
Using Very Deep Autoencoders for

Content-Based Image Retrieval

Alex Krizhevsky and Geo�rey E. Hinton

University of Toronto - Department of Computer Science
6 King's College Road, Toronto, M5S 3H5 - Canada

Abstract. We show how to learn many layers of features on color images
and we use these features to initialize deep autoencoders. We then use
the autoencoders to map images to short binary codes. Using semantic
hashing [6], 28-bit codes can be used to retrieve images that are similar to
a query image in a time that is independent of the size of the database.
This extremely fast retrieval makes it possible to search using multiple
di�erent transformations of the query image. 256-bit binary codes allow
much more accurate matching and can be used to prune the set of images
found using the 28-bit codes.

1 Introduction

In this paper we use very deep autoencoders to map small color images to short
binary codes. For content-based image retrieval, binary codes have many advan-
tages compared with directly matching pixel intensities or matching real-valued
codes. They are very cheap to store, and they are very fast to compare using
bit-wise operations. If they are su�ciently short, e.g. 28 bits, they can be used
as addresses in a �semantic� memory space in which similar addresses contain
pointers to similar images. The codes found by learning a deep autoencoder
tend to have this property. Images similar to a query image can then be found
by �ipping a few bits in the code and performing a memory access. The retrieval
time for this �semantic hashing� method is completely independent of the size
of the database: billions of images can be searched in a few milleseconds. This
allows some invariances to be implemented by searching with many di�erent
transformations of the query image.

In [6], autoencoders initialised by learning Deep Belief Networks (DBNs)
were used to obtain short binary codes for documents and it was shown that
these codes could be used for semantic hashing. For documents, however, this
may be unnecessary because individual words are very informative so inverted
indexing works well. Pixels or low-level image features are much less semantically
meaningful, so semantic hashing is much more appropriate for image retrieval.
In [8], the authors used a DBN-initialized autoencoder to generate short binary
codes, but they were not able to train the DBN on the raw image data so they
used the 384-dimensional GIST descriptors of the color images. Unfortunately,
the GIST descriptors act as a narrow bottleneck which occurs too early in the



feature extraction process to allow a DBN to learn really good short codes. As
a result, there has been no proper evaluation of binary codes produced by deep
learning for image retrieval.

In [9], the authors introduced a new and very fast �spectral� method for gen-
erating binary codes from high-dimensional data and showed that these spectral
codes are, in some cases, more useful for image retrieval than binary codes gen-
erated by autoencoders trained on the GIST descriptors. We demonstrate that
spectral codes do not work as well as the codes produced by DBN-initialized
autoencoders trained on the raw pixels.

2 How the codes are learned

DBNs are multilayer, stochastic generative models that are created by learning
a stack of Restricted Boltzmann Machines (RBMs), each of which is trained by
using the hidden activities of the previous RBM as its training data. Each time
a new RBM is added to the stack, the new DBN has a better variational lower
bound on the log probability of the data than the previous DBN, provided the
new RBM is learned in the appropriate way [3].

We train on 1.6 million 32× 32 color images that have been preprocessed by
subtracting from each pixel its mean value over all images and then dividing by
the standard deviation of all pixels over all images. The �rst RBM in the stack
has 8192 binary hidden units and 3072 linear visible units with unit variance
gaussian noise. All the remaining RBM's have N binary hidden units and 2N
binary visible units. Details of how to train an RBM can be found in [1]. We
use the standard contrastive divergence learning procedure which has four steps:

1. For each data-vector , v, in a mini-batch, stochastically pick a binary state
vector, h for the hidden units:

p(hj = 1|v) = σ(bj +
∑
i∈vis

viwij) (1)

where bj is the bias, wij , is a weight, and σ(x) = (1 + exp(−x))−1.

2. Stochastically reconstruct each visible vector as v
′
using the �rst equa-

tion for binary visible units and the second for linear visible units, where
N(µ, V ) is a Gaussian.

p(v
′

i = 1|h) = σ(bi +
∑
j∈hid

hjwij), or v
′

i = N(bi +
∑
j∈hid

hjwij , 1) (2)

3. Recompute the hidden states as h
′
using Eq. 1 with v

′
instead of v.

4. Update the weights using ∆wij ∝ 〈vihj〉− 〈v
′

ih
′

j〉 where the angle brackets
denote averages over the mini-batch.



To reduce noise, we actually use the probabilities rather than the stochastic
binary states in steps 2, 3, and 4, but it important to use stochastic binary
hidden units in step 1 to avoid serious over�tting.

The RBMs were initialized with very small random weights and zero biases
and trained for 80 epochs using mini-batches of size 128. For the linear-binary
RBM we used a learning rate of 0.001 on the average per-case gradient and
for the binary-binary RBM's we used 0.01. We reduced the learning rate at
the beginning of learning when the gradient can be big and also at the end of
learning in order to minimize �uctuations in the �nal weights. We also used a
momentum of 0.9 to speed learning (see [1] for details).

In the �rst RBM, most of hidden units learned to be high-frequency monotone
Gabor-like �lters that were balanced in the RGB channels and most of the
remaining units became lower frequency �lters that responded to color edges.

2.1 Fine-tuning the autoencoder

We initialized a 28-bit and a 256-bit autoencoder with the weights from two
separately trained stacks of RBMs as described in [2] and �ne-tuned them us-
ing backpropagation to minimise the root mean squared reconstruction error√∑

i(vi − v̂i)2. In each autoencoder, the hidden layers halve in size until they
reach the desired size, except that we use 28 instead of 32. To force the codes to
be binary, we rounded the outputs of the logistic units in the central code layer
to 1 or 0 during the forward pass but ignored this rounding during the backward
pass. This is simpler and as good as the binarization method employed in [6],
which adds noise to the code layer.

For the autoencoders, we used a learning rate of 10−6 for all layers and trained
for 5 epochs. The weights only changed very slightly from the RBM weights, but
the image reconstructions improved signi�cantly. The entire training procedure
for each autoencoder took about 2 days on an Nvidia GTX 285 GPU.

3 Results

Figure 1: Reconstructions of test images from the
256-bit codes.

We tested our models
on two subsets of the
80 million tiny im-
ages dataset [7] that
was produced by us-
ing various online im-
age search engines to
search for all the non-abstract English nouns and noun phrases in the WordNet
lexical database. Each image in the dataset has a very noisy label, which is the
word used to �nd it, but we did not use any labels for training.

For a qualitative evaluation of the retrieval, we used an unlabeled subset of 1.6
million of the images for both training and retrieval. This subset contains only
the �rst 30 images found for each non-abstract English noun. For a quantitative
evaluation, we measured what fraction of the retrieved images were of the same



256-bit deep 256-bit spectral Euclidean distance

Figure 2: Retrieval results from the 1.6 million tiny images dataset using a
full linear search with 256-bit deep codes, 256-bit spectral codes, and Euclidean
distance. The top-left image in each block is the query image. The remaining
images are the closest retrieved matches in scan-line order. The dataset contains
some near-duplicate images.

class as the query image, averaged over 5,000 queries. We used exactly the same
autoencoders, but used query images from the CIFAR-10 dataset [4], which is a
carefully labeled subset of the 80 million tiny images, containing 60,000 images
split equally between the ten classes: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. Each image in CIFAR-10 has been selected to contain
one dominant object of the appropriate class and only 3% of the CIFAR-10
images are in the set of 1.6 million training images.

3.1 Retrieval results

Qualitatively, a full linear search of 1.6 million images using 256-bit deep codes
produces better results than using Euclidean distance in pixel space and is about
1000 times faster. 256-bit spectral codes are much worse (see �gure 2). Pruning
the search by restricting it to images whose 28-bit deep code di�ers by 5 bits or
less from the query image code only very slightly degrades the performance of
the 256-bit deep codes.

Quantitatively, the ordering of the methods is the same, with 28-bit deep
codes performing about as well as 256-bit spectral codes (see �gure 3). The
best performance is achieved by a more elaborate method described below that
creates a candidate list by using many searches with many di�erent 28-bit codes
each of which corresponds to a transformed version of the query image.

4 Multiple semantic hashing

Semantic hashing retrieves objects in a time that is independent of the size of the
database and an obvious question is whether this extreme speed can be traded
for more accuracy by somehow using many di�erent 28-bit coding schemes and
combining their results. We now describe one way of doing this.



Figure 3: CIFAR-10 retrieval perfor-
mance of the various methods tested.

Codes obtained by looking at the
entire image are good for captur-
ing global structure, and hence for
�nding images that appear globally
similar, but they are not invariant
to transformations like translation of
one object within the image which of-
ten have little e�ect on the semantic
content. We can achieve invariance
to translations of medium-sized ob-
jects by treating each image as a bag
of patches and training an autoen-
coder on local patches of images. We
obtained the patches by sampling the 1.6 million tiny images with the variable-
resolution �retina� shown in Figure 4. This autoencoder had the following archi-
tecture: 336-1024-512-256-128-64-28 and was trained in the same way as before.

4.1 Search

After some initial exploration of various scoring methods we found that the
following procedure worked best.

First, construct a 228-element array (the semantic hashing table) that stores
at index i the list of images that have image patches with code i (possibly with
repetitions, as one image may have multiple patches with the same code).

Second, for each of the 81 patches of the query image, use the semantic
hashing table to quickly �nd the set of images that have patches with codes no
more than 3 bits away from the query patch code. Assign to each found image
the score 23−d, where d is the hamming distance of the query patch code from
the found image patch code. We explore the hamming ball around the query
patch code in order of increasing distance, so each found image is given the
maximal score it could get for a single patch. It does not get additional score
if the same query patch matches some other part of the same image equally or
less well. This avoids problems such as one query patch of sky matching a large
number of other patches of sky in another image.

Third, sum the scores for each image over all of the 81 patches of the query
image and return the images in order of descending score. Finally, combine the
ranked list of images found in the second step with the ranked list of images found
using 256-bit deep codes by adding the two ranks of each image and re-ordering
them.

5 Future work

Deep autoencoders that are pre-trained as DBNs also work well for document
retrieval [6], so it should be relatively easy to learn deep binary codes that are
good for both reconstructing the image and reconstructing a label or bag of
words representation of an image caption. This would encourage the deep codes



to extract more semantic information from the images and it scales much better
with the size of the database than methods with quadratic time complexity such
as non-linear NCA [5] that was tried in [8].

6 Summary

Figure 4: The variable-resolution
�retina� used to sample the 32 × 32 im-
ages. The retina looks at at a 16 × 16
patch of the image, but contains only
112 pixels, because the pixels on the out-
side are sampled at lower resolution. Us-
ing a stride of 2 pixels, there are 81 dis-
tinct patches that can be extracted from
a 32× 32 image in this way.

Pre-training with RBM's makes it
possible to learn very deep autoen-
coders that map similar images to
similar binary codes. This allows the
speed of hash-coding to be applied to
approximate matching. This is partic-
ularly relevant for content-based im-
age retrieval and we have shown that
it works considerably better than a
previous attempt [8]. The images
returned by searching with 256-bit
codes are qualitatively and quanti-
tatively better than the near neigh-
bors in pixel space and this advan-
tage is preserved when using seman-
tic hashing with 28-bit codes to elim-
inate nearly all of the database from
the search.

References

[1] G. E. Hinton. A practical guide to training restricted boltzmann machines.
Technical Report UTML2010-003, University of Toronto, 2010.

[2] G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504�507, July 2006.

[3] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep
belief nets. Neural Computation, 18:1527�1554, 2006.

[4] A. Krizhevsky. Learning multiple layers of features from tiny images. Mas-
ter's thesis, Department of Computer Science, University of Toronto, 2009.

[5] R. Salakhutdinov and G. E. Hinton. Learning a nonlinear embedding by
preserving class neighbourhood structure. In Proceedings of AI and Statistics,
2007.

[6] R. Salakhutdinov and G. E. Hinton. Semantic hashing. In Proceedings of

the SIGIR Workshop on Information Retrieval and Applications of Graphical

Models, Amsterdam, 2007.



[7] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: a large
database for non-parametric object and scene recognition. IEEE PAMI, 30
(11):1958�1970, November 2008.

[8] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases
for recognition. In Proceedings of the IEEE Conf on Computer Vision and

Pattern Recognition, 2008.

[9] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proceedings of

Neural Information Processing Systems, 2008.


