
COGNITIVE SCIENCE 12, 423-466 (1988)

A Distributed Connectionist Production System

DAVID S. TOURETZKY
GEOFFREY E. HINTON

Carnegie Mellon University

DCPS is a connectionist production system interpreter that uses distributed repre-
sentations. As a connectionist model it consists of many simple, richly intercon-
nected neuron-like computing units that cooperate to solve problems in parallel.
One motivation far constructing DCPS was to demonstrate that connectionist

models ore copable of representing and using explicit rules. A second motivation
was to show how “coarse coding” or “distributed representations” can be used to
construct a working memory that requires far fewer units than the number of dif-
ferent facts that can potentially be stored. The simulation we present is intended

as a detailed demonstration of the feasibility of certain ideas and should not be
viewed as a full implementation of production systems. Our current model only
has o few of the many interesting emergent properties that we eventually hope
to demonstrate: It is damage-resistant, it performs matching and variable bind-
ing by massively parallel constraint satisfaction, and the capacity of its working

memory is dependent on the similarity of the items being stored.

1. INTRODUCTION

DCPS is a connectionist production system interpreter that uses distributed
representations. As a connectionist model (Feldman & Ballard, 1982), it
consists of many simple, richly interconnected neuron-like computing units
that cooperate to solve problems in parallel. One motivation for construct-
ing DCPS was to demonstrate that distributed connectionist models are
capable of representing and using explicit rules. Earlier connectionist
models (Rumelhart & McClelland, 1986) have shown that many phenomena
which appear to require explicit rules can be handled by using connection
strengths that implicitly capture the regularities of the task domain without
ever making these regularities explicit. However, we do not believe that
this removes the need for a more explicit representation of rules in tasks that

This work was sponsored by a grant from the System Development Foundation, and by
National Science Foundation grants ET-8516330 and IST-8520359. We thank Scott Fahlman.
Jay McClelland, David Rumelhart, and Terry Sejnowski for helpful discussions, Bruce Krul-
with for contributing to the continued development of the simulation, and the anonymous
referees for several valuable suggestions.

Correspondence and requests for reprints should be sent to David S. Touretzky, Computer
Science Department, Carnegie Mellon University, Pittsburgh, PA 15213-3890.

423

424 TOURETZKY AND HINTON

more closely resemble serial, deliberate reasoning. A person can be told an
explicit rule such as “i before e except after c” and can then apply this rule
to the relevant cases. The person is aware of which rule is being applied and
cannot apply a large number of different rules in parallel, though he or she
may be able to perform a parallel search for the appropriate rule.

The natural way to implement explicit rules in a connectionist network is
to apply a parallel best-fit search to the task of finding the rule whose left-
hand side best matches the current contents of working memory. Connec-
tionist networks are good at performing pattern matching, especially when
there is no perfect match and the aim is to find the best partial match. One
difficulty with this approach is that the kind of matching required to imple-
ment a production system is more complex than simple template matching.
The left-hand side of a production may contain several instances of the
same variable, and matches are only valid if all instances of the variable re-
ceive the same binding. Ensuring consistent variable bindings in a parallel
network is a difficult and important problem (Barnden, 1984) and one of
the main aims of this paper is to demonstrate a feasible solution. The need
to bind variables consistently is not just an artifact of using explicit rules.
To capture truly the regularities that are normally expressed by rules con-
taining variables, an information-processing system must do something
equivalent to variable binding, even if the implementation does not use ex-
plicit rules. Attempts to eliminate variables by expanding all their possible
instantiations do not really capture the regularities, and they certainly do
not allow correct generalizations from limited training data.

Ballard and Hayes have demonstrated that a rather elaborate connection-
ist network can decide whether two expressions can be unified (Ballard,
1986; Ballard &Hayes, 1984). DCPS uses a different solution which is based
on earlier work (Hinton, 1981a) on viewpoint-invariant shape recognition.
In matching an object model to a retinal image, it is essential to ensure that
all the matches of a piece of the model to a piece of the image assume the
same viewpoint. In matching the LHS of a rule to the contents of working
memory, it is essential to ensure that all the matches of a clause in the LHS
to a fact in working memory assume the same variable bindings.

A second motivation for DCPS is to show how “coarse coding” or “dis-
tributed representations” can be used to construct a working memory that
requires far fewer units than the number of different facts that can poten-
tially be stored. The price of this economy is that only a small fraction of
the potential facts can actually be present in working memory at any one
time. Earlier analyses of coarse coding have shown that it is efficient (Hin-
ton, 1981b; Hinton, McClelland, & Rumelhart, 1986) but they have failed
to demonstrate that it can be used effectively when many different groups
of units must interact correctly. Coarse coding “smears” the representation
of a given item across many units, and when coarse-coded representations
in several different groups of units interact during an iterative best-fit

CONNECTIONIST PRODUCTION SYSTEM 425

search, there is a danger that the representation will become progressively
more smeared with each iteration.

The simulation we present is intended as a detailed demonstration of the
feasibility of certain ideas and should not be viewed as a full implementa-
tion of production systems. The production rules our model interprets are
much simpler than those found in OPSS or EMYCIN. Nevertheless, they do
contain variables that get bound consistently by the connectionist network,
and they are implemented using distributed representations throughout.
This falsifies any strong claim that connectionist systems using distributed
representations could not possibly implement symbol processing. However,
it leaves us upon to the alternative criticism that we have merely implemented
a very simple production system in peculiarly inefficient way.

One advantage of the implementation we present is that it is robust against
the destruction of any small random subset of the units or connections, but
the real advantage (which we have not demonstrated in this simulation)
comes from the ability of a connectionist network to do a rapid best-fit
match. This is potentially much more powerful than the standard imple-
mentations which find all exact matches and then do conflict resolution. In
situations where no existing rule fits perfectly, it may be sensible to apply a
plausible rule, particularly in a learning system that needs to explore the
space of plausible actions in order to find a satisfactory one. The ability of a
connectionist implementation to settle on plausible but imperfect matches
could therefore be very helpful, but only if the matching apparatus is able to
do more than simple, variable-free “template” matches. Our eventual aim
is to exploit the best-fit ability of DCPS to allow it to do more of the com-
putation in each match so that it can perform complex tasks with fewer rule
firings, and rules in one domain can be created by analogy with.rules in
other domains. But before we can do this we must demonstrate that it is
possible to build a workable system that uses distributed representations
and enforces consistent variable bindings during a match. So our current.
model only has a few of the interesting emergent properties that we even-
tually hope to demonstrate: It is damage-resistant, and the capacity of its
working memory is dependent on the similarity of the items being stored.

2. A RESTRICTED CLASS OF PRODUCTION SYSTEMS

In order to simplify the task of implementing a production system in a con-
nectionist network, we have made a number of restrictive assumptions about
the production system. The working memory elements of DCPS are triples
of symbols, such as (F A B). We have chosen an alphabet size of 25 symbols,
giving 253, or 15,625 possible triples. Only a few of these are present in
working memory at any one time; typically there will be half a dozen. The
sparseness of working memory is an unportant consideration in the design
of the model.

426 TOURETZKY AND HINTON

Production rules in DCPS consist of two left-hand side clauses that
specify triples and any number of right-hand side actions that modify work-
ing memory by adding or deleting triples. In the first version of DCPS no
variables were allowed.’ In the second version, every rule contains two in-
stances of a single variable. The variable must appear as the first element of
both clauses on the left-hand side, and it can also appear anywhere on the
right-hand side. So a typical rule is:

Rule-O: (=x AB) (=x CD) => +(G =x P) -(=x R =x)

In addition to these restrictions on the contents of working memory and
the form of the production rules, we assume that during each match only
one rule with one variable binding will be correct; this obviates the need for
a conflict resolution mechanism. Naturally, we believe that all these restric-
tions can eventually be relaxed. Recent work by Touretzky and Krulwich (un-
published) on heterogeneous variable binding allows the variable to appear
in either the first, second, or third position of each left-hand side clause, in-
stead of always in the first position. This modification adds considerable
flexibility but also permits an interesting kind of binding confusion error;
details will be reported at a later date.

3. THE STRUCTURE OF WORKING MEMORY

The most straightforward representation for a set of triples would be a
purely !‘localist” one, where every triple was represented by a dedicated
unit. 4 unit in the active state would then indicate that the corresponding
triple was present. We have rejected this idea in favor of a distributed or
i’coarse coded” representation (Hinton, 1981b; Hinton et al., 1986). Local-
ist representations require too many units and too many connections; they
quickly succumb to combinatorial explosion as the alphabet size or the
length of a sequence increases. This is because localist representations do
not make efficient use of the units when the number of items that are simul-
taneously present in working memory is much less than the number of
possible items. Distributed representations use the information-bearing
capacity of the units more efficiently by making them active much more
often.’ For an alternative view of distributed-versus-localist representa-
tions, see Feldman (1986).

I If there are 15,625 possible items, but only 6 of these are present at any one time, the proba-
bility that a working memory unit is active in a localist scheme is only about 0.0004. The average
information conveyed by the unit is therefore the entropy of the distribution {0.0004,0.9996}
which is about 0.005 bits. In DCPS, fewer units are used to encode the same information, and
each unit is active much more often so it conveys much more information. The probability of
an individual unit being active is about 0.08 and so the average information it conveys is about
0.4 bits. However, in DCPS the correlation between units cannot be ignored (as it can in the
previous case) and so the average information conveyed per unit is actually only about 0.04
bits.

CONNECTIONIST PRODUCTION SYSTEM 427

In addition to the inefficiency of local& representations we think that a
one-to-one mapping between individual neurons and symbolic structures is
physiologically implausible; it is reminiscent of the grandmother cell idea.
Recordings in the temporal lobe of the macaque cortex support the idea that
neurons are tuned to very complex entities such as a face (Rolls, 1984) but
they do not support the idea that a particular face is encoded by just one or
just a few neurons,. Each particular face is almost certainly encoded as a
pattern of activity distributed over quite a large number of units, each of
which responds to a subset of the possible faces. Using a distributed repre-
sentation not only makes our model more efficient and neurally plausible, it
also makes it tolerant of noise and occasional malfunctions.

3.1. Receptive Fields
The working memory space of DCPS, shown in Figure 1, consists of 2,000
binary state units. Each unit has a receptive field table such as the one in
Figure 2. A unit’s receptive field is defined to be the cross-product of the six
symbols in each of the three columns, giving 6’, or 216 triples per field. The
unit described in Figure 2 has the triples (C K R) and (F A B) in its receptive
field, along with 214 others. Receptive field tables are generated randomly
prior to beginning the simulation; they determine the connection pattern
between units in the various spaces comprising DCPS. Once the connections
have been built and the working memory units’ states have been initialized,
the tables are no longer needed; they are not consulted when running the
model.

n Rule
Space

Figure 1. Block diagram of DCPS, a Distributed Connectionist Production System.

428 TOURETZKY AND HINTON

I I

I c 1 A 1 B I
F E D

M H J

a K M

S T P

I w I Y I R I
Figure 2. An example of a randomly generated receptive field table for a working memory
unit. The receptive field of the unit is defined as the cross-product of the symbols in the
three columns.

A triple may be stored in working memory by turning on all its receptors.
With 2,000 working memory units, triples will average 6’/25’ x 2,000 = 28
receptors. The number of receptors per triple varies somewhat due to the
random distribution of receptive fields. An external observer can test whether
a particular triple is present in working memory by checking the percentage
of active receptors for it. If this is close to 1009’0, the triple may be assumed
to be present. For example, if the triple (F A B) were stored in working
memory, the unit described in Figure 2 would be active, along with about 27
others. Although (C K R) also falls within the receptive field of this unit, the
number of receptors two unrelated triples have in common is small; on aver-
age, it is less than one. Thus, while 100% of the (I? A B) units become active
when (F A B) is stored, only 1 out of roughly 28 (C K R) units would
become active. To the external observer, (F A B) clearly is present in work-
ing memory and (C K R) clearly is not. But the network itself doesn’t need
to compute these percentages. It relies on the fact that triples that are pres-
ent have strong effects and triples that are absent do not.

Figure.3 shows the state of working memory when the two triples (F’ A B)
and (F CD) have been stored. The 2,000 working memory units are arranged
in a 40 x 50 array, with the 55 that are active indicated by black squares. The
positions of these 55 units in the array are not significant, since units’ recep-
tive fields are generated randomly. However, if we were to examine the
receptive fields of each of the active units we would see that every one con-
tains either (F A B) or (F C D), or both.

Table 1 shows the first dozen triples with the strongest representations
when working memory is in the state shown in Figure 3. (F’ A B) and (F C D)
each have 100% of their receptors active, while the next best represented
triple, (F N B), has only 42% active. The average activity level over all
15,625 triples is much lower: only 2.7%. If we adopt the criterion that 75%
of a triple’s receptors must be active for it to be deemed present in memory,
the division between present and absent triples in Table 1 is quite clear.

n 8

Figure 3. The state of working memory after the triples (F A B) and (F C D) hove been

stored. Active working memory units are indicated by black squares. 55 of the 2,OW units
are active.

TABLE 1

The First Dozen Triples With the Strongest Representations
When Working Memory is in the State Shown in Figure 3.

Triple
Percent

Active (%)

levels of Triple Activation

Active
Receptors

Total

Receptors

F A B) 100

(F C D) 100

(F A D) 40
(F B D) 38
(F A Xl 37
6 A 6) 37

(F Q D) 37
(F C N) 37
(F C 6) 37
(F C Ml 35
(F T D) 35
(N C D) 34

28 / 28
20 I 28
11 / 27
10 / 26
11 / 29
10 / 27
10 / 27
10 / 27
10 / 27
10 / 28
10 / 28
10 / 29

429

TOURETZW AND HINTON

Ffgure 4. The levels of support for all 15.625 possible triples when working memory con-
toins (F A B) ond (F C D), represented by the 55 active receptors in Figure 3. The size of each

blob indicates the number of active receptors for that triple.

Figure 4 shows the levels of support for all 15,625 possible triples when
working memory contains (F A B) and (F C D). In the figure, (A A A) is
located in the upper left comer and (Y Y Y) in the lower right. The blobs in
this figure are associated with triples, not units; the size of each blob indi-
cates how many receptors are active for that triple. A simple thresholding
operation yields Figure 5, in which the (F A B) and (F C D) blobs stand out
clearly and there is only a small amount of noise remaining.

3.2. Properties of Coarse Coding
Coarse coding representations have some useful properties and some psy-
chologically interesting limitations. One useful property is tolerance of noise.
If after storing some triples in working memory a few units are flipped on or
off at random, the perceived contents of working memory will not be af-
fected at all.* Tolerance of noise is especially important when items will be

* Assuming. of course. that we do not require strictly 100% of a triple’s receptors to bc
active for it to bc considered prcscnt.

CONNECTIONIST PRODUCTION SYSTEM
I 431

‘-” .m.m..... . . . ‘7::. ; . .:-I..‘......“‘-. _. .
; i.i:‘-.:; is;. ::

:r- .

. .

.

. .

===I Strmgrhs of Triples <=i=

Ffguro 5. A moderately thresholded version of Figure 4. The (F A 6) and (F C D) blobs stand
out clearly here.

deleted from the memory as well as added to it. A slight overlap in the
receptor set of related triples causes deletion of a triple to affect any related
ones previously stored. That is, if (F A B) and (F C D) were stored in
memory and (T C D) were then deleted by turning off all its receptors, it is
likely that only 27 of the 28 (F A B) receptors would remain active, the 28th
having been shared between the two.

The contents of working memory remain reasonably persistent because
the overlap between any two triples is small. A visual effect resulting from
this overlap can be seen in Figure 4. The dot pattern may appear completely
random at first, but closer examination will reveal a regular series of thin
horizontal and vertical bands. These bands are formed by triples that have
two out of three components in common with the stored triples (F A B) and
(F C D); on average such triples have seven of their receptors active, while
triples with no components in common, such as (G S Q). average about 0.4
receptors active. Another effect that can be seen in the figure is the thick
horizontal F band that is somewhat darker than the other bands. Since both
of the stored triples begin with F, all other triples beginn& with F have a
slightly higher number of active receptors.

432 TOURETZKY AND HINTON

An interesting property of the coarse coded representation is that the
memory has no fixed capacity; instead its ability to distinguish stored items
from other items decreases smoothly as the number of stored items increases.
Each triple added to working memory raises the number of active units,
thereby increasing the support for other triples that have not been stored.
As working memory fills up, the fraction of active receptors for certain
triples that are “close” to those that have been stored approaches lOO%,
and the dividing line between present and absent triples blurs. If many closely
related triples are stored, such as (I? A A), (F A B), (F A C), (F A D), and so
forth, then the system may exhibit local blurring, where it can’t tell whether
(I7 A P) is present or not but it is certain that (G S Q) is absent. Figure 6 illus-
lustrates the local blurring that occurs when four closely related triples are
stored.

. . .

. . . :

.

.

.
. L

.i.. :

.

.y : . . :’ A . : . .

.

. . . .
. : “

.
. . . : :

.

. .y

. . .
r . :

:‘,:
.

.
.

.
. .

. *

. : . : . :

.

. .
.:_

. .
. . .

:
. ” ‘.

:
‘.
. ”

: : ”

:’

: : : . . . :

. ” . .
. : : :

. . : .
. : . : . i. ; .

.:. .
‘. .: . . .
.. : ‘.. .

. .
. . . : . .

.

.
: ‘.

* ‘.‘. . : . .
.

.:. .

. . .

: : “T

. : .

. .

. . ..: . .
. : :

. . . ,

. . :

Figure 6. An illustration of the local blurring that occurs when several closely related
triples are stored. Here, (F A A), (F A 6). (F AC) and (F A D) have been stored. As a result,
similar triple; receive a high degree of support, as shown by the dark (F A x) line at the
beginning of the F band and weaker (x A y) lines in the other bands. Moderate thresholding
was applied.

CONNECTIONIST PRODUCTION SYSTEM 433

Table 2 presents measurements of memory cross-talk under three differ-
ent conditions as the number of stored triples increases. For each experi-
ment we show the average percentage of support for the strongest triple not
actually stored. In the first experiment we used maximally similar triples,
such as (F A x) for various values of x. In the second experiment we used
randomly generated triples, while in the last we used maximally dissimilar
triples, such as (A A A), Q B B), (C C C), and so forth, which have no
elements in common. It can be seen from this table that if triples are gener-
ated randomly, approximately 20 can be stored before the strongest non-
stored triple achieves 75% support.

Triples stored early on in a coarse-coded memory will eventually fade
away if rule firing deletes a large number of other triples. This gradual

TABLE 2
Average Percent Support for the Strongest Non-stored Triple after

N Other Triples Hove Been Stored in Memory.

No. of Triples
Stored

1
2
3

4
5
6

7
8
9

10
11
12
13
14
15
16
17

18
19
20

21
22
23
24
25

Crosstalk From Stored Triples

% Support for the strongest non-stored
triple when the stored triples ore:

Maximally Randomly Maximolly
Similar Generated Dissimilar

39 39 38
55 41 41
69 45 43

74 48 45

86 49 47
91 50 48

95 53 so
98 56 52

99 58 54
100 60 55

61 56
64 57
66 59
67 59

69 60
69 62
71 63
73 63
73 65
74 66
75 66
76 68
76 70

77 70
78 70

434 TOURETZKY AND HINTON

decay phenomenon is again an effect of the overlap of receptive fields.
Table 3 measures decay in the support of one stored triple as a series of
other triples are deleted. (Even if a triple hasn’t been stored, it can be
deleted by turning off all its receptors. In this case, the only effect is to
weaken the activation of triples with which it shares receptors.) One way to
counteract the decay effect is to recall a triple before it has completely faded
away, and then store it again. Whenever a triple is stored all its receptors
become active, so its representation in working memory is refreshed.

4. SELECTIVE ATTENTION: CLAUSE SPACES

Clause spaces, labeled Cl and C2 in Figure 1, are a device for focusing the
network’s attention on particular triples from the set stored in working

TABLE 3

Average percent support remaining far a single stared triple after N other triples hove been
deleted in memory. The decay effect is due to shoring of receptors with the deleted triples.

Crosstalk from Deleted Triples

% Support remaining for a single stored triple when

the triples being deleted ore, with respect to It:

No. of Triples
Maximally Randomly Maximally

Similar Generated Dissimilar

0

1
2
3
4
5
6

7
B
9

10
11

12
13
14
15

16
17

18
19
20
21
22
23

24

100

02
64
49
37
28
22

17
13
10

7
5
3
2
1

0

100 loo

100 99
98 98
97 97
96 96
95 96
94 95
93 94
92 93
90 92

89 91
a0 90
87 09
86 00
05 07
84 86
a3 86
82 85
81 84
00 83
79 82
78 81
78 00
76 00
76 79

CONNECTIONIST PRODUCTION SYSTEM 435

memory. Clause spaces are like the “pullout networks” which were used by
Mozer (1987) to allow a perceptual system to attend to specific objects in a
scene. The matching problem in DCPS consists of selecting the two triples
in working memory that together satisfy the left-hand side of some produc-
tion rule. Each clause is responsible for pulling out one of these triples.

There is a one-one excitatory mapping between working memory units
and units in Cl and C2 spaces, so that each working memory unit that is ac-
tive tries to turn on its corresponding Cl and C2 units. What prevents the
Cl and C2 spaces from exactly copying the activity pattern in working
memory is the fact that clause units are mutually inhibitory within their
space, that is, each of the 2,000 Cl units inhibits the other 1,999 units, and
similarly for C2; working memory units do not inhibit each other (see
Figure 7). The inhibition level in clause space is carefully adjusted so that
only about 28 units per space can remain active simultaneously, that is, just
enough to represent a single, coarse coded triple. Exactly which triple is
selected depends on various outside influences imposed on the clause space
by units in the rule and bind spaces. Briefly, a clause unit will be able to re-
main active despite inhibition from its siblings only if it receives support
from rule and bind units that are also active.

The apparent requirement that a clause space have (M-N)/2 bidirec-
tional inhibitory connections might seem a flaw in the design, since as the
number of units grows the number of connections quickly becomes unreason-
able. With 2,000 clause units there would have to be 1,999,OOO connections
per space. But these connections need not actually be built. The inhibition
function can be accomplished more economically by Uv unidirectional con-
nections: N excitatory connections from clause units to a special regulatory

Figure 7. Connection pattern between clause units and working memory. rule, and bind
units.

436 TOURETZKY AND HINTON

unit with a graded or integer-valued rather than binary response,3 plus N
inhibitory connections in the opposite direction. To mimic exactly the effect
of N(N- 1) pairwise connections we would also need one excitatory connec-
tion from each unit to itself to cancel out the inhibitory effect it has on itself
via the regulatory unit, giving 3N total connections. However, in practice
these recurrent connections may be omitted with negligible effect. The fault
tolerance of the inhibitory mechanism in the fully connected version of the
network can be achieved by using several regulatory units, wired in parallel
with proportionately smaller weights, rather than one unit with large weights.

For analysis purposes we will treat DCPS as an instance of a Hopfield
network, and later, a Boltzmann machine. In order to meet those definitions
we will ignore the regulatory unit solution and adopt the pretense, for the
remainder of this article, that (M-N)/2 bidirectional inhibitory connections
are actually built where required.

Note that although clause spaces are constrained to have roughly 28 units
active at a time, not all patterns of 28 active units correspond to a valid triple.
Clause spaces can sometimes be in an intermediate state where there are,
say, 15 receptors for (I? A B) active, 10 for (G K Q), and 5 for something
else. In other words, the clause-space units can divide their attention among
several partly represented triples simultaneously. At higher temperatures
(more relaxed constraints), more than 28 units can be active, which increases
the chance that multiple triples will be partly represented. There is nothing
analogous to this in conventional computers, where symbol structures remain
discrete and must be considered one at a time (Derthick t Plaut, 1986).

5. THE RULES

5.1. Rule Format
Production rules in DCPS consist of two left hand side clauses that specify
triples and any number of right hand side actions that modify working
memory by adding or deleting triples. We first consider rules without varia-
bles. A typical rule would be:

Rule-l:(FAB)(FCD) => +(GAB) +(PDQ) -(FCD)

This rule can fire if (F A B) and (F C D) are both present in working
memory. If it does fire, the triples (G A B) and (P D Q) will be added to
memory and (I? C D) will be deleted.

5.2. Representation of Rules
Each rule is represented by a population of 40 Rule units; the pattern of
connections between these units and the clause units is determined by the

’ These regulatory units resemble inhibitory interneurons which may play a similar role in
cortex.

CONNECTIONIST PRODUCTION SYSTEM 437

I
All wnnecu~

am lnhlbltory

Figure 8. (a) Space of binary state units whose activity is limited by mutual inhibition using
(NY-N)/2 bidirectional connections. (b) Introduction of a regulatory unit with graded re-
sponse accomplishes the some effect with only 2N one-way connections.

left-hand side of the rule. For example, Rule units that represent Rule-l
above will have bidirectional excitatory connections to Cl units whose
receptive field includes (F A B), and C2 units whose receptive field includes
(F C D), as shown in Figure 7. If a sufficiently large number of these Cl and
C2 units become active, indicating that the triples (F A B) and (B C D) are
present in working memory, the rule unit will also become active. Conversely,
since the connections are bidirectional, when a Rule-l unit becomes active it
provides support for units in Cl and C2 space that support that rule.

The 40 units representing one production rule are connected so as to
form a clique, Each active unit provides a slight excitatory stimulus to the

438 TOURETZKY AND HINTON

other units in its clique and a slight inhibitory stimulus to units in all the
other cliques. Thus, Rule space is organized as a “winner-take-all” network
(Feldman & Ballard, 1982); when the network settles, all the units in one
clique will be active and all the remaining units will be inactive. This is how
the system decides which rule to fire.

There are several reasons for implementing rules as collections of units
rather than as individual units. First, it is damage resistant. Second, it
allows binary units to give a graded response.’ If, during the settling phase,
there is a weak match between one rule and working memory, this will be in-
dicated by only some of the corresponding rule units being active. If
another rule matches more strongly, more of the units in its clique will be
active, and they will eventually overpower the units in the other cliques. The
implementation of rules in DCPS is “semidistributed”: Rules are repre-
sented by the collective activity of a set of units, but each unit codes for only
one rule. The problem with using a fully distributed rule representation is
explained in section 11.3.

A further reason for implementing rules with multiple units is that it
frees any one unit from having to represent the entire pattern associated
with a rule’s left-hand side. Each rule unit is connected to a random subset
of all the clause units associated with the rule’s left-hand side; only the
clique as a whole has a complete representation for the rule. This is a more
plausible organization than one in which rules are represented by single
units, since it allows us to limit the connectivity of rule units without limit-
ing the complexity of rules.

As in the case of clause spaces, the problem of building O(M) connections
among rule units can be solved by the use of regulatory units with graded
outputs and a combination of one-way and bidirectional connections, as
shown in Figure 9. Each rule unit excites its clique’s “pro” regulatory unit,
which in turn excites all its siblings in the clique; the unit also receives inhibi-
tion from its clique’s “con” regulatory unit. The regulatory units of the
various cliques are in turn connected to a master regulatory unit that controls
the entire rule space. Each clique’s pro unit has an inhibitory connection to
the corresponding con unit to counterbalance the tendency for a clique to
inhibit itself via the master regulatory unit. As in Figure 8, the recurrent
connections from rule units to themselves, which are needed for absolute
equivalence to the original network, have been omitted.

’ One could implement rules as individual units with continuous rather than binary out-
puts, but the resulting network would not be a Hopfield net or Boltsmann machine. The fact
that our hypothesized regulatory units have graded (either continuous or integer-valued) acti-
vation levels can be ignored because those units are merely used to simulate an equivalent Hop-
field net composed solely of binary state units, with O(M) rather than O(N) connections.

CONNECTIONIST PRODUCTION SYSTEM 439

Figure 9. (a) A winner-take-ail network composed of two cliques with three units each re-
quires (NW)/2 connections. (b) Use of regulatory units with groded response produces the

same effect with only 2N-k3C connections, where C is the number of cliques.

6. VARIABLE BINDING

6.1. Constraints on Rules
The first version of DCPS, called DCPSl, did not allow rules to contain
variables. In developing DCPSZ, which allows a limited form of variable
binding, there were three distinct binding problems to consider:

1. Left-hand sides in which variables impose intraclause constraints, for
example, the clause (=x R =x) can only match triples such as (F R F)
or (G R G).

2. Left-hand sides in which variables impose interclause constraints.
The pair of clauses (=x A B) and (=x C D) can match pairs of triples
such as (F A B) and @ C D) or (G A B) and (G C D), but not (F A B)
and (G C D).

440 TOURETZKY AND HINTON

3. Right-hand side actions in which variables appear. Variable binding re-
quires a memory so that the variable’s value can be instantiated into
right hand side actions when the rule fires.

Each of these problems requires a different type of wiring pattern. Intra-
clause constraints appeared to be the least interesting, since they affect con-
nections from rule space to just one of the two clause spaces. Therefore they
were not included. DCPS2 does include a limited form of interclause con-
straint: each rule must have a variable in the first position of both left-hand
side clauses.s DCPS2 also permits unrestricted use of variables on the right-
hand side. A typical DCPSZ rule is:

Rule-2: (=x A B) (=x CD) => +(G =xP) -(=x R =x)

If this rule fires by matching (F A B) and (I? C D), so that =x is bound to
F, its right-hand side will add (G F P) to working memory and delete (F R F).

6.2. The Structure of Bind Space
Variable binding, which refers both to the imposition of constraints on rule
matching and the instantiation of bound variables, is handled by the fifth
space of units in Figure 1, the bind space.6 The units in this space form a
winner-take-all network with 25 cliques, one for each of the 25 symbols of
the alphabet. The space is coarse coded, so that each unit belongs to three
cliques (votes for three distinct symbols) rather than one. Since bind space
contains a total of 333 units, each symbol falls in the receptive field of
(3/25)x 333 or 40 bind units, except for Y which has only 39.

Each bind unit has a set of bidirectional excitatory connections to units
in Cl and C2 space whose receptive field table contains one or more of the
letters the bind unit votes for. An F/J/W bind unit, for example, connects
to a randomly chosen set of 240 Cl units: 80 that are receptors for triples
beginning with F, 80 for J, and 80 for W. The same bind unit would also
connect to a similar but independently chosen set of 240 C2 units. If a Cl
unit that is a receptor for (F A B) and is connected to this bind unit becomes
active, it will excite the bind unit, which in turn will excite other Cl and C2
units that code for triples beginning with F, J, or W. With many units in the
F bind clique active, C2 space is more likely to adopt an activity pattern
representing a triple beginning with F. The global effect of bind space is that
it forces the Cl and C2 spaces to select triples beginning with the same sym-
bol; that is how the “variable binding constraint” is imposed.

’ This choice was arbitrary; we could have chosen to require that the variable appear, say.
in the first position of clause 1 and the third position of clause 2. The important constraint is
that the variable be in the same position in all rules.

‘ These bind units are similar to the mapping units used by Hinton (1981a) for representing
viewpoint during object recognition.

CONNECTIONIST PRODUCTION SYSTEM 441

The inhibitory connections between cliques in bind space prevent the
number of active bind units from growing much above 40, which is just
enough to activate all the units that vote for a particular symbol as the value
of the bound variable. The stable states of this network (considered in isola-
tion) each consist of one active clique of 40 units, with the remaining units
inactive. But because each unit is a member of three cliques, in a stable state
the winning symbol receives 40 votes whereas the 24 remaining symbols
receive 3 to 4 votes each.’ Even when bind space has settled on a value for
the variable, it is still giving some slight consideration to other values. This
consequence of the coarse coded representation may help the network avoid
getting trapped in local minima when searching for a globally optimal rule
match, though this issue needs further research.

6.3. Representation of Rules with Variables
Rule units do not participate in variable binding or the imposition of varia-
ble binding constraints on the match; they simply match a broader subset of
working memory patterns than when the rule does not contain a variable.
Thus the introduction of left-hand side variables “defocuses” the rule in
some sense; the bind space imposes its own set of constraints on the model,
orthogonal to those of rule space, that sharpens the match again.

In variable-free rules the two left-hand side clauses each specify roughly
28 units per clause space that must be examined to determine whether the
rule should match. When a clause contains one variable instance, the clause
as a whole can match any one of 25 possible triples. But the number of
clause units that must be attended to in order to match any one of these 25
triples is far less than 25 x 28, because similar triples tend to share receptors.
On average, the number of receptors for a clause with one variable instance,
such as (=x A B), is 6’/2S x 2,000 = 115.

It is not necessary to connect each rule unit to every relevant clause unit.
In DCPSZ, rule units connect to only 40 clause units out of 115, or about
one-third of the relevant population. Thus when a rule is totally satisfied,
each rule should be receiving activation from 28 x(40/1 15) = 9.7 units per
clause space. The actual number will vary somewhat due to variance in the
number of receptors per triple, variance in the distribution of active clause
units across the different 4O-unit subsets of clause space, and noise in the
match. Since each rule unit connects to a different random subset of the
relevant clause units, the collective activity of the entire clique of rule units
tends to smooth over the noise and variance problems that individual units
encounter.

’ Each symbol is voted for by 40 units, and each unit votes for 3 symbols, so in a stable state
there are 120 votes to be had. Since 40 go to the winner, the losers average (120-40)/(25-l) = 3.3
votes apiece.

442 TOURETZKY AND HINTON

Although DCPS2 does not include rules with intraclause variable binding
constraints, such as (=x R =x), this has been considered as a possible ex-
tension. A clause that contains two instances of the same variable, like a
clause that contains one, can match any of 25 possible triples. However, the
number of receptors that must be considered is larger, because the 25 triples
have only one element in common instead of two. An estimate of the
number of receptors that match (=x R =x) is:

(6/25) x [l-
19~18~17*16*15~14 _

X 2,000 = 406

Experimentally we have found the value to be about 410. Since clauses
with two instances of the same variable match an average of 410 clause units,
versus 115 for clauses with one variable instance, rule units for two-variable
clauses must look at a much larger subset of each clause space. This reduces
each unit’s capacity for discrimination and increases the variance in the acti-
vation it can receive during a match. These problems might be countered by
invoking the law of large numbers, that is, raising the number of rule and
clause units in the model to compensate for increased variance in the inputs
of individual units.

7. THE MATCH PROCESS

So far we have described a network consisting of five spaces of units: work-
ing memory, Cl, C2, rule, and bind. Working memory units are essentially
latches; they do not perform computation, but their activity pattern drives
the rule match process. Cl, C2, rule, and bind units are wired up in complex
but principled ways. Ignoring the possible use of regulatory units, all units
have binary states, and all connections between units are bidirectionally
symmetrical. The important questions to ask at this point are:
1. What are the stable states of such networks?
2. Under what conditions will a network eventually settle into one of its

stable states?
3. Do stable states bear any relation to valid rule matches?

The first two questions have already been answered by Hopfield (1982).
After reviewing these answers, we will try to present a convincing argument
to deal with the third.

7.1. Hopfield Networks
A Hopfield network is a neural network composed of binary threshold units,
all of whose connections are symmetrical. Hopfield proved that if units
change state asynchronously and there are no transmission delays across
connections, the network’s stable states are those states 01 that minimize a

1
CONNECTIONIST PRODUCTION SYSTEM 443

certain energy measure E(o). Let wij denote the weight of the connection
between the ith andjth units; let ~91 denote the threshold of the ith unit; and
let SP denote the state (0 or 1) of the ith unit when the network as a whole is
in state (Y. Then the energy of a state is the sum of the active units’ thresholds
minus the sum of the weights of connections between pairs of active units:

E(a) = f: ST Oi- ,:j SP Si Wij

This energy measure derives from an analogy Hopfield draws with spin
glasses in physics, which operate under the same sorts of constraints as the
neural networks he was studying. The stable states of these networks are
called local energy minima because energy cannot be lowered any further by
an individual unit’s flipping state. Hopfield showed that networks that
meet his constraints will settle into an energy minimum from any starting
state because each state change either leaves the energy unchanged or
reduces it; thus the energy decreases monotonically as the network moves
from its initial state to a stable state. In general, however, the particular
minimum energy state the network will end up in cannot be predicted from
the starting state, and there is no guarantee that it will be a global mini-
mum8 rather than a local one.

7.2. Matching as Parallel Constraint Satisfaction
The argument that a valid rule match corresponds to a minimum energy
state, in fact, to a, global energy minimum, is based on reformulating the
match as a constraint satisfaction problem. Weighted connections between
units cause them to impose constraints on each other and the energy of a
state is a measure of how much it violates the constraints. So a minimum
energy state is one in which as many constraints are satisfied as possible.
The following sorts of constraints are present:

l Due to their high thresholds, clause units cannot become active unless
their corresponding working memory units are active.

l Due to mutual inhibition, only about 28 clause units can be active simul-
taneously in each space, which is just enough to represent one triple.

l Rule and bind units influence the clause units. A triple can remain active
in Cl or C2 space only if it is supported by a population of rule and
bind units; that is, it must match some rule’s left-hand side and contain
the symbol voted for by the active bind clique in its first position.

l Active clause units excite the rule and the bind units with which they are
compatible. For example, Cl units whose receptive field includes
(F A B) will try to turn on any rule units whose first clause is (=x A B),
and any bind units that support the variable F.

’ A global minimum is a state whose energy is less than or equal to the energy of all other
states the network could be in.

444 TOURETZKY AND HINTON

l Rule space is organized as a winner-take-all network. Rule units excite
others that vote for the same rule and inhibit those that vote for differ-
ent rules.

l Bind units form a coarse-coded winner-take-all network. They excite
other units that vote for the same symbol (or symbols, if they have
more than one in common), and inhibit units that vote for different
symbols.

Considered individually, the Cl, C2, rule, and bind spaces have many
equivalent stable states. For instance, if bind space weren’t connected to the
clause spaces (which in turn are influenced by working memory), its 25
stable states would be completely equivalent; the network would then be
equally likely to settle into any one of them. Rule space has as many stable
states as there are rules; if rule space weren’t connected to the clause spaces
its various stable states would also be equivalent. But considered together,
the spaces interact with each other, which means their stable states are not
equivalent. The parameters have been set so that the only way all the model’s
constraints can be satisfied-thus putting the network into a global energy
minimum-is for the Cl and C2 spaces to settle into representations of
triples that are in fact present in working memory and that match some rule;
for rule space to settle into a state where that particular rule is the winner;
and for bind space to settle into a state representing the symbol in the first
position of the triple in Cl space, which is also in the first position of the
triple in C2 space. The derivation of the model parameters that govern the
interactions between these spaces is discussed in section 9.

Constraint satisfaction in a Hopfield net is not a foolproof match tech-
nique because it is possible for the network to get stuck in a local energy
minimum that does not represent a valid match. This occurs when a winner-
take-all space, either rule or bind, settles so deeply into an undesirable stable
state (e.g., all the units of one incorrect clique on, the remaining units off)
that the other spaces cannot dislodge it.

In practice, the Hopfield net version of DCPS had no trouble finding the
global energy minimum when the answer to the match problem was clear,
However, in more difficult cases where there were many elements in work-
ing memory, many similar rules, or many partial matches possible but only
one correct one, the network would often get stuck in a local minimum. In
order to improve the chances of settling into the global minimum, DCPS
was converted to a Boltzmann machine.

7.3. Boltzmann Machines
A Boltzmann machine (Ackley, Hinton, & Sejnowski, 1985) is a Hopfield
network whose units behave stochastically as a function of their energy gap.
A unit’s energy gap is the amount by which its activation exceeds its thresh-

CONNECTIONIST PRODUCTION SYSTEM 445

old. The energy gap of the ith unit when the rest of the network is in global
state CY, written A&(a), is defined as:

A&(0!) = (C S9 Wij) - Oi
i

While the deterministic units of a Hopfield network turn on whenever
their energy gap is positive, that is, whenever their input exceeds their thresh-
old, in a Boltzmann machine a unit’s energy gap determines only the proba-
bility that it will turn on, in accordance with the Boltzmann distribution. Let
pi(a) denote the probability that the ith unit is in state 1 when the remainder
of the network is in state CY. This probability is given by the formula

Pi(a) =
1

1 + e-aEi(aW

The parameter T in the above equation is called the temperature. At very
high temperatures units behave almost randomly; that is, the probability
that a unit will turn on is approximately 0.5. (It is slightly above 0.5 for
units with large positive energy gaps, slightly below 0.5 for units with large
negative energy gaps.) On the other hand, when the temperature is close to
zero the behavior of the units is almost deterministic; that is, the Boltzmann
machine acts like a Hopfield net (see Figure 10). At moderate temperatures
units tend to turn on when their energy gaps are positive, but they have a
small probability of turning on even if their energy gap is negative, and a
small probability of turning off even if their energy gap is positive. So at
moderate temperatures a Boltzmann machine will occasionally move uphill
in energy space, although the trend is still to move downhill. The higher the
temperature the more likely an uphill move will be made.

._-...- T=l
- T=lO
_--- T=32

4

-100 -50 0 50 100

Figure 10. Graph of the Boltzmonn equation for three different temperature values. This

sigmoid curve shows the probability pi thot a unit will become active as a function of its
energy gap AEI.

446 TOURETZKY AND HINTON

If a Boltzmann machine starts out at high temperature and is very gradu-
ally cooled to a temperature close to zero, it is likely to end up in a state that
is a global energy minimum. The probability that this will happen can be
brought arbitrarily close to 1.0 by lowering the temperature sufficiently
slowly (Geman & Geman, 1984). This stochastic search technique, which is
known as simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), has
been applied with good results to optimization problems unconnected with
neural networks, and has also been applied to a variety of problems in low-
level vision (Marroquin, 1985).

7.4. Matching by Simulated Annealing
The ability to move uphill in energy space allows the Boltzmann version of
DCPS to escape local energy minima as it searches for the global minimum.
In practice, we have not had to use a genuine annealing search in order to
get acceptable performance from the network. When we ran the network at
zero temperature, it got trapped in poor local minima, but we discovered that
this could be avoided by running at three distinct temperatures. Figure 11
shows the temperature schedule used in the current version of the model.

The network is initialized for matching by turning off all rule, bind, and
clause units, leaving it in a zero energy state. Next its state is “randomized”
by running it at a relatively high temperature of 300 for two cycles. A cycle
consists of 2,000 random updates of Cl, C2, rule, and bind spaces. Although

1. Inltlallze: turn off all rule, bind, and clause units.

2. Randomize: run for 2 cycles al temperature 300. This temperature is high enough lo

ensure that all unils which have any chance of being part of the solution have a reasonable

chance of turning on, but it is low enough that completely irrelevant units are unlikely lo be

3. Match: run for up lo 10 cycles at temperature 33; slop if the energy is less than 2500 after

any cycle.

4. Cleanup: run for 4 cycles at a temperature which is effectively zero. (We actually used 0.1

to avoid dividing by zero.)

5. Reblaa: raise the thresholds of all dause. rule, and bind units by 50. 50. and 30.

respectively.

6. Verify: run for 5 cycfes at temperature of effectively zero.

Figure 11. The temperature schedule used in the Roltzmonn machine version of DCPS.

CONNECTIONIST PRODUCTION SYSTEM 447

the updating of units is done randomly, on average each of the 2,000 Cl and
C2 units will get one chance to update its state; the rule and bind spaces,
being smaller, are updated more frequently. Bind units average 2,000/333 = 6
chances per cycle to update their state, and rule units average 2,000/4OZ?
chances, where R is the number of rules. In a six-rule system, rule units
would average 2,000/240 = 8.3 updates per cycle. The unequal update fre-
quencies are an artifact of the way the update algorithm was programmed.
While the particular ratios are not critical, it is probably useful to update
the winner-take-all networks somewhat more frequently than the clause
spaces, to ensure adequate rule and bind space response to each shift in the
clause space patterns.

As Figure 10 shows, units behave fairly randomly at a temperature of
300, but they are still more likely to be active if their energy gap is positive
than negative. At this temperature we have observed that the units that sup-
port the correct match and units that support partial matches are the ones
that are on most often; units unrelated to a legal match become active less
frequently. With so many units on, the energy of the network becomes quite
high; with six rules (240 rule units) it varies between 12,000 and 17,000. See
Figure 12.

The real matching work is performed in the next step of the schedule, at a
temperature of 33. The precipitous drop in temperature from 300 to 33 is
more suggestive of quenching than annealing but has no adverse effect on
the match. The continued activity of rule, bind, and clause units now depends
more strongly on support received from other units, but the network retains
enough flexibility at this moderate temperature to explore various match
possibilities rather than sink into the nearest local minimum. Cliques for a
particular rule in rule space or symbol in bind space may become very active,
fade away, and become active again. Triples may materialize in the clause
spaces, be partly replaced by other triples, and then perhaps return. The

Figure 12. A graph of the energy level as the network fallows the temperoture schedule of
Figure 11. Thin vertical divisions mark temperature changes, with the new temperature
shown at the bottom of the graph. A thick division marks the paint where thresholds are
raised in the rebiosing step.

448 TOURETZKY AND HINTON

energy of the network rises and falls, but the general trend is decreasing.
Once the energy falls below 2,500 or SO,~ the system is deep enough into a
local minimum that it is unlikely to get out, so we move on to the cleanup
step of the temperature schedule. In this step the network is run at a very
low temperature, 0.1. Only units with positive energy gaps will remain active
at this temperature. The result is that the clause spaces are left with roughly
28 units on, rule and bind spaces each have one clique active (40 units on),
and the network is indicating as clearly as possible what it thinks the correct
match should be.

7.5. Detecting Failed Matches
There are two ways in which the match can fail. The simplest is when the
network fails to settle into any energy minimum at all. In this case very few
of the units will have positive energy gaps, so when the temperature drops to
0.1 they will eventually all turn off. The more difficult case to detect is when
the network has settled into a local energy minimum representing a partial
match. The energy of a partial match is moderately negative. When the
temperature drops to zero the network settles to the very bottom of the local
energy minimum and stays there.

All correct matches have energies well below zero; this distinguishes them
from partial matches, at least from the point of view of an external observer.
Inside the connectionist model it is better if the behavior of individual units
does not depend on measuring global properties such as energy. To detect
failed matches without measuring energy directly, we raise the thresholds of
the clause, rule, and bind units by 50,50, and 30, respectively, in the rebias-
ing step of the temperature schedule. This is equivalent to applying an in-
hibitory bias of - 50, - 50, and - 30, respectively, to each unit.‘O If a unit
is getting sufficient support from its neighbors, its energy gap will remain
positive and the unit will remain on. But in a partial match, at least one
winner-take-all space is getting less than full support. For example, suppose
Rule-2, whose left-hand side consists of (=x A B) and (=x CD), is matched
against the triples (F A B) and (G C D). The Rule-2 clique can receive full
support by pulling (F A B) into Cl and (G C D) into C2, but in this case
neither the F nor G bind cliques can get full support. Suppose the F clique
wins in bind space. It will receive full support only from Cl space. It gets
slight support from C2 space because a few of the active (G C D) receptors
will also be (F C D) receptors. There may also be a few (F’ A B) units turned
on in C2 space since they are receiving support from working memory and
the F bind clique, even though they are not supported by any connections

* This value is approximate and was determined empirically.
lo These values were estimated empirically and are probably not optimal.

CONNECTIONIST PRODUCTION SYSTEM 449

from rule space to C2 space. When the temperature goes to 0.1, the network
settles to the bottom of this local energy minimum.

Now rebiasing is performed. Raising thresholds makes the energy gaps of
units in the partly supported bind and C2 spaces negative, causing them to
turn off. This in turn robs the rule and Cl units of support; as their energy
gaps go negative, they turn off as well. The network ends up in the zero
energy state in which all units are off. The partial match has been rejected.
This outcome is illustrated by the energy trace in Figure 13.

One might wonder why the thresholds of the rule, bind, and clause units
were not originally set at the higher level, eliminating the need for rebiasing.
The reason can be seen in Figure 14, which shows schematically the effect of

Figure 13. Detection of a portiol match by rebiosing. Energy drops to zero OS unit turns off

ofter their thresholds ore roised.

Figure 14. Effect of rebiosing on the energy londscope. The global energy minimum
becomes o deep but narrower energy minimum. States representing local energy minima

end up on o slope leading down to a zero energy stote.

450 TOURETZKY AND HINTON

rebiasing on the energy landscape. II After rebiasing, the partial match state
that was a local energy minimum is now located on a slope that leads down
to the zero energy state with all units turned off. But the correct match
state, formerly the global energy minimum, is now a local minimum whose
energy is substantially positive. Thus, if the match were performed with the
higher thresholds in place at the start, the network could find a better state
simply by turning all its units off. When rebiasing is delayed until a low
temperature has been reached, the network remains trapped in the state
(now with positive energy, but still a local minimum) it was in if it managed
to find the correct match.

Another effect of rebiasing visible in Figure 14 is that the energy well
corresponding to a valid match is steeper and narrower than before, making
it more difficult for the stochastic search to find if the network were not
already in the well when rebiasing occurred. When the thresholds are raised
with the model in a valid match state, the energy gaps of active clause, rule
and bind units, although still positive, are left only slightly above threshold.
The units are therefore critically dependent on support from all their neigh-
bors. If the network moves any appreciable distance from this optimal point
in state space it will no longer be in the energy well. Once the energy gaps of
the active units go negative, the model will be more likely to move downhill
to the zero energy state than uphill where it might fall back into the valid
match energy well.

We have also considered the possibility of more flexible temperature
schedules for coping with failed matches. After running for 10 cycles in the
match phase at a temperature of 33, if the energy is not low enough for the
network to have settled into the global minimum, it is probably in a state in-
dicating a partly valid match. Either rule space has settled onto the right rule
but bind space picked the wrong symbol, or else the reverse has occurred.
To recover, we could run for a few cycles at a slightly higher temperature,
around 40, to kick the network out of its local minimum, and then enter the
match phase again.

8. RULE FIRING

After a rule has matched successfully it must be fired, which means perform-
ing its right-hand side actions that update working memory. The ability of
rules to update a persistent symbol structure whose contents determine the
next rule that will match is what enables DCPS to exhibit interesting sequen-
tial behavior. We first consider the problem of right-hand side update

I’ The true energy lnndscnpc is not continuous, nor con it be rcprcscntcd by n two-dimcn-
sional graph. It is an assignment of rcol values IO the 2N corners ol’an N-dimensional boolean
hypcrcubc,rcprescming the aiatcs of the network, whcrc N is the number of unhs.

CONNECTION&T PRODUCTION SYSTEM 451

actions that are variable-free, and then move on to the general case where
variables may appear in any position of a triple.

8.1. Variable-Free Actlons
The right-hand sides of rules are implemented in DCPS as globally gated
connections from rule units back to working memory units. The gate is closed
during the match process so that rule units cannot affect working memory
at all. During the rule firing portion of the production system’s recogdize-
act cycle the gate is opened briefly; at this time, rule units that excite or in-
hibit working memory units can cause them to change their state. In the
absence of outside stimuli, working memory units have a built-in hysteresis
property that causes them to retain their current state. When the gate is
closed prior to the next match cycle, working memory will be frozen in its
updated state.

Consider the rule units that implement Rule-l, This rule adds the triples
(G A B) and (P D Q) to working memory and deletes (F C D). The units that
implement Rule-l will have gated excitatory connections to (G A B) and
(P D Q) receptors, and gated inhibitory connections to (F C D) receptors.
The hysteresis levels of working memory units are set so that no one rule
unit can force them to change state; instead, the concerted action of several
units is required. This is another feature of the model that contributes to its
tolerance for unreliability in individual components: If a few random rule
units fire spontaneously, they will have no effect on working memory.

Architectures with one-way and/or gated connections admittedly violate
the definitions of a Hopfield network or a Boltzmann machine. DCPS re-
quires these types of connections in order to produce sequential behavior;
without them it would simply settle into an energy minimum and stay there.
Fortunately these special connections only come into play during the rule
firing phase of the recognize-act cycle. In the rule-matching phase the net-
work is equivalent to one that is a pure Hopfield net/Boltzmann machine,
because all the functioning connections are bidirectional and there are no
gates opening or closing. The previously cited theoretical results of Hopfield
and of Hinton and Sejnowski are therefore applicable to DCPS.”

8.2. Actlons Requlrlnp Inetantlated Variable Values
To instantiate variable values into right-hand-side actions requires a coopera-
tive effort between rule and bind spaces. Consider the -t- (G -x P) action
in Rule-2. The Rule-2 units would collectively make excitatory connections
to all working memory units that are receptors of (G =x P) for any value
of - x. On average there will be 6’/25’ x 2,000, or roughly 115 such working

Is A similar “equivalent network” argument can be made for the uac of regulatory udla,
even though those units exert their influence during the match phase.

452 TOURETZKY AND HINTON

Figure 15. Right-hand-side actions involving voriobles are goted by excitatory connections

from bind units onto the synapses that rule units make with working memory units.

memory units. However, these connections are individually gated by bind
unit cliques: Connections (synapses) from rule units to working memory
units are only effective if the connection itself receives some excitatory stim-
ulation from bind units (see Figure 15). This is equivalent to saying that the
input to working memory units is the conjunction of the activity coming
from a rule unit and a clique of bind units. ” Thus, if the network has settled
into a state where the F clique is the winner in bind space, only connections
from rule units to units that are receptors for (G F P) will be enabled. Each
such connection from rule space back to working memory must be stimulated
by several bind units in order to be effective; this is necessary because‘indi-
vidual bind units vote for three different symbols; only the collection as a
whole votes for a unique symbol. The requirement for support from multiple
bind units also makes the network resistant to noise that could occur during
rule firing due to randomly malfunctioning bind units.

Gated connections are also needed to allow actions to delete items from
memory, because bind units by themselves have no way to tell whether the
value they represent is needed for an add action or a delete action. In the
case of delete actions such as - (=x R =x), the connections from rule units

” The use of gated (or conjunctive) connections may appear to violate the normal ground
rules of connectionist modeling. It is not difficult. however, to find biological structures that
exhibit the crucial property of gated connections: a local nonlinear interaction between two
synapses. Poggio and Torre (1978) have shown that such interactions can be expected to occur
in the dendrites of cortical neurons, and Kandel and Schwartz (1982) have demonstrated the
importance, in the sea slug Aplyskr, of presynaptic facilitation, which is a different way of
achieving local, nonlinear synaptic interactions.

CONNECTIONIST PRODUCTION SYSTEM 453

to working memory are inhibitory, but the bind units’ effects are always ex-
citatory. By using gated connections, we allow the bind units to select the in-
hibitory connections that will be allowed to influence working memory.

8.3. Functions on Variable Values
Instead of instantiating the exact value of a variable into right-hand-side
actions, we can instantiate some function of that value. The function will be
“computed” by the gating pattern that bind units apply to the rule units’
connections to working memory. For example, consider the increment and
decrement functions. We will use > x and < x in right-hand-side actions to
denote values one greater and one less than the value to which the variable is
bound; for example, if the variable is bound to F, then cx appearing in a
right-hand-side action would be instantiated as E and >x as G. Modular
arithmetic should be used so that every symbol has a successor and prede-
cessor: The successor of Y is A, and the predecessor of A is Y.

Figure 16 shows how the increment function could be used to step through
a series of working memory elements sequentially by bumping a counter.
The left-hand-side pattern (=x R R) refers to the counter value, which is
maintained as a triple in working memory and incremented by a right-hand-
side action. On successive firings, rule Seq-1 will step through the triples
(A R R), (B R R), (C R R), and so forth, and leave behind another trail of
triples (A B A), (B C B), and so on.

The implementation of the increment and decrement functions is straight-
forward. In actions that don’t cqmpute functions of the bound variable,
such as - (=x R R), the rule units make connections to all working memory
units that could match the action, and each connection is gated by bind units
of the appropriate type. For example, a connection from a rule unit to an
(A R R) unit would be gated by a set of bind units that vote for A, while a
connection to a (B R R) unit would be gated by bind units that vote for B.
To compute a function on the right-hand side, the connections that imple-
ment the right-hand-side action are simply gated by bind units specified by
the function. Thus, in rule Seq-1, the increment function that appears in
+ (> x R R) can be implemented by using bind units that vote for A to gate
(B R R) connections, bind units that vote for B to gate (C R R) connections,

Rula:

seq-1: (‘xRR) (-xRR) a -t-x R R) +G’xRR) +(-x>x-x)

Inltlal contents of worktng memory:

(A R RI

Figure 16. Use of right-hand-side increment function to step a counter.

454 TOURETZKY AND HINTON

and so on. Any mapping from symbols to symbols can be computed in this
way.

9. DERIVATION OF MODEL PARAMETERS

In this section we review all the parameters of the model. We first distinguish
arbitrarily chosen parameter values from theoretically well-motivated ones,
and then demonstrate the combination of mathematical analysis and em-
pirical testing that led to the derivations of the latter.

The 254etter alphabet size and the 2,000-unit working memory size are
obviously arbitrary. We chose triples for the working memory elements be-
cause they are relatively simple structures, yet complex enough to represent
any directed graph. Semantic networks are often encoded as triples for this
reason; for example, the triple (A R B) can encode a link of type R from A
to B. Any structure simpler than triples would rob the model of representa-
tional power; structures larger than triples pose no theoretical difficulty for
DCPS, but require exponentially greater computing resources for a given
alphabet size.

The receptive field table size, six letters per column, represents a compro-
mise between conflicting desires. On the one hand, having a lot of receptors
for each triple makes the model robust by providing immunity to noise. The
number of receptors per triple can be increased by increasing the size of
receptive field tables (going to “coarser” units). On the other hand, moving
to coarser units reduces the number of triples that can be stored simulta-
neously before cross-talk becomes excessive. The mathematics of this trade-
off are discussed by Rosenfeld and Touretzky (1988).

Another consideration in designing the working memory, which also
occurs in several other places in the model, is the need to minimize variance
from the expected value of a parameter. In the present scheme, where the
expected number of receptors per triple is 28, when receptive fields are ran-
domly generated the actual number of receptors per triple is binomially dis-
tributed with substantial variance. The variance in the number of receptors
per triple must be small for the model to work reliably. If one triple has 19
receptors and another has 40, even when the first triple is 100% active it will
appear weaker than the second triple at 60% activity. One way to reduce
this variance would be to increase the number of units, but that was deemed
impractical due to the memory limitations of the Lisp Machine. Instead we
attacked the problem by generating pseudorandom receptive field tables
that give the same mean number of receptors per triple as the random ap-
proach, but far less variance. The procedure we used to generate the table is
described in Appendix B. A third way to reduce the variance would be to
make each unit coarser, subject to the memory capacity tradeoff mentioned
previously.

CONNECTIONIST PRODUCTION SYSTEM 455

In bind space, the decision to have each bind unit vote for 3 letters was
also a compromise. On the one hand, the larger the receptive field of a bind
unit, the fewer the number of units needed; on the other hand, if the recep-
tive fields are too large the model will lose its ability to discriminate one let-
ter from another. Given our purely arbitrary decision that each letter should
be supported by a clique of 40 units, a local winner-take-all implementation
would require 1,000 bind units total. Letting each bind unit vote for 3 letters
reduces the number of units to 333 (with only 39 units for Y instead of 40)
without harming the model’s accuracy. The collective effect of 40 coarse-
coded bind units voting for one letter outweighs the 40 x (3 - 1) = 80 votes
they generate for the other 24 letters, since the latter get an average of just
3.3 votes each. The decision that rule cliques should have 40 units each was
also arbitrary.

The next set of choices involve the connectivities of individual units. Re-
call that the expected number of clause units that match a clause containing
a single variable, such as (=x A B), is (6125)’ x 2,000 = 115. We arbitrarily
decided to allow each rule unit to connect to 40 units in Cl space and
another 40 in C2 space, meaning it covers approximately one-third of the
population specified by the rule’s left-hand side.

To wire up the bind units, we note that each letter appears in column one
of (6/25) x 2,000 =480 units’ receptive field tables. We arbitrarily decided
to allow each bind unit to connect to 80 units in Cl space and another 80 in
C2 space for each of its three letters, yielding a total of 240 connections to
each clause space. For simplicity in programming the model, the 80 connec-

tions were chosen independently for each letter, so a bind unit could poten-
tially have as many as three connections to one clause unit if they had more
than one letter in common. Two hundred and forty connections is again
substantially less than the entire population of 3 x 480 = 1,440. The reduced
connectivity demonstrates that the model as a whole can produce correct
behavior even when individual units have only limited knowledge of the
global state.

The most difficult parameters to derive were the weights for the various
connection types. The match process demands a delicate balance among a
number of constraint types, so that no one constraint will dominate or be ig-
nored. There is only one inviolable constraint: A clause unit should never
turn on if its corresponding working memory unit isn’t on. This was assured
by giving the clause units very high thresholds, and the connections from
WM to the clause spaces very high weights. We chose a value of 900; all
other weights in the model are integers less than 10. (The model is restricted
to integer weights for speed.)

Before proceeding to the derivation of the remaining weights, we first
consider what the network will look like when it has found a perfect match
and is sitting in what should be a global energy minimum. There will be 40

456 TOURETZKY AND HINTON

rule units, 40 bind units, and on average 28 Cl units and 28 C2 units active.
Even though the number of active rule and bind units is equal, the connec-
tions these two types of units make to the clause spaces do not deserve
equal weight, as the combinatorial analysis below indicates.

In a perfect match, the average number of connections an active clause
unit will have to active rule units is (40/l 15) x 40 = 13.9. The average num-
ber of connections an active clause unit will have to the active bind units is:

(80/480) x 40 x [1 + 5/24 + 5/24] = 9.4

The 5/24 terms account for the fact that bind and clause units both vote
for more than one letter. Consider the clause unit whose receptive field was
given in Figure 2. The first column of its receptive field table is C/F/M/Q/
S/W. If it is active because (F A B) is the winning triple in that clause space,
most of its input from bind space will come from bind units that include the
C/F/M/Q/S/W unit among their 80 F connections, such as an F/J/W bind
unit. But the F/J/W unit might have another connection to the clause unit
because they both vote for W. And other bind units, such as an F/M/V
unit, that do not happen to include this clause unit among.their 80 F connec-
tions, might still vote for it because they have another letter in common: in
this case, M. These coincidental effects cannot be ignored; they account for
roughly 29% of the clause unit’s input from bind space.

To balance the influence of rule and bind units on clause units, we set
the weight of connections between rule and clause space to +5, and the
weight of connections between bind and clause space to + 7. Then the aver-
age rule input of 13.9 x + 5 = + 69.5 closely matches the average bind input
of 9.4x +7= +65.8.

Next there is the issue of lateral inhibitory and excitatory weights within
the two winner-take-all spaces. Each rule unit excites its siblings, which vote
for the same rule, and inhibits rival units which vote for other rules, The
competitive effect must be strong enough to force the space into a stable state
where only one clique is active, but not so strong as to overpower the influ-
ence of the clause spaces in selecting the proper clique to be the winner. This
consideration led us to set the rule unit sibling excitation weight at + 2, and
the rival inhibition weight at - 2. Returning to the case of the ideal match, a
rule unit in the winning clique will recieve an excitation of 39 x +2= +78
from its siblings. It will also be connected to roughly 40 x (28/115) =9.7
active clause units in each clause space, but there is substantial variance in
this figure since the rule units’ connections to clause space are determined
by picking random subsets of the 115 units. The expected excitation from
the two clause spaces is 9.7 x + 5 x 2 = + 97, giving the rule unit a net input
of + 175. By comparison, a rule unit with only one of its two left-hand-side
clauses satisfied will receive excitation of + 49, and inhibition of - 80 from
the winning rule clique, giving a net input of - 31.

CONNECTIONIST PRODUCTION SYSTEM 457

In order to set the thresholds of rule units we must again take variance
into account. To make the model robust we chose a lower bound of five
active connections per clause space rather than the expected 9.7. When re-
biasing has been performed there will be an additional inhibitory input of
- 50, so after rebiasing the worst case net input to a rule unit in the winning
clique is (2 x 5 x + 5) + (39 x + 2) - 50 = + 78. We therefore set the rule unit’s
threshold at 69, giving it an energy gap of + 9 in the worst case and + 56 in
the average case. Besides the need for a positive energy-gap, another reason
for setting the threshold somewhat below the worst-case activation level is
that during the early part of the match phase there may be even fewer units
on for the correct rule than at the end of the worst-case correct match; there
is also likely to be some inhibitory input from rule units in other cliques that
haven’t died out yet.

The bind space weights and thresholds were determined by an analogous
procedure. First, the expected number of connections between an active
bind unit and the active units in one clause space is:

(80/480) x 28 x [I + 5/24 + 5/24] = 6.6

Due to variance, we set the lower bound on a bind unit’s activation from
clause units at 4.5 from each space, or 9 units total. We set the weights be-
tween bind units in the same clique (i.e., units that have at least one letter in
common) to + 1. This gives bind units in the winning clique a net input of
(2 x 4.5 x + 7) + (39 x + 1) = + 102. Rebiasing contributes an (empirically
chosen) value of - 30. Therefore we set the bind unit’s threshold at + 63,
giving an energy gap of + 9 in the worst case and + 68 in the average case. A
value of - 2 for the inhibitory weight between bind units in different cliques
was determined by experimentation.

Although many of the model’s weights and thresholds can be justified
analytically in retrospect, in building the model we relied heavily on experi-
mentation and measurement. Our initial combinatorial analyses were less
sophisticated than what is presented here, and we made no attempt to
predict variance, only means. In practice it suffices to use the mean’inputs
to a unit for an initial estimate of the correct weights, thresholds, and re-
biasing parameters, and then tune these values empirically to account for
variance and other factors.

Finally, we come to the issue of lateral inhibition in the two clause spaces.
The inhibition must be set high enough to allow only about 28 units per
clause space to remain active; the units that are selected will be the ones that
receive the most support from’ the winning rule and bind cliques. We chose a
lateral inhibition weight of -2 for clause space units. In an ideal match,
each clause unit will receive an input of + 900 from its corresponding work-
ing memory unit, + 5 from each of approximately 13.9 rule units, + 7 from
each of approximately 9.4 bind units, -2 from each of approximately 27

458 TOURETZKY AND HINTON

other clause units, and - 50 from the rebiasing, yielding a net input of 93 1.
We therefore set the clause unit threshold at 901 to leave room for variance
in the rule and bind inputs, and to maintain a positive energy gap.

10. EXPERIMENTAL RESULTS

10.1. Measured Performance
DCPS has run a 6-rule loop overnight through more than 1,000 rule firings
without error. Working memory contained two triples at a time, and each
rule firing involved one addition and one deletion. In the current version of
the model, a rule match takes about 90 seconds on a Symbolics 3600 running
Common Lisp. Part of this time is spent updating a graphic display as each
unit changes state, so that the network’s progress can be monitored during
the match.

The number of rules the system can represent appears to be limited only
by synergistic effects (explained shortly) and by the number of possible par-
tial matches during each search. The largest production system we have run
to date, which used a slightly modified version of DCPS as part of a parse
tree manipulation task, had 17 rules (Touretzky, 1986b).

The matching portion of an annealing typically involves two to six probes
of each clause unit, where a probe consists of computing the unit’s energy
gap, deciding whether or not it will change state, and notifying its neighbors
if its state does change. Failed matches are detected after 10 cycles, when the
cleanup portion of the temperature schedule is begun.

10.2. Difficult Match Cases
Early in the development of DCPS we adopted the simplifying assumption
that match problems would always have unique answers, so that only one
rule and one variable binding could constitute a valid match. This allowed
us to avoid the issue of conflict resolution (Brownston, Farrell, Kant, &
Martin, 1985), which, although interesting, is not central to our current
enterprise. But even with this simplifying assumption some match problems
are more demanding than others, and situations can be contrived in which
DCPS has difficulty finding the correct solution. Two such situations are
discussed below.

In the simplest match cases there are no partial matches to worry about;
the triples in working memory that do not match the winning rule do not
match any of the other rules either. In more complex cases several feasible-
looking matches exist with relatively low energy states; the system is forced
to search among them to find the lowest one. This involves calling up differ-
ent triples in the clause spaces for each possibility. As the number of partial
matches increases, DCPS becomes more likely to settle into a local minimum
representing a partly successful match rather than finding the lowest energy

CONNECTIONIST PRODUCTION SYSTEM 459

state associated with the one correct match. Figure 17 shows a set of rules
and working memory elements that produce this behavior. In theory, an-
nealing long enough and slowly enough would solve the problem, since the
correct match is always a deeper energy minimum than any partial match.

In this match scenario there are six triples in working memory; the clause
spaces must select from among the 36 possible ways to form a pair of triples
the one combination the produces a correct match. What makes this prob-
lem difficult is the fact that four pairs of triples have fairly deep energy
minima representing almost-successful partial matches (see Table 4). In
these partial matches, either both clauses on the left-hand-side of Rule
Comb-l or Comb-2 are satisfied but the variable binding constraint is not,
or else only one of the left-hand-side clauses is satisfied but the variable bind-
ing constraint is met because both clause spaces support the same bind clique
(J or K.) The source of the combinatorial confusion is the fact that all three
rules and all three bind cliques are capable of getting full support from the
clause spaces, so it’s difficult to choose among them; what differentiates
partial from complete matches is the fact that rule and bind space can’t borh
get full support except when the rule is Comb-3 and the variable =x is
bound to M.

Contents ot working memory:

(J A Al (K B 8)
(K C C) (J D D)
(H E E) IN r k-1

Figure 17. A match situotion in which combinotoriol complexity hinders the search for o

volid match.

TABLE 4

The four partial matches generated by the rules in Figure 17 hove fairly deep energy
minima. but there is a global minimum, representing the one complete match,

in which all constraints are satisfied.

Degree Triple in
of Match Clause 1

Partial (J A A)
Partial (J A A)
Partial W C Cl
Partial (K C Cl
Complete (M E El

Partial and Complete Matches

Triple in
Clause 2 Rule Supported Binding Supported

(K B 6) Comb-l holf J, half K

(J D D) half Comb-l. half Comb-2 J

(J D D) Comb-2 half J. half K

(K B 8) half Comb-l, holf Comb-2 K

(M F F) Comb-3 M

4&l TOURELXY AND HINTON

DCPS does not search a combinatorial space by sequentially enumerating
the possibilities. The partial representations of competing triples coexist
simultaneously in the clause spaces, while rule and bind winner-take-all
spaces host similar competitions. The stochastic nature of the Boltzma~
machine causes some competitors in a space to fade out, and possibly fade
back in again, until the network as a whole settles deeply enough into an
energy minimum that a clear winner emerges in each space.

Figure 18 illustrates another contrived case where it is difficult for DCPS
to conclude the match correctly. (M .T J) is present in working memory but
none of the rules Syn-1 through Syn-4 can match, due to their second clause.
While all rules compete with each other as a result of being in a winner-take-
all network, the Syn rules also help each other by supporting (M J J) as the
fust clause. This unwanted synergy, which occurs whenever failing rules
have related left-hand sides, interferes with the search for the correct match.
Ln order to find this match, the lone Anti rule must override the four Syn
rules and get the pattern for (M R R) into Cl space. The more Syn rules
there are to support (hi J J), the harder this will be.

11. DISCUSSION

11.1. Alternative Implementations of Working Memory
There are two broad approaches to implementing a working memory in a
connectionist network. The obvious method, which we use here, is to set
aside a separate group of units whose activity encodes the current contents
of working memory. A less obvious alternative is to use temporary modifi-
cations of connection strengths to make it easier to recreate patterns of activ-
ity that have recently occurred. The advantage of this second method is that
it does not require any extra units to act as a memory, and the memory is
automatically content-addressable-recent patterns can be reconstructed

-1: t-x J J) 1-x A A) s . . .

syn-3: 1-x J J) l-s C C) . . .

@-Id: t-x J J) l-x D D, a . . .

AMi: t-x R RI t-x s S) 3 . . .

(I4 J J)
w R RI
u4 s S)

Ffgure 18. A match situation in which synergistic action between four rules that generate
partial matches can prevent the system from finding the correct match.

CONNECTIONIST PRODUCTION SYSTEM 461

from any sufficiently large subpattern. A particularly simple version of the
second method is to implement working memory by temporarily lowering
thresholds. In DCPSl, for example, the only effect of the units in the work-
ing memory space is to provide additional input to units in Cl and C2 space,
so we could remove the working memory units and exactly mimic their ef-
fects by temporary reductions of the thresholds of units in the clause spaces.
This would also get rid of all the one-to-one connections between the work-
ing memory and clause spaces.

One disadvantage of using thresholds instead of units is that each time a
new item is inserted (or deleted) it is necessary to lower-(or raise) thresholds
in both clause spaces, because there is no way of knowing in advance whether
the item will subsequently match the first or the second clause of a rule.

Some important properties of the working memory are broadly indepen-
dent of whether it is implemented as activity levels, temporary threshold
changes, or temporary weight changes. Because the working memory for
each item is distributed over many units, thresholds, or weights, there will
be interference if more than a few items are stored at once, and the interfer-
ence will be greater as the items become more similar. This is a necessary
consequence of using distributed representations to allow many more possi-
ble items than there are storage sites. We interpret the well-known limita-
tions of human short-term memory as an indication that it too may involve
the use of distributed representations.

11.2. Multiple Interacting Distributed Representations
In the introduction we alluded to a problem that arises when there are inter-
actions between several groups of units that each use distributed representa-
tions. Each unit takes part in the representation of many different items and
its causal effects on units in other spaces must reflect this fact. This means
that a unit in one space will generally provide excitatory input to a great
many units in another space, and so there is a danger that the activation
within each space will become more and more diffuse as time progresses. In
DCPS, the tendency for activation to become more diffuse is counteracted
by using lateral inhibition within the spaces. This suppresses units that are
only supported by a small fraction of the units in other spaces and concen-
trates the activation on units which receive multiple excitatory inputs.

Winner-take-all networks, bind spaces, clause spaces (or pullout net-
works), and coarse-coded symbol representations are generally useful bits
of machinery that have been profitably incorporated into other connection-
ist models. Touretzky (1986a) describes a system for manipulating recursive
data structures, called BoltzCONS, that was assembled by rearranging the
components of DCPS. BoltzCONS has only one pullout network instead of
two, but it has three independent bind spaces. The bind spaces disassemble
a triple into its component symbols. Gated connections were later intro-
duced between the bind spaces of BoltzCONS and DCPS to allow the two

462 TOURETZKY AND HINTON

networks to pass symbols back and forth in a rule-based tree manipulation
task (Touretzky, 1986b).

11.3. Why Rules Are Semidistributed
Working memory, clause, and bind spaces all use fully distributed represen-
tations, but the representation of rules in DCPS is “semidistributed.” Rules
are represented by collections of units, but each unit is associated with a
only a single rule rather than being coarse coded. Sharing units between
similar rules is counterproductive in this architecture, because rules with
similar left-hand sides may have totally dissimilar or even directly opposed
right-hand sides. Consider the two rules Sim-1 and Sim-2 below: One tries
to add the triple (H H H) and one tries to delete it. The rule units common
to Sim-1 and Sim-2, which should be in the majority because the rules are so
similar, would have both excitatory and inhibitory connections to (H H H)
working memory units. Thus, the majority.of the rule units would have no
action at all. More sophisticated versions of DCPS, which we are presently
considering, may be able to exploit similarity among rules by segregating
left-hand-side and right-hand-side operations into different collections of
units.

Sim-l:(=xAB)(=xCD) => +(HHH)
Sim-2:(=xBB) (=xCD) => -(HHH)

11.4. Similarity and Generalization
One automatic consequence of using distributed representations is that sim-
ilar items tend to have similar effects. This is a helpful effect if the particu-
lar distributed patterns that are used impose a similarity metric that reflects
the important distinctions in the domain. If, for example, “cheese” and
“chalk” have rather different representations but “cheese” and “cheddar”
have rather similar representations, a connectionist network will tend to
make sensible generalizations (Hinton et al., 1986). There have been many
demonstrations of this effect when the experimenter chooses the distributed
representations (Hinton, 1981c; Rumelhart & McClelland, 1986). More re-
cently, Hinton (1986) has described a network that can construct the appro-
priate distributed representations for itself, so the generalizations cannot be
said to have been determined by the experimenter.

DCPS does not currently make any use of similarity between triples or
between rules, and it therefore fails to make good use of the properties that
a connectionist implementation could provide. We view DCPS as only the
first step in the development of connectionist symbol manipulation archi-
tectures. Future advances should lead to models which make better use of
the powerful constraint satisfaction and generalization abilities of connec-
tionist networks. Such models would be more than mere implementations
of conventional symbol processing ideas because the connectionist substrate

CONNECTIONIST PRODUCTION SYSTEM 463

would provide important computational properties that are not available in
standard implementations.

11.5. Seriality and Variable Binding
DCPS is implemented in a massively parallel network and yet is it is unable
to bind the variables in more than one rule at a time. It can perform a
parallel search over rules that contain variables to discover which rule fits
the contents of working memory best and during this search it considers
many different rules and many different variable bindings in parallel, but it
is unable to represent particular conjunctions of rules and variable bind-
ings. Its only method of representing such a conjunction is by settling on a
single rule and a single binding of each variable. This means that it is using
simultaneity to represent the binding, and simultaneity cannot be used for
representing several different bindings at once.

Many different variable bindings could be explicitly represented at the
same time if we dedicated a separate unit to each possible conjunction of a
rule and a variable binding, but this is equivalent to eliminating variables
altogether by having many different, variable-free versions of each rule.
Newell (1980) has advanced the idea that variable binding may be one of the
things that forces people to be sequential processors, and DCPS corroborates
this view. By separating the rule space from the bind space we achieve great
economies in the number of units required, but the cost is that the only way
to represent explicitly which binding goes with which rule is to settle on one
bound rule at a time.

APPENDIX A. MODEL PARAMETERS

DCPS is one of the largest connectionist models built to date. Tables A-l
through A-3 give the number of units in each space and the types, numbers,
and weights of their connections. (The table gives total numbers of connec-
tions, not numbers of connections from active units during a valid match.)
Thresholds are expressed as connections with weight -0 to a “true unit”
whose state is always 1.

TABLE A-l
Parameters of Clause Units

Clause Spaces: 2ooO units each

Source of Number of
Connections Connections

Weight per

Connection

Working memory unit 1
Other clause units 1999
Rule units avg. 7 per rule
Bind units avg. 40
True unit 1

+900
-2
+5
+7

-901

(mutual inhib/t/on)

(threshold)

464 TOURETZKY AND HINTON

TABLE A-2
Parameters of Rule Units

Rule Space: 40 units per rule

Source of Number of
Connections Connections

Weight per
Connection

Cl clause units 40

C2 clause units 40
Sibling rule units 39
Rivol rule units 40 per rival rule

WM units (gated) 40 per RHS action

True unit 1

+5
+5
+2
-2

n/a

-69 (threshold)

TABLE A-3

Parameters of Bind Units

Bind Space: 333 coarse coded units: 3 letters per unit, 40 units per letter.

Source of Number of Weight per

Connections Connections Connection

Cl clause units 240 +7
C2 clause units 240 +7
Sibling bind units avg. 107 +1
Rival bind units avg. 225 -2
True unit 1 -63 (threshold)

APPENDIX B. GENERATING RECEPTIVE FIELDS
FOR WORKING MEMORY UNITS

In our simulation, each triple in working memory is represented by activity
in about 28 units. We initially chose the receptive fields of working memory
units at random in the obvious way.: Six different random letters are chosen
for the first position, six for the second, and six for the third. Unfortunately
this introduces large sampling errors. Triples represented by as few as 20 or
as many as 36 active units are quite common. This can make it hard to dis-
tinguish between triples that are present but have few units to represent
them and triples that are absent but have accidental activation in some of
their many units. If the expected number of active units per triple was much
larger than 28, the law of large numbers would eliminate this problem, but
in our simulation we used a heuristic method for making the number of
units per triple be more uniform.

We started with a set of receptive fields that were chosen so that every let-
ter occurred equally often in each of the three positions. We then considered
all possible triples, and recorded how many units encoded each triple. We
defined a cost function which was the sum (over all ,possible triples) of the

CONNECTIONIST PRODUCTION SYSTEM 465

square of the difference between 6’/25’ x 2,000 = 27.648 and the number of
units encoding the triple. This measure is minimized when the number of
units per triple is as uniform as possible. We performed gradient descent in
this cost function by selecting moves which reduced the cost function but
preserved the number of times a letter occurred in each position. A candi-
date move consisted of taking the receptive fields of two units and swapping
two letters in corresponding positions. If, for example, two letters from the
second position are swapped, the two receptive fields

((A 6 C D E F) (G H I J K L) (MNOPQR))
((T U V W X Y) (P Q R S T U) (A C E G I K))

might become

((A B C D E F) (G H R J K L) (M N 0 P Q R))
((T U V W X Y) (P Q I S T U) (A C E G I K))

Candidate moves were selected at random, and were accepted whenever
they reduced the cost function or left it unaltered. This was continued until
no more improvements were encountered. We considered using simulated
annealing to improve the solution, but simple gradient descent was already
rather slow and it gave an adequate solution. The standard deviation was
reduced from 4.9 to 1.5.

n Original Submission Date: January 1987;
Resubmission and Acceptance December 1987

REFERENCES

Ackley, D.H., Hinton, G.E., & Sejnowski. T.J. (1985). A learning algorithm for Boltzmann
machines. Cognitive Science, 9, 147-169.

Ballard, D.H., &Hayes, P.J. (1984, June). Parallel logical inference. Proceedingsofthe Sixrh
Annual Coqference of the Cognitive Science Society (pp. 114-123). Boulder, CO.

Ballard, D.H. (1986). Parallel logical inference and energy minimization. (Tech. Rep. No. TR
142). Computer Science Department, University of Rochester, Rochester, NY.

Bamden, J.A. (1984). On short-term information processing in connectionist theories. Cogni-
tion and Brain Theory, 7, 2569.

Brownston, L., Farrell, R., Kant, B., & Martin, N. (1985). Programming Expert Systems in
OPSS. New York: Addison-Wesley.

Derthick, M.A., 13 Plaut, D.C. (1986, August). Is distributed connectionism compatible with
the physical symbol system hypothesis? Proceedings of the Eighth Annual Coqference
of the Cognitive Science Society (pp. 639-644). Amherst, MA.

Feldman, J.A., & Ballard, D.H. (1982). Connectionist models and their properties. Cognitive
Science, 6, 205-254.

Feldman, J.A. (1986). Neural representation of conceptual knowledge. (Tech. Rep. No. TR-
189). Department of Computer Science, University of Rochester, Rochester, NY.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bay&m
restoration of images. IEEE Tbansactions on Pattern Analysis andMachine Intelligence,
6, 721-741.

466 TOURRZKY AND HINTON

Hinton, GE. (1981a, Augun). A parallel computation that assigns canonical object-based
frames of reference. Proceedings o/ the Seven/h International Joint Coqference on
Arrificial Intelligence, Vol. 2 (pp. 683485). Vancouver. EC, Canada.

Hinton, GE. (198lb. August). Shape representation in parallel systems. Proceedings 01 the
Seventh International Joint Corlfrnnce on Artijicial Intelligence, Vol. 2 (pp.
1088-1996). Vancouver, BC. Canada.

Hinton, GE. (1981c). Implementing semantic networks in parallel hardware. In GE. Hinton
& J.A. Anderson (Eds.), Parallel Mode& of Associative Memory. Hillsdale, NJ:
Erlbaum.

Hinton, G.E. (1986, August). Learning distributed representations of concepts. Proceedingsoj
the Eighth Annual Conference 01 the Cognitive Science Society (pp. I-12). Amherst,
MA.

Hinton, G.E., McClelland. J.M., & Rumelhart. D.E. (1986). Distributed representations. In
D.E. Rumelhart & J.L. McClelland (Eds.), Parallel Disfribured Processing: Explom-
lions in the microstrucrure of cognition, volume I. Cambridge, MA: Bradford Books/
MIT Press.

Hopfield. J.J. (1982). Neural networks and physical systems with emergent collective compu-
tional abilities. Proceedings o/the National Academy of Sciences USA, 79,2554-2558.

Randel, E.. & Schwartz, J. (1982). Molecular biology of memory: Modulation of transmitter
release. Science, 218.43343.

Kirkpatrick, S., Gclatt, C.D., & Vccchi. M.P. (1983). Optimization by simulated annealing.
Science, 220. 671480.

Marroquin, J.L. (1985). Probabilistic solution of inverse problems. (Tech. Rep. No. AI-TR-
860). MIT Artilicial Intelli8cnce Laboratory, Cambridge, MA.

Mater, M.C. (1987). The perwption of multiple objects: A pamllel, dirrributed processing
approach. Doctoral dissertation. University of California, San Diego.

Newell. A. (1980). Harpy, production systems and human cognition. In R.A. Cole (Ed.), Per-
ception and production of f7uenr speech. Hillsdale, NJ: Erlbaum.

Poggio, T.. & Tone, V. (1978). A new approach to synaptic interactions. In R. Hcim & G.
Palm (Eds.), Approaches IO complex sysrems. Berlin: Springer.

Rolis, E.T. (1984). Neurons in the cortex of the temporal lobe and in the amygda!a of the
monkey with responses selective to faces. Humon Neurobiologv, 3, 209422.

Rosenfeld, R., &Tourctzky, D.S. (1988). Scaling properties of coarscuxicd symbol memories.
In D.Z. Anderson (Ed.), Neural idormation proczwing systems. (Collected papers of
the IBEE Conference on Neural Information Processing Systems-Natural and Synthe-
tic. Denver, CO, November 1987.) New York: American Institute of Physics.

Rumehrt, D.E., & McCIelland, J.L. (1986). Paralleldistributedprocessing: Erplomdons in
the microstrucfun? of Cognition. Volume 1. Cambridge, MA: Bradford Books/MIT
Press.

Tourctzky, D.S. (1986a, August). BohrCONS: Rcconcihng connectionism with the recursive
nature of stacks and trees. Proceedings of the Eighth Annual Coqference of the
Cognilive Science Society (pp. 522430). Amherst, MA.

Touretzky. D.S. (1986b. October). Representing and transforming recursive objects in a neural
network, or “Trees do grow on Boltzmann machines.” Proceedings of the 1986 IEEE
International Conference on Systems, Man, and Cybernetics (pp. 12-16). Atlanta, GA.

