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A Soft Decision-Directed LMS Algorithm for Blind Equalization

Steven J. Nowlan and Geoffrey E. Hinton

Abstract—We propose a new adaptation algorithm for equaliz-
ers operating on very distorted channels. The algorithm is based
on the idea of adjusting the equalizer tap gains to maximize
the likelihood that the equalizer outputs would be generated by
a mixture of two gaussians with known means. The familiar
decision-directed least mean square (LMS) algorithm is shown
to be an approximation to maximizing the likelihoed that the
equalizer outputs come from such an i.i.d. source. The algorithm
is developed in the context of a binary PAM channel and simula-
tions demonstrate that the new algorithm converges in channels
for which the decision-directed LMS algorithm does not converge.

1. INTRODUCTION

HE system which we investigate in this paper is illus-

trated in Fig. 1. A sequence of data (a,)! is sent through
a (linear) channel with unknown impulse response S. The data
may take on one of a small number of discrete values. (in the
sequel we assume that a; may take on one of two values
+a). The output of the unknown channel (z;) is then passed
through a linear transversal filter W whose impulse response
is approximately S~!. The objective of W is to cancel out
most of the distorting effects of the channel S so that the
sequence (y;) output by W is a near copy of the original input
sequence (a;). Finally, a zero-order (memoryless) nonlinear
decision process (ZNL) examines each output y; and replaces
it with the closest value from the set of discrete input values,
producing the sequence (d.). We wish to consider the general
case in which S may be noncausal, so W must introduce some
delay into the system. As a result, we desire in general that
Yt & a;_n or a; = a;—n where N represents the (known)
delay of W.

Systems of the type just described occur frequently in digital
communications where data must be converted into analog
form for transmission and then converted back into digital
form at the receiver (see [11], [14] for a general introduction
to this problem). W is generally a filter with adjustable tap
weights and the problem we explore is how to adjust these
tap weights so W becomes a good approximation of S~°.
If the sequence (a¢) is known, the classical approach is to
use an LMS or stochastic gradient descent procedure [12] to
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I'The notation (@) is used to denote a sequence of real values, while a;
will refer to one element of that sequence.
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Fig. 1. Block diagram of system of interest.

minimize E[(y: —a¢—n)?].2 In practical situations the sequence
(a;) is not known. Instead, a two-step procedure is used
to adjust the equalizer: 1) an initial settling phase in which
the transmitter sends a known initialization sequence and the
receiver performs LMS adjustment of the equalizer and 2) a
phase in which the receiver uses the output of the ZNL (d)
as an estimate for (a;) in performing LMS adjustment of the
equalizer.

The second step of the procedure is usually referred to
as operating the equalizer in decision-directed mode since
updates to the taps of the equalizer are controlled by the
decisions made by the ZNL.

In the classical decision-directed LMS (DDLMS) algorithm
[14], [13], the ZNL is a simple threshold device. For the
binary channel we are considering, the output of this ZNL
can be represented as a sgn(y:) and the DDLMS algorithm
can be regarded as minimizing E[(y: — o sgn(y:))?]. In this
paper we derive a different form of ZNL for operating the
equalizer in decision-directed mode. The modified ZNL is
derived by proposing that (y:) be modeled as the output of
an independent, identically distributed (i.i.d.) random process
with a gaussian mixture density. The ZNL then corresponds
to the maximum likelihood estimate of d; given y; and the
assumed model. The next section of the paper derives the
basic algorithm, and Section III presents some simulation
results on a simulated binary PAM channel which demonstrate
that the modified equalization algorithm can converge reliably
with initial channel error rates considerably greater than those
allowed by the classical DDLMS procedure.

II. DEVELOPMENT OF THE ALGORITHM

We begin by introducing some mathematical notation, and
then outline the basic method for adjusting the tap weights
of the equalizer via a stochastic gradient descent procedure.

2Technically, this expectation is evaluated with respect to ensemble aver-
ages of the signal. However, usual practice is to assume stationarity of systems
and processes and to substitute time averages for ensemble averages. In the
sequel, except as noted, one may assume that all expectations are evaluated
as time rather than ensemble averages.
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We then develop our algorithm by introducing a particular
functional to be optimized and relating this functional to the
functional used in the classicial DDLMS procedure.

In the system depicted in figure 1, we assume that W
represents an adjustable filter with 2V + 1 taps and a delay
of N, so

+N
ye= Y wizek €y
k=—N

where the superscript on the term w} indicates that the tap

weights change over time. Define the vector w; = (w! y,
-+, wh) and the vector z, = {#t+n, -, zi—N}. Then we
may express (1) as

v = wl 7, @

where the superscript T denotes the vector transpose.

As mentioned in the introduction, the objective of adjusting
the tap weights in the equalizer is to make y; ~ a;_y. The
approach we shall use is to treat (y,) as a stochastic process
and to minimize a functional

J(w) = E[¥(y)]. ©)]

min
WER2N+1
Following the classical approach (assuming stationary ergodic
processes), we replace ensemble averages in (3) with time
averages and we get the following stochastic gradient update
procedure:

Wiyl = Wy — €61Ty 4)
where
_ oV (yt)
et =
Oy:

and e is a (fixed) stepsize. General convergence results for this
class of stochastic approximation algorithms may be found in
[3]- To complete the algorithmic specification, we simply need
to define U(y;).

Since we do not have direct access to (a;) when updating
our tap weights, U(y;) must contain some assumptions about
a¢—n. In the classical DDLMS algorithm for a binary PAM
channel with input values +a, ¥(y;) = (y: — a sgn(y:))?
and e; = y; — a sgn(y,). Informally, the assumption in the
classical algorithm is that if y; > 0 then a;_y = a, otherwise
ai-N = —a.

We propose instead that we define

U(y) = —log fy(ye) %)
where
_ PL —(yi+a)? /202 P2 “‘(yt_a)2/202)
= ——=¢€ 4+ —e .
riw) = (A L

(6)
Jv (y¢) is the density function of a gaussian mixture with two
components centered at +a.> p; and p, are the proportions
of the two gaussians in the mixture, and ¢ is their standard
deviation. In the sequel, we will assume that p; = py = 0.5

3Upper case letters denote random variables (RV) and corresponding lower
case letters denote values of the RV.
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Fig. 2. Soft decision error function for different values of 0. (¢ = 0

corresponds to a hard decision.)

which corresponds approximately to the assumption that the
values ta are equally likely in the data sequence (a;). We
assume for now o is also fixed.

Minimizing ¥(y,) as defined in (5) corresponds to maxi-
mizing the (log) likelihood that the sequence (y;) is generated
by an ii.d. source with density fy(). One can justify this
model for (y;) by assuming that (a;) is generated by an i.i.d.
source with density fa(a:) = 0.50q,4+q + 0.584,_, and that
the combined effect of S followed by W on (a¢) is simply to
add 0 mean gaussian noise (and a delay of N) to (a;). The
added noise is composed of channel noise and an intersymbol
interference term. Since the intersymbol interference term
contains the contributions from a large number of random
symbols, the characterization of the overall noise constribution
as gaussian is not unreasonable.

To evaluate e; based on (5) we must deal with the sum of
exponentials in (6). One simple approximation is to ignore the
smaller of the two exponential terms. Under this assumption
we find

[ Eta) y <0
“r { % (y: —a) otherwise. )
We can simply include the 1/0? term into our step size ¢ and
we find that this approximate expression for e, is identical to
the expression for e, in the classical DDLMS algorithm.

If we do not make any approximations, the expression for
e: based on (5) is

1 e2eve/o’ _ 1
€t = 52 Yt —a 22ayi/o? 11 T/ (8)

Comparing (8) to the classical DDLMS error, we see that we
have replaced the sign function with a more complicated non-
linearity. We refer to this particular non-linearity as a “soft”
decision as compared to the “hard” decision represented by
the sign function in the DDLMS algorithm. The choice of
these terms is apparent from Fig. 2 where we have plotted
(8) as a function of y for several values of 0. As ¢ — 0 (8)
becomes identical to the error in the DDLMS algorithm. This
error has a sharp discontinuity at y = 0, and as o increases
this discontinuity is smoothed away.
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The weakness of the hard decision used in the classical
DDLMS algorithm is apparent when we realize that when y;
is very near 0 a decision based on the sign of y; is most likely
to be incorrect, due to the effects of random noise. Yet it is
in these cases that the tap weights are changed the most. The
“soft” decision nonlinearity has a much smaller magnitude
when y; is near 0, so it makes only small weight changes in
these highly ambiguous cases.

Finally, we turn to the parameters of the gaussian mixture
density fy (). There are three parameters for each component
in the mixture, a mixing proportion p, a mean L, and a variance
o2, In the development so far we have assumed that the means
have been fixed at +a and the mixing proportions have been
fixed at p; = p = 0.5. These values come directly from our
assumption that (a.) is generated from a binary i.i.d. source
with density

fA(A) = 0~56A+a +0.564—¢ (9)

where a is a constant and §, is the usual Kronecker delta

function
5, = { 1 z=0
0 otherwise.
Knowledge of the source characteristics and transmission
scheme will usually suggest reasonable choices for the values
of p and p for each component.

We have also assumed that the variance of the two com-
ponents was equal and fixed at some unspecified value o2.
To understand why both components would have the same
variance, it is helpful to consider more carefully the nature of
the “noise” which results when W is not an ideal inverse filter
for S. In Fig. 1, z; and y; may be expressed as the following
convolution sums:

o0

Ty = Z SkpQt—k (10)
k=—oc
oo

Yy = Z WETt_k (11)
k=—o0

where we have let w, = O for |[k|] > N and dropped the
superscript on wj for notational convenience. Let W* =

(w*_oo,~~,woo) denote the impulse response of an ideal
inverse filter for S so

E ’LUZSl_k = 6l—N~
k

If we replace W with W* in Fig. 1 we would have

(12)

T Zw,:mt_k =g nN. (13)
k

We can regard W as an approximation to the ideal equalizer
W* and rewrite (11) as

Yt = Z WLk + Z (W — wi)T—k
k k
=as_n +n§ (14)

where (nf) is a convolutional noise sequence and we have used
(13). The variance of each component in our mixture density
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is largely determined by the variance of the convolutional
noise sequence (n{). From (14) it is apparent that n§ contains
contributions from a large number of transmitted symbols, so
it is reasonable to assume that the properties of (n¢) are not
dramatically different for different symbol values (i.e., samples
representing the symbol a and samples representing the symbol
—a will have similar distributions for n¢). This suggests that
the variance of each component in the mixture density fy ()
is the same.*

Equation (14) also suggests that the characteristics of (n¢)
will change as W changes, so the assumption that 62 should
be fixed does not seem reasonable. Simulation studies have
shown that better convergence may be obtained by adjusting
o in parallel with adjusting the equalizer tap weights [10], [7],
[9]. The algorithm used to update o is an incremental version
of the standard maximum likelihood estimator for mixture
components with tied variance [5], [8]. The actual update rule
is

o}t +1) = ko®(t) + (1 = ) Ay + a)” + (1 = X)(ye — 0)?]
(15)
where

_ 1
- 1 _|_€2ay,g/¢'l2

(16)

and & is a decay rate slightly less than 1 for discounting past
data. The decay rate for the exponential averaging of past data
is based on the degree of stationarity of the data. A more
detailed development of this expression may be found in [9].
Finally, we note that the model for the data given by
(9) may be generalized to allow a larger class of discrete
signal distributions while still allowing the distribution of the
sequence (y:) to be modeled as a mixture of gaussians. If we
let A denote a random process for which (ay) is a realization,
the pdf of this i.i.d. source may be written in the general form

fA(a) = Z/)iéa—u,ﬁ (17)

This source will be 0 mean and uncorrelated® as long as
Z pip; = 0.

An ii.d. data source of the form (17) will lead to an i.i.d.
model for (y;) with a Gaussian mixture density in which the
mixing proportions p; and means y; are as specified in (17)
and the variance of all components is the same.

(18)

III. SIMULATION RESULTS

The discussion in the previous section comparing the “hard”
and “soft” decision nonlinearities suggested that the difference
between these two nonlinearities will be most apparent when
a channel is poorly equalized and there are numerous incorrect
decisions (i.e., cases where a;—n and y; have opposite signs).
Simulations reported elsewhere [10], [7] have shown that the

4This argument is developed in greater detail in [9] and also in [6] in the
context of nonlinear deconvolution.

SE[A;Aj] = a2 if i = j and is 0, otherwise.
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use of the soft decision nonlinearity can lead to more rapid
initial convergence than the classical DDLMS algorithm in
channels with moderate to severe noise and distortion. The
simulations reported in this section focus on comparing the
convergence limits of the DDLMS and soft decision-directed
algorithms.

Simulations were carried out using a synthetic binary PAM
channel. The output of an ideal nonredundant binary signal
source with signal levels &1 was sent through a raised cosine
pulse generator and a non-causal finite impulse response (FIR)
distortion filter. White zero mean noise was then added to the
output of the FIR filter to produce the input to the equalizer.
50 different channels with different bit error rates were created
by combining different distortion filters with different amounts
of white noise. The distortion filters had a gain of 1 and phase
distortion ranging from +10° to +60°. The signal-to-noise
ratio varied from 30 dB to 0 dB.

The DDLMS and the soft-decision algorithm were used
to equalize each of the 50 channels. In each simulation, the
equalizer was initialized with a center tap weight of 1.0 with
all other tap weights equal 0.0. An initial bit error rate for
each channel was computed by comparing the sign of y; to the
sign of a;_n for 500 channel outputs.® 1000 weight updates
were then performed (using either the DDLMS or soft-decision
algorithm) and the tap weights frozen. A final bit error rate was
computed based on an additional 500 channel outputs. A figure
of merit v was then computed for each simulation:

Final bit error rate
Y=10—- ——— .

Initial bit error rate
A value of 1.0 for v indicates that the adjustment algorithm
was able to reduce the bit error rate to 0 within 1000 updates,’
¥ = 0.5 indicates that the bit error rate was cut in half by the
adjustment algorithm, and values of  near 0 indicate that the
adjustment algorithm has failed to improve the error rate at
all. A range for ¢ between 0.1 and 10~% was explored for
cach algorithm on each channel and results are reported for
the value of € which gave the best value for .8

The simulation results are summarized in Fig. 3 where
has been plotted on the vertical axis and the initial bit error
rate as a percentage on the horizontal axis. The shaded region
bounded by the lines marked with + indicates the performance
range of the DDLMS algorithm over the 50 channels. The
shaded region bounded by the lines marked with * indicates the
performance range of the soft-decision algorithm. For channels
with initial bit error rates up to about 5% the two algorithms
are indistinguishable, however there are significant differences
for larger initial bit error rates. The absolute convergence limit
of each algorithm is indicated approximately by the bit error
rate at which v = 0. For the DDLMS algorithm this limit is
between 16% and 18%° while the soft decision limit is between

61n all cases, the initial bit error rate is >0 indicating that the “eye” of the
equalizer output is initially partially closed.

7This does not mean the channel was perfectly equalized since it is possible
to make no incorrect decisions and still have a high MSE.

8This optimal value of € was not necessarily the same for both algorithms
operating on the same channel.

9This figure is in agreement with other reported convergence limits for the
DDLMS algorithm [4].
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Fig. 3. Graph of v versus initial bit error rate (%) for the DDLMS (+) and
soft-decision () algorithms.

32% and 35%. From a practical standpoint, the region of
interest is primarily for values of v > 0.5. Even in this region,
the soft decision algorithm maintains a significant advantage
(10% to 12% for DDLMS with v = 0.5 compared to 20% to
23% for the soft-decision algorithm).

IV. CONCLUSION

We have proposed a new algorithm for blind equalization
of very distorted channels. The algorithm is based on the idea
of adjusting the equalizer tap gains to maximize the likelihood
that the equalizer outputs come from an i.i.d. source that is a
mixture of two gaussians with known means. The approach
is most similar to earlier work on blind deconvolution by
Godfrey and Rocca [6] and blind equalization by Bellini [1],
[2]. Our approach differs from these other approaches in that
the algorithm is developed based on an assumed distribution
for the equalizer output rather than assumptions about the
distribution of signals at the channel input. This leads to an
algorithm with an adaptive non-linearity for estimating the
channel input given the equalizer output. This “soft” decision
algorithm is compared to the classical decision-directed LMS
algorithm on a binary PAM channel and simulations suggest
that when operating in the blind mode the new algorithm can
converge in channels with twice the initial bit error rate for
which the DDLMS algorithm is convergent.
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