, each unit is coarsely
tuned to cover a considerable range of
values, and a particular value is repre-
sented by activity in a number of overlap-
ping units. -—

The main disadvantage of distributed
representations is that they are hard foran
outside observer to understand or to
modify. To add a single new piece of
macroscopic knowledge to a network that

* uses distributed representations, it is

necessary to change the interactions be-
tween many microscopic units slightly so
that their joint effects implement the new
knowledge. For any problem of signifi-
cant size, it is nearly impossible to do this
by hand, so it follows thata network using
a distributed representation must employ
some sort ‘of automatic learning scheme.
In the absence of an automatic learning
procedure that works efficiently in large
networks, distributed representations are
generally too awkward to be of much
practical value.

COMPUTER

TITT

(1 | MR KL

'NETL: A connectionist
system for symbolic
knowledge

The NETL system?2 is an example of a
connectionist architecture that uses local
representations. It was designed to store
and access ‘2 large number of symbolic
assertions, and to perform certain simple
searches and deductions within this collec-
tion of knowledge. NETL is an implemen-
tation in hardware of a semantic network,
a graph-like data structure in which the
nodes represent noun-like concepts and
the links represent relationships between
these concepts. Such a network is illus-
trated in Figure 1; the NETL hardware
corresponding to a part of this network is
illustrated in Figure 2.

In the NETL system, each of the nodes
in the network is represented by a simple
processing unit, capable of storing a few
single-bit markers and of performing sim-
ple Boolean operations on the markers.
Each link is also a simple processing unit,
wired up to two or more node units. Link
units, too, can perform simpie Boolean
operations, which generally amount to
passing a specific marker from one of the
attached nodes to another. All of the
nodes and links in the network can per-
form these operations simultaneously in
response to commands broadcast by the
system controllet, a serial machine of the
familiar sort. .

Every time a new assertion is added to
the system, new nodes and links must be
wired into the network to represent that
assertion. Since all the node-to-link con-
nections must be capable of carrying sig-
nals simultaneously, they must be true
private-line connections and not just ad-
dresses sent over a shared party-line bus.
Of course, in a practical implementation,
these new connections would be estab-
lished in a switching system resembling a
telephone exchange and not by stringing
tiny wires from unit to unit.

A NETL network can perform searches
and simple inferences that go beyend what
can be done with a simple associative

- memory. For example, a very heavily used
operation in most Al knowledge-based
systems is inheritance: We want anything
we know about the typical elephant to ap-
ply to the subclasses and individuais below
elephant in the hierarchy of is-a links
(unless that inherited information is spe-

cifically canceled for some individual). Be-

cause of branching in theis-a hierarchy, an
individual node like clyde might inherit in-

January 1987

formation from a large number of superi-
or nodes, 5o we need some very fast way of
seanning a large part of the network.

In NETL, inheritance is handled by
marker propagation. If the problem is to
find the color of Clyde the elephant, the
controller sets marker 1 on the clyde node,
then repeatedly orders any is-a link with
marker 1 set on the node below it to pass it
on to the node above. When the network
settles, we have marker 1 on all of the
nodes representing superior classes from
which clyde is supposed to inherit proper-
ties. We then command every color-of link
with marker 1 on its tail to put marker 2 on
its nose. Finally, we ask every node
marked with marker 2 to report its identity
to the controiler. In this case, we get a
single winner, the gray node. In a few
cycles, we have followed a chain of in-
ference to locate this information, regard-
less of where in the network the color in-
formation may have been attached. (The
actual sequence of operations is slightly
more complex than this, due to the possi-
ble presence of exceptions in the network,
but the idea is the same.)

Because of its ability to do set intersec-
tions in parallel, NETL can handle recog-
nition tasks of a certain limited kind.
Suppose we are confronted with a gray
four-legged mammal and we want to
quickly locate any stored description that
exhibits the intersection of these features.
By marker-propagation from the feature
nodes, we can mark all of the gray things
with one marker, four-legged things witha
second marker, and mammals with a third.
Then we simply broadcast a command
that any unit with all of these markers
should queue up to report its identity to
the controller. The intersection step takes
only a small, constant time, regardless of
the size of the sets being intersected.

. This approach to recognition is very

_strong in some ways, but weak in others.

Onthe positive side, NETL examines all of
the descriptions in memory at once, not
depending on heuristics that might prema-
turely rule out the right answer. Any set of
observed features that is sufficient to select
one of the stored descriptions will suffice,
and if not enough features are present, the
systern will still narrow the set of possibili-
ties down as much as possible. When new
descriptions are added to the network, the
knowledge immediately becomes an effec-
tive part of the recognition process. Wedo
not need to hire a programmer or knowl-
edge engineer to specify exactly how and
when each piece of knowledge is to be ap-
plied. On the negative side, NETL treats

every feature as an atomic entity that is
either present or absent and expects that
the winning description will explain all of
the observed features. Like traditional
symbolic Al systems, NETL works best in
clean domains, far from the noisc and con-
fusion of the low-level sensory inputs.

The NETL architecture has been simu-
lated, but not yet implemented directly.
The node and link units are so simple that
several thousand of them could fit on a
single chip. The hard problem is to design
the switching network that implements the
node-to-link interconnections. A design
study by Fahlman3 demonstrated that a
NETL machine can be built for only a few
times the cost of a conventional memory
system able to hold the same amount of in-
formation. The Connection Machine*
was designed in part to implement a
NETL-like knowledge base, though the
hardware is general enough to do other
jobs as well. The current 64,000-processor
version of this machine is large enough to
handle a substantial body of knowledge,
by the standards of current AT systems.
The proposed million-processor version
may be able to handle enough assorted
knowledge to exhibit some degree of com-
mon sense. .

Layered value-passing
networks for recognition

As we mentioned earlier, a marker-
passing system like NETL does not grace-
fully handle the messy recognition prob-
lems we encounter in the real world.
Whether we are dealing with vision,
speech understanding, medical diagnosis,
or some other real-world recognition
problem, we normally face a situation
where no match is ever perfect and in
which few of the incoming features are
noise-free and certain. Some features pro-
vide strong evidence for particular hy-
potheses; other features are only sugges-
tive. Some features arc clearly present;
others are borderline cases or the result of
low-confidence observations. Instead of
the all-or-none set operations of NETL,
we need a system that can combine many
observations of varying quality and find
hypotheses that fit well, even if theydonot
match perfectly.

This kind of problem can be handled by
a value-passing system, in which each con-
nection has an associated scalar weight.
Each unit computes a weighted sum of the
incoming values and passes this sum
through a nonlinear function, with the

. 103

T T

T TP I T T T IR T T

O D ONOND s
O OO OO O rwssens

Output units

Connections with
adjustable weights

Hidden units

Connections with
adjustable weights

Figure 3. Value-passing network to compare two six-bit patterns. Input patterns A
and B are identical, except that pattern A may be rotated one position to the left or
right from pattern B. The three output units represent a left rotation, no rotation,
and a right rotation, respectively. This task cannot be done without some hidden
units. In this network we employ 12 hidden units, though only three appear in the
diagram. An appropriate set of weights can be learned using the back-propagation

method.

resulting value becoming the unit’s out-
put. A value-passing network may be im-
plemented in either digital or analog hard-
ware, -but computationally it can be
viewed as a sort of analog computer.
Using these value-passing units, we can
set up a layered recognition system able to
handle uncertain observations and varying
degrees of evidence. Each directly observ-
able feature is represented by an input unit
whose value represents the probability
that a discrete feature is present, the mag-
nitude of a continuous guantity (like in-
tensity), or the probability that a magni-

tude lies within a particular interval. Each

of the possible hypotheses that we wish to
evaluate is represented by an output unit.

In the simplest of these networks, thein-
put units are connected directly to the out-

put units by a set of connections with mod-,

ifiable weights. In such networks, it is not
necessary to set the connection weights by
hand. Given a set of input vectors and the
desired output for each, the perceptron
convergencé procedure’ can be used to
find a set of weights that will perform this
mapping, if such a set exists. -
Unfortunately, for most interesting rec-
ognition tasks thereis no set6f weightsina

- simple two-layer network that will do the

104

job. In most cases, one cannot treat the
lowest-level features as independent
sources of evidence and simply add them
up. It is necessary to introduce one or
more intervening layers of hidden units,
which combine the raw observations into
higher-order features more usefui in deter-
mining the output. Consider, for example,
the problem of deciding whether an image
contains a telephone. The fact that a single
pixel in the image has high intensity cannot
beused directly as evidence for or against a
telephorne, because telephones can be
black or white. It is necessary to extract
relationships between pixel intensities
(such as edges) before trying to detect the
telephone.

Figure 3 shows a simple task for which
hidden units are essential. Pattern A is
identical to pattern B, except that it may be
rotated one step to the left or right. The
task is to determine the shift for any pat-
tern of input bits., This cannot be done
without hidden units because each input
bit, considered in isolation, provides no
evidence whatsoever about the shift. All
the information is in the joint behavior of
combinations of input bits, so one or more
layers of hidden units must be used to ex-
tract informative multi-unit combina-

tions, which then ¢an be combined into an
overall answer.

Learning which of the exponentially
many possible combinations are relevant
for predicting the output is a hard prob-
lem. Techniques such as back-propagation
{described below) can indeed discover a set
of weights and hidden-unit assignments
that, taken together, will solve the prob-
lem. Figure 4 shows some examples of hid-
den units and associated weights taken
from one such solution.

Minsky and Papert® thoroughly ana-
lyzed which tasks require hidden units and
demonstrated that an insightful way of
categorizing tasks is in terms of how many
input units must connect to each hidden
unit in a three-layer network (this deter-
mines the order of the statistics that can be
extracted). Unfortunately, they gave no
procedure for learning appropriate hidden
units, and suggested that there may not be
any simple general procedure.

For many years after Minsky and.

Papert’s book was published, Al research-

ers criticized the connectionist approach

because the effective learning procedures

were restricted to networks incapable of

performing tasks like figure-ground seg-
mentation or viewpoint-independent
shape recognition, More recently, a deeper
appreciation of the sheer quantity of com-
putation required and a better under-
standing of the nature of the computations
has led to renewed interest in massively
parallel approaches to perception.”

Learning
representations

Three-layered nets of the kind studied
by Minsky and Papert do not have the
freedom to choose their own representa-

tions because the weights between the in- .

put units and the feature detectors in the

-middle layer are predetermined and do not

learn. If we allow these weights to learn,
the network can decide for itself what the
units in the middle layer will represent.
Consequently, we get a much more inter-
esting and powerful kind of learning, espe-
cially when extended to muitiple hidden
layers. However, finding learning proce-
dures that choose good representations is
difficult, and because the space of possible
representations is very large, any proce-
dure that explores the space in a random
way will be very siow.

One promising new procedure, called
back-propagation, has been discovered in-

COMPUTER

o o 118 V1111 -

I

i

A ey e ———
e e e e e ———
e e e ———
—
]
e
p——
e e ——r e e———— e ———
e ———— e ———
—_—
1

Wi

l

N

m

= § =

a

b

Cc

Figure 4. The weights learned by three of the twelve hidden units. The white squares are positive weights, the black squares are
negative weights, and the area of a square is the magnitude of the weight. The bottom two rows in each hidden unit show the
weights coming from the input units, and the top row shows the weights to the three output units that represent the three possible
shifts. All the units shown learned positive thresholds (not shown here) so that they will not come on unless they receive a net
positive input. Unit a detects some cases of right-shift; the two large negative weights prevent it from responding to left shifts.
Unit b detects some no-shift cases. Unit ¢ responds positively to shifts in either direction, but not to no-shift cases.

dependently by David Rumelhart, David
Parker, and Yann Le Cun. It involves two
passes each time an input vector is pre-
sented. In the forward pass, activity starts
at the input units and passes through the
layers to produce an output vector. In the
backward pass, the derivative of the error
(the difference between the actuat output
vector and the desired output vector) is
back-propagated through the same con-
nections but in the reverse direction. This
allows the network to compute, for each
weight, the gradient of the output error
with respect to that weight. The weight is
then changed in the direction that reduces
the error. So learning works by gradient
descent on an error surface in weight
space.

Back-propagation has already been
shown capable of learning many different
kinds of interesting representation in the
hidden units. It can learn optimal codes
for squeezing information through nar-

" row bandwidth channels, or sets of opti-

mal filters for discriminating between very
similar noisy signals.

Sejnowskiand Rosenberg® showed that
a back-propagation net can be trained to
transform an input vector that encodes a
sequence of letters into an output vector
that encodes the phonemic features of the
sequence; that phonemic output can then
be used to drive a speech-synthesis device.
From the input-output examples it sees
during training, this system is able to ex-
tract both the regularities exhibited by the
mapping, such as the effect of a terminal
“‘e** in changing the sound of the preced-
ing vowel, and specific exceptions, such as

the odd pronunciation of a word like

“‘women.”” This same task is performed in
‘commercial-speech-generation systems by

January 1987

conventional programs of cons:derable
size and complexity.

Back-propagation can also be used to
learn the semantic constraints that under-
lie a set of facts. One five-layer network?
was trained on a set of 100 triples such as
(Victoria has-father Christopher) or
(Christopher has-wife Penelope) derived
from two family trees involving people of
two nationalities. The input vector repre-
sented the first two terms of a triple and
the required output vector represented the
third term. As far as the network was con-
cerned, these input vectors were just arbi-
trary symbols, but after extensive training
the network could generalize appropriately
to triples on which it had not been trained,
like (Victoria has-mother ?77). By recording
the set of triples for which each of the hid-
den units became active, it was possible to
show that these units had learned to repre-
sent important properties like ““Italian’’ or
“‘old’’ that were never mentioned int the in-
put and output.

Back-propagation does gradient de-
scent in the space of possible representa-
tionatl schemes, and these semantic features
happen to be a very good representation for
the relationships the network is trained on.
The hidden features and their interactions
encode the underlying regularities of the
domain. When viewed locally, the learning
procedure just tunes the weight parame-
ters, but the global effect is that the net-
work does structural learning, creating
new terms that allow it to express impor-
tant regularities. This example also i-
luminates the ““local versus distributed’’
issue. The network’s internal representa-
tion of each person is a distributed pattern
of active semantic features, but edch of
these local features captures an important

underlying regularity in the domain.

Back-propagation has similaritiestothe

Baum-Welch algorithm for tuning param-
eters in a stochastic, finite-state auto-
maton. These trainable automata are
widely used as generative models in practi-
cal speech-recognition systems!® and
there is some hope that procedures like
back-propagation will be able to improve
on these modeis by overcoming an impor-
tant limitation. In a finite-state auto-
maton, the system’s knowledge of what it
has produced so far is encoded as the cur-
rent node in a graph of states and transi-
tions. So if the automaton needs to re-
member 20 bits of information about the
partial sequence to constrain the rest of the
sequence, it requires at least 220 nodes. In
a connectionist network, many units can
be active at once, so the number of units
need not grow exponentially with the
amount of information that must be car-
ried along in generating a sequence,

Another interesting new learning proce-
dure, called A g_p, was described by Andy
Barto.!! He showed how layered net-
works of relatively simple stochastic units
can learn to cooperate in order to max-
imize a global payoff signal that depends
on the output vector and is received by
every unit. Like back-propagation, this
procedure learns interesting internal repre-
sentations, but it is slower because it dis-
covers the effect of changing a weight by
sampling the effects of random variation
instead of by explicit computation of the
gradient. The Ay p model is exciting as a
biological model because it does notneeda
separate pass in which to back-propagate
detailed error information.

A major criticism of all the current mul-
tilayer learning procedures is that they are

105

1T

TTET

MTITTT TR T

slow even for modest examples and théy
appear to scale poorly. The obvious prob-
lem of gradient descent—that it wiil get
stuck in a poor local minimum-—-turns out
to be only a minor problem in practice.
The real difficulty is that simple gradient
descent is very show because we have infor-
mation about only one point and no clear
picture of how the surface may curve, In
high-dimensional spaces the error surface
usually contains ravines that are highly
curved across the ravine and slope gently
downwards along the ravine. Small steps
take forever to meander down the ravine,
and big steps cause divergent oscillations
across the ravine. Even with a large speed-
up from faster implementation technol-
ogy, these learning techniques are too slow
to handle many problems of interest.

_ Future progress may well depend on dis-
covering ways of paititioning large net-
works into relatively small modules that
can learn more or less independently of
each other.

Constraint-satisfaction
in iterative networks

The idea that perceptual interprefation
consists of transforming an input vector
through successive layers of units until it
becomes & categorization is rather restric-
tive. Most real recognition tasks require
that multiple layers of fedtures be recog-
nized all at once and that the result of per-
ception be a coherent, articulated struc-
ture rather than a single category. In visual
recognition, for example, we might havea
scene, various objects in the scene, their
parts, and subparts, all constraining one
another and all relating in complex waysto
the low-level stimuli the system is receiv-
mg An African context provides evidence
in favor of seeing an elephant. An ele-
phant helps us to identify an African
scene, and that in turn éan help us to spot
the giraffe. The trunk, tusks, and ears all
are features that help us to recognize an
elephant. Likewise, knowing that we re
looking at an elephant helps us to recog-
nize the elephant’s parts.

In a situation like this, we want to start
with a network that records the tangle of
interlevel constraints and evidence rela-
tionships, put in our observations as a sort
of boundary condition, and get the systemn

to settle into the best possible solution (or
- set of soliations) spanning all the levels of

description. Some constraints and expec-

. tations will be violated, but we want to -

106 .

find the best-scoring constellation of deci-
sions overall.”

The task is similar to finding the solu-
tions fo a set of simultaneous equations. A
value-passing network would seem a sensi-
ble parallel way of converging or a good
solution—a sort of analog computer with
links representing the constraints. Non-
learning-constraint networks of this sort
have been studied for a varigty of problem
domains, most notably at the University

.of Rochester. 12 In some simple cases, the

network can be guaranteed to settle to the
best final state no matter what values it
starts with, but for more difficult prob-
léms, especially ones that involve discrete
decisions, a value-passing network with
loops and many nonlinear decision ele-
ments is generally not well-behaved. Such
networks tend to osciltate or to get trapped
in uninteresting states that do not repre-
sent good solutions to the problem.

Hopfleld and Boltzmann
networks for constraint
satisfaction

Cne way to guarantee that a network
will settle down is to show that there exists
some cost function that decreases every
time one of the values changes. Hummel
and Zuckeri? showed that there exists
such a function for networks that pass
values and have symmetrical connections.
At about the same time, Hopfield ' iden-
tified a cost function (which he called
“senergy’”) for networks of symmetrically
connected binary threshold units,

Hopfield’s energy function can be inter-
preted in the following way: A connection

- between units f and j with a positive weight

represents a constraint that if one of these
units is on, the other one should be also. A
negative connection weight says that if one
of the units is on, the other should not be.
The weight corresponds to the penalty to
be applied if the constraint is violated. The
energy of any state of the network is given
by '
E= -% sz‘"j“’ii*): 5104

i<j- i

where w; i is the weight on the connection

between units / and /, s; is 1 if unit iis on
and 0 otherwise, and ©; is a threshold for

'Uﬂ]tl.

Given Hopfield’s quadratic defimnon

* of energy, each unit i can determine the

difference between the global energy of
the network when it is off and the global

energy when it is on, given the current
states of the other units. This energy gap is
simply

E, 'oﬁ_Ei on

i =AE,= Esjw,-j
If the energy gap is positive, the unit
should turn on {or stay ont) to minimize the
global energy. Otherwise it should turn off
(or stay off). In other words, to minimize
energy it should behave exactly like a
binary threshold unit.

Hopfield originally proposed his model
as a theory of memory. Each local mini-
mum corresponds to a stored vector, and

"the memory is content-addressable be-

cause if it is started anywhere near one of
the stored states it normalily converges on
that state. The same kind of network can
also be used for perceptual interpretation
by defining some of the units as input units
-and clamping their states on or off to
represent the current pérceptual input.
The other units then settle into a low-

energy global state consistent with these.

boundary conditions. This state represents
a locally-optimal solution given this set of
inputs, but with no guarantee that it is the
global optimum.

The Boltzmann machine architec-
ture 1916 g essentiaily a Hopfield net-
work (with hidden units) that uses a simu-
lated annealing search to escape fromIocal
minima. This same general idea, with
some differences of emphasis, was inde-
pendently proposed by other research
groups 1718 at about the same time.

Simulated annealing is a search tech-
nique that has been applied to a number of
optimization problems. ! The idea is that

we escape from high local minima by add-

ing a random component to the decision
process of each unit. In most cases, the
unit still takes a step downhill, but occa-
sionally it will take a step uphill instead.
More precisely, each unit / computes the
AE; value as above, then assumes the 1

state with probability p; given by the

following formula:

1

Pi=———a5iT
= 1k dET

The T term is a scaling factor that con-

trols the amount of noise, It is analogous. *

to a temperature: For large T, pisabout .5
and the system assumes states at random,
jgnoring the constraints in the network;-
for T = 0, the random element is elimi-
nated, and the system behaves as in the
pure Hopfield net, moving downhilt into
the nearest local minimum. At any given

COMPUTER

I T T

17T

‘T, once the system has reached thermal
equilibrium, the relative probability of
being in state A versus state B (see Figure
5) obeys & Boltzmann distribution:

=~ (EA-EBM/T

-~ Thermal equilibrium does not mean that
the system hds settled into a particular
stable state. It means that the probability
distribution over states has settled down,
even though the states are still changing. A
deck of cards is at thermal equilibrium
when it has been shuffled for long enough
that the probability of finding any card in
any position is 1/52, even though the cards
keep moving around. The best way to
reach thermal equilibrium at a given tem-
perature is generally to start at a higher
temperature, which makes it easy for the
system to cross energy barriers but gives it
little preference for the lower energy
states. Then we gradually increase the
preference for low energy states by reduc-
ing 7. If Tis reduced slowly enough, there
is a high probability of ending up in the
best global state, or if not there, in a state
not much worse than the best. This pro-
cess of slow cooling is analogous to slow
annealing of a metal in order to crystallize
it in its lowest energy state. ’

Boltzmann networks, designed by hand
and running on a serial simulator, have
been demonstrated succesgfully on a num-
ber of constraint-satisfaction problems,
such as the separation of figure and
ground in a two-dimensional image.
Touretzky20® is investigating ways of im-
plementing symbolic processing, includ-
ing a production system interpreter and a
system that can manipulate lists and tree
structures, using Boltzmann-type net-
works. But most of the interest in Boltz-
mann machines is due to a learning proce-
dute, described later, that enables them to
program constraints into their connec-
tions when shown examples of good solu-
tions to a problem.

Hopfield and Tank 2! investigated a dif-
ferent method to avoid being irapped in
local minima: They used real-valued, ana-
log, nonlinear elements that obey the same
equation as the units in a Boltzmann ma-
chine but send out a deterministic real
value instead of a single stochastic bit. Re-
ducing the temperature in a Bolizmann
machine is equivalent to raising the gain
(the nonlinearity) of their analog units,

and they have shown that they can approx-

imate simulated annealing without actiial-
Iy simulating & stochastic system directly.

January 1987

Figure 5. Energy surface with local minimum at A, global minimum at B.

As the gain is increased, single minima of
the low-gain energy surface develop a fine
structure of smaller minima.

Hopfield and Tank’s approximation
loses all information about the higher-
order statistics. For example, they would
represent 2 stochastic system that spent
half its time in the state (1, 1) and half its
time in the state (0, 0) by the mean values
(0.5, 0.5). But the very same representa-
tion would be used for a system -that
spends half its time in the state (1, 0) and
half in the state (0, 1). It is not yet clear
how important this loss of higher-order
statistical information is.

Networks of this type have been applied
16 a variety of problems, the most ambi-
tious of which is the Traveling Salesman
Problem, for which the network finds
mederately good solutions very fast. Hop-
field’s group has shown a particular en-
thusiasm for implementing their networks
in silicon, rather than simulating them,
and a number of small-scale physical im-
plementations have appeared. At the same
time, Hopfield has been working with
Tank to investigate the possible connec-
tion between these networks and real
neurons.

Hopfield’s group has chosen not to
focus on the problem of learning what to
do -with extra, hidden, units whose re-
quired behavior is not specified by the task
definition. These are not needed if the ex-
perimenter decides how to represent
things, but they are crucial if the network
is to be given the freedom to develop its
own representations. There exists an itera-
tive form of the back-propagation learn-

ing procedure that can learn how to use
“hidden units in a Hopfield and Tank net-

work and can also learn an optimal sched-
ule for varying the gain of the units during

the search process. If the same learning
procedure is applied to nets with asym-
metric connections, they can be trained to
produce sequences.?? The learning pro-
cedure is infeasibly slow for large nets, so
the research currently divides into studies
of search in Iarger nets, built by hand, and
learning in smaller nets. '

The Boltzmann machine
learning procedure

The Boltzmann learning scheme is sur-
prisingly simple.- It has two versions; we
will describe the version in which there are
input units and output units and the ma-
chine must learn to map input vectors into
output vectors. We begin with a set of 1/0
patterns on which the network is to be
trained. The goal is to adjust the weights
of the network so that, when we clamp the
input units into one of these patterns and
anneal the network, the corresponding
output pattern will appear on the output
units. If we clamp the inputs into a pattern

that the system has not seen before, we

would like the system to generalize accord-
ing to the underlying regularities in the /'O
pairs that it has seen.

The learning cycle has two phases, posi-
tive and negative, followed by weight ad-
justment. During the positive phase, we
cycle through the entire set of 1/Q pairs.
Each of these, in turn, is clamped into the
input and output units and the rest of the
network is then annealed, starting with a
high temperature and gradually cooling
down to thermal equilibrium at a tempera-
ture of 1. Once the system is close to
equilibrium, we keep running it for a few
more cycles, during which time each con-

107

T T T TR

nection keeps a record of how often the
two units it joins are on at the same time.
After all of the I/0 pairs have been pre-
sented in this way, each connection will
have recorded a value, p*, which is the
fraction of time during the positive phase
in which the two connected nodes are on at
the same time at thermal equilibrium.
The negative phase is identical, except
that only the inputs are clamped; the out-

"put units are allowed to settle into what-

ever states they like. In a network that has
learned perfectly, the output units will ex-
hibit the same probability distribution
over output vectors as they would if we
were still clamping them along with thein-
puts. During the negative phase we again
run for a few more cycles after reaching

 equilibrium. Each connection records a

second value, p —, the fraction of time in
which its two units are both active during
the negative phase. If the network is pro-
ducing all the right answers, the output

units will exhibit the same probability

distribution whether or not we clamp them
and p+ will be the sameasp~. Ifpt
and p — differ for a given connection, the
two probability distributions can be made
to match better by changing that connec-
tion’s weight. If we ignore sampling noise,
the difference between p+ and p ~ is ex-
actly equat to the gradient of an informa-
tion theoretic measure of the difference
between the system’s cutput behavior
(during the negative phase) and its desired
behavior (during the positive phase). 16 So
we can perform steepest descent in this dif-
ference measure by changing the weight by
an amount proportionaltop ¥ —p~.
Even though Boltzmann machines only
contain pairwise connections, the learning
procedure allows them to capture higher-
order constraints by dedicating hidden
units to represent higher-order features.
The learning procedure is interesting
because it decides what the hidden units
should represent, and it typically chooses
to use distributed representations.
Unfortunately, the Boltzmann machine
learning procedure suffers from all the

" usual problems of gradient descent inlarge

parameter spaces. On top of this, the

- estimated gradient is usnally inaccurate.

The proofs assume that we have a large,
unbiased sample of the statistics at
equilibrium in-the positive and negative
phases. In practice, we never quite reach
equilibrium, ‘so the statistics are sys-

tematically biased. Moreoever, unless we

are very patient thereis also sampling error

_caused by taking too few samples.

Despite these difficulties, Boltzmann

108

machines have been used successfully for

.aspects of speech recognition. 23, The

simplicity of the Bolizmann machine ar-
chitecture makes it feasible to build VLSI
chips that contain many units, and it is just

possible that this will lead to sufficient

speed to make this a practical scheme.
Even so, the scaling properties are poor
and very large networks will remain im-
practical unless clever scaling tricks are
discovered.

en years ago there were no connec-
tionist learning procedures power-
ful enough to build useful represen-
tations with multiple layers of hidden units.
Now there are many. The current challenge
is to develop faster learning schemes that
can be scaled up to networks with millions
of modifizble connections, O .

Acknbwledgments

Scott Fahlman’s research was supported by
the Defense Advanced Research Projects
Agency (DOD), DARPA Order No. 4976,
monitored by the Air Force Avionics Labora-
tory under contract F336l 5-84-K-1520.
Geoffrey Hinton's research was supported by
the Office of Naval Research under contract
N00014-86-K-00167 and by the National Sci-
ence Foundation, grant number 1ST-8520359.
The views and conclusions contained herein are
those of the authors and should rot be inter-
preted as representing the official policies,
either expressed or implied, of the sponsors or
the US governument.

Further reading

Paraliel Models of Associative Memory, eds. J. A.
Anderson and G. E. Hinton, Erlbaum, Hillsdale, NJ,
1981, ‘

Parglief Distributed Processing: Explorations in the
Microstructure of Cognition, eds. D, E. Rumelhart, J.
L. McClelland, and the PDP Research Group, MIT
Press, Cambridge, MA, 1986.

Cognitive Science 9, special issue on connectionist
models and their applications, ed. J. A. Feldman,
1985, .

References

1. G. E. Hinton, J. L. McCleliand, and D. E.
Rumethart, *‘Distributed Representation,”
Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, eds. D. E.
Rumethart, J. E. McClelland, and the PDP
Research Group, MIT Press, Cambridge, MA,
1986.

2.-'§. E. Fahlman, NETL: A System for Repre-
senting and Using Real-World Ki nowledge, MIT
Press, Cambridge, MA, 1979.

3. §. E. Fahiman, ‘‘Design Sketch for a Million-
Element NETL Machine,” Proc. Nat'l Conf.

Al Am. Assoc. for AT, Menlo Park, CA, 1980:

W. D. Hillis, The Connection Machine, MIT
Press, Cambridge, MA, 1985.

. F. Rosenblatt, Principles of Neurodynamics,

Spartan Books, N_ew York, MY, 1962,

. M. Minsky and S. Papert, Perceptrons, MIT

Press, Cambridge, MA, 1969,

. D. H. Ballard, G. E. Hinton, and T, J.

Sejnowski, '‘Parallel Visual Computation,”
Nature, Vol. 306, Nov. 1983, pp. 21-26.

. T. . Sejnowski and C. R. Rosenberg,

«“NETtalk: A Parallel Network that Learns 1o
Read Aloud,” tech. report JHU/EECS-86-01,
The Johns Hopkins Univ., EE and CS tech.
reports, 1986, _ .

.- . E. Hinton, ““Learning Distributed Represen-

tations of Concepts,” Proc. 8th An. Conf.
Cognitive Science Soc., Lawrence Erlbaum
Assoc,, Hillsdale, NT, 1986.

. L. R. Bahl, F Jelinek, and R, L. Merces, “A

Maximum Likelihood Approach to Continuons
Speech Recognition,” IEEE Trans. Pattern
Analysis and Machine Intellizence, Vol.

- PAMI-5, No. 2, Mar. 1983, pp. 179-190.

11.

12

13

14,

15,

16.

17.

i8.

19

21

A. G. Barto, ‘‘Learning by Statistical
Cooperation of Self-Interested Neuron-Like
Computing Elements,” Human Neurobiology,
Vol. 4, No. 4, Springer-Verlag, New York, NY,
1985, pp. 226-256.

1. A. Feldman and D. H. Ballard, “Connec-

 tionist Models and their Properties,” Cognitive

1982, pp. 205-254. .

R. A. Hummel and S. W. Zucker, “On the
Foundations of Relaxation Labeling Proces-
ses,”’ JEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. PAMI-S, No. 3,
May 1983, pp. 267-287.

1. J. Hopfield, “Neural Networks and Physical
Systems with Emergent Collective Computa-
tional Abilities,”* Proc. Nat'l Academy of
Sciences USA, Vol 79, No. 8, Apr. 1982, Nat'l
Academy of Sciences, Washington, DC, pp.
2554-2558.

§. E. Fahiman, G. E. Hinton, and T. J.
Sejnowski, “Massively Parallel Architecture for
AL NETL, Thistle, and Boitzmann Machines,"”
Proc. Natl Conf, A, Am. Assoc. for AL, Menlo
Park, CA. 1983. Dist. by William Kafman, Inc.,
Los Altos, CA.

D. H. Ackley, G. E. Hinton, and T. I.
Sejnowski, “A Learning Algorithm for Boltz-
mann Machines,”” Cognitive Science, Vol. 9, No.
1, Ablex, Norwood, NJ, 1985, pp. -169,

$. Geman and D. Geman, “Stochastic Relax-
ation, Gibbs Distributions, and the Bayesian
Restoration of Images,” IEEF Trans. Pattern
Analysis and Machine Intefligence, Vol.
PAMI-6, No. 6, Nov. 1984, pp. 721-741.

P. Smolensky, ““Schema Selection and Stochastic
Inference in Modular Environments,” Proc.
Nat’l Conf. AI, AAAI-$3, Am. Assoc. for Al,
Menlo Park, CA, 1983, pp. 109-113. Dist, by
William Kafman, Inc., Los Altos, CA.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“QOptimization by Simulated Annealing,”
Science, Vol, 220, No. 4589, Am. Assoc, for the
Advancement of Science, Washington, DC,
1983, pp. 671-680.

D. S. Toureizky and G. E. Hinton, “Symbols
Among the Neurons: Details of a Connectionist
{nference Architecture,”” IJCAL Vol 9, Aug.
1985, Morgan Kauffman, Los Altos, CA, pp.
238-243, .

1. 1. Hopfield and D. W. Tank, “Neural Com--
putation of Decisions in Optimization
Problems,” Biological Cybernetics, Vol. 52, No:
3, Springer-Verlag, New York, NY, 1985, pp-
141-152,

D. E. Rumelhart, G. E. Hinton, and R." 3.
Williams, “Learning Internal Representations

Science, Vol. 6, No, 3, Ablex, Norwood, N,

COMPUTER

by Emor Propagation,” Parallel Distributed

Processing: Explorations in the Microstructure
of Cognition, eds. D, E. Rumelhart, J. L. Mc-
Clelland, and the PDP Research Group, Brad-
ford Books, Cambridge, MA, 1986.

23. R. Prager, T. D. Harrson, and F. Fallside,
“Bolizmann Machines for Speech Recognition,™

Computer Speech and Languoge, Vol. 1, No. 1,
" Acadeimic Press, London, UK, 1985, pp. 1-20.

Scott E. Fahiman is a senior research computer
scientist in the computer science department of
Carnegie-Mellon University. His primary
research interest is in massively parallel com-
puting architecture for such Al problems as
recognition, knowledge representation, learn-
ing, and simple kinds of search and inference.
He has also been active in the definition, im-
plementation, and standardization of the Com-
mon Lisp language.)

Fahiman is a founder of Expert Technologies
Inc. and Lucid Inc. and consults for Siemens
Central Research Laboratories in Munich. He
received his PhD from MIT in 1977, where he
also received his BS and MS.

Geoffrey E. Hinton is an associate professor in
the computer science department at Carnegie-
Mellon University. His main research interest is
in models of computation in the brain.
Hinton received a PhD in Al from Edin-
burgh University in- 1978. He has been a
research fellow in Al at Sussex University, 2
visiting scholar in cognitive science at UC San
Diego, and a research scientist at the Applied
Psychology Unit in Cambridge, England.

Readers may write to Fahlman at the Com-

puter Science Dept., Camegle—MelIon Universi-
~"ty, Pittsburgh, PA 15213,

January 1987

Ask us!

In the Advanced Technology
directorate of ESL {a 2500
person company), our charter
is to develop the most imagi-
native and necessarily uncon-
ventional solutions to deal
with some of the hardest
signal processing problems:
and missions confronting our
Nation.

Our goals:

in developing Advanced Tech-
nology Solutions for missions
vital to our National Defense.

Our technology:

From Multi-Gigaflop Advanced
Digital Signal Processor Sys-
tems, to Ful-Custom 1.25
micronCMOS VLSI micro-
circuits, to Wafer-Scale Inte-
grated GigaflopSystolic Proc-
essors, to MIPS and 68020
Based, Tightly-Coupled Dis-
tributed Computing Systems,
o High-Speed Data-Flow
Systems, to Artificial Intelli-
gence Systems.

Our missions:

From Acoustic Signal Process-
ing, to ESM/ELINT Systems,

to Tracking Missions, to
Advanced COMINT, to other
Tactical & Strategic Surveil-
jance and Reconnaissance.

Our business:

We are currently enjoying
record business growth due to
the quality of our work and
our ability to provide products
which meet our customers’
needs.

ESL
A Subsidiary of TFjW

AtESL, we are only interested

What's new?

Our requirements:

We are only interested in
self-motivated, innovative,
responsible, and curious engi-
neering professionals, from
the disciplines of Electrical
Engineering, to Computer
Scienhce/Engineering, to Math-
ematics, to Physics and other
Physical Sciences.

Our needs:

Openings exist at all levels:
Managers, Staff Engineers,
Engineers, System Architects,
and Designers. PhD or equiva-
lent, with clear track record

of doing something big.

Your move:

At ESL, you'll find excellent
salaries and benefits comple-
mented by a stimulating,
health-oriented environment.
Please send resume to Bijoy
G. Chatterjee, Deputy Direc-
tor, Advanced Technology,
Dept. COM-781, ESL, 1345
Crossman Ave., P.0, Box
3510, Sunnyvale, CA 94088-
3510 or call him directly at
{408) 743-6254. An equal
opportunity employer. U.S.
CITIZENSHIP IS REQUIRED
FOR ALL POSITIONS.

There’s a formula for the future.
And it's ESL.

