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ABSTRACT

Concepts can be represented by distributed pat-
terns of activity in networks of neuron-like uniis.
One advantage of this kind of representation is
that it leads to automatic generalization. When
the weights in the network are changed to incor-
porate new knowledge about one concept, the
changes affect the knowledge associated with
other concepts that are represented by similar
activity patterns. There have been numerous
demonstrations of sensible generalization which
have depended on the experimenter choosing
appropriately similar patterns for different con-
cepts. This paper shows how the network can
be made to choose the pattems itself when
shown a set of propositions that use the con-
cepts. It chooses patterns which make explicit
the underlying features that are only implicit in
the propositions i is shown.

1: Two simple theories of
neural representation

There have been many different proposals for
how conceptual information may be represented
in neural networks. These range from extreme
localist theories in which each concept is

:spresented by -a single neural unit (Barlow,

.372) to extreme distributed thecres in which a
concept corresponds to a pattern of activity over
a large part of the cortex. These two exiremes
are the natural implementations of two different
theories of semantics. In the structuralist ap-
proach, concepts are defined by their relation-
ships to other concepts rather than by some in-
ternal essence. The natural expression of this
approach in a neural net is to make each con-
cept be a single unit with no intemnal structure
and to use the connections between units to en-
code the relationships between concepts. In the

componential approach each concept is simply a
set of features and so a neural net can be made
to implement a set of concepts by assigning a
unit to each feature and setting the strengths of
the connections between units so that each con-
cept corresponds to a stable pattern of activity
distributed over the whole network {Hopfield,
1982; Kohonen, 1977; Willshaw, Buneman, &
Longuet-Higgins, 1569). The network can then
perform concept completion {i.e. retrieve the
whole concept from a sufficient subset of its
features). The problem . with componential
thearies is that they have fittle to say about how
concepts are used for structured reasoning.
They are primarily concemed with the
similarities between concepts or with pairwise
associations. They provide no obvicus way of
representing articuiated structures composed of
a number of concepts playing different roles
within the structure.

2: Role-specific units

One way of using neural nets to implement ar-
ticulated structures of the kind shown in the
semantic net formalism in figure 1a is to assign
a group of neural units to each possible role and
to make the pattern of activity of the units in that
group represent the concept that fills the role
(Hinton, 1981). Each unit then represents the
conjunction of a role with a feature of the con-
cept filling that role {e.g. a unit might be active iff
the agent is male). A proposition can then be
represented by a stable combination of role
fillers as shown in figure 1b. This is a fun-
damentally different method of representation
from either of the two more obvious methods
described above. It has the interesting property
that the very same concept will have quite dif-
ferent representations when it is playing different
rales. ‘
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The use of muitiple different representations of
the same concept appears to be a serious flaw
for two reasons: First, it appears to be un-
economical. Second, it is not clear how we
know that John in the representation of "John hit
Mary " has anything to do with John in the
‘ representation of "Mary divorced John™.

The economic considerations are complex. The
"obvious™ way 1o represent that John is the
agent of a certain proposition is o combine a
canonical representation of John with a canoni-
cal representation of agent. In lisp, for example,
a symbolic expressicon like {agent john) would be
an obvious representation and a whole proposi-
tion might be represented by the expression
{(agent john) (relation hit) (patient mary)). Alter-
natively, the roles might be implicitly reprasented
by the position of an element in a list and so the
~whole proposition could be represented by (hit
john mary). Either way, the very same symbeol is
used for John whatever role he plays in the
proposition. In logic and in computer program-
ming, the standard way of representing conjunc-
tions is by composing symbolic expressions out
of individual symbols. Given a conventional
general purpose computer memory, it is easy to
stare arbitrary compositions of symbols.

If, however, we want to be able {0 retrieve a
proposition from a partial description of its con-
tents, the advantage of always using the very
same representation for John is less clear. If the
partial description includes the information that

propositiond

| proposition3

John is the agent, we would like this o pick out
just those propositions which have John as
agent. This is more specific than the proposi-
tions which have an agent and also have John in
some role. It is the conjunction of John with
agent that forms the retrieval cue, and so in a
neural implementation it would make sense {0
have a specific representation for this conjunc-
tion. This conjunctive representation can then
cause the effects required for completing the
whole pattern of activity that represents the
proposition. So, even if there is a representation
in which John and agent are represented

. separately, it may be necessary to form a con-

junctive representation for retrieval.

A similar argument can be made in other
domains. In representing the graphemic struc-
ture of the word “chip®, for example, it would be
possible to use a representation such as {{4 p)

(2 h) (3 1) (1 ¢)} but for a task like filling in the .

blank in "c-ip" it is inefficient to access all words
which contain ¢ and i and p. The identities and
roles of the letters need to be conjoined to form
more specific access cues. This argues that we
need quite different neural representations for (1
¢) and (4 c}. For the purposes of access io the
whole word, these representations need have
nothing in common'. Indeed, parailel network

*In a conventional lisp program, it is easy to separate the
representation from the procedures used for retriaval and so
it is easy to use a representation that is not in a form that is
helpful for retrieval. In a neural net it is probably more
important to chcose representations that can directly cause
the required effects without the intervention of a complex
interprater. This is one of the many differencas in represen-
tational considerations that follows from the difference be-
twsen the Von Neumann architecture and a massively paral-
lel network.

Jehn hit Mary
agent relation patient
(b)

Figure 1: (a) Part of a semantic net. {b) Three groups of units which have two afternative stable states

that represent the two propositions in the semantic net.
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models of reading use separate representations
of letters in different positions within the word
{McClelland & Rumelhart, 1981).

The second problem with role-specific represen-
tations is how to recognize the identity of the
‘various different role-specific representations of
the same concept. An efficient way to do this is
to have a single, canonical representation for
each concept and to have a mechanism for
translating between role-specific representations
and the canonical one. Hinton {1981) shows
how this idea can be implemented in a neural
net. 1t will not be discussed further in this paper.

2.1: Choosing role-specific representations

From now on, we assume that a concept playing
a role within a larger structure is represented by
a pattern of activity in a group of role-specific
units, and we focus on the issue of how this pat-
tern should be chasen. A simple solution is to

use patterns selected at random, perhaps with

the additional constraint that no two patterns are
too similar. The use of random patterns is quite
common in research in this area (Hopfield, 1982;
Willshaw, 1981). It makes analysis easier and it
is a sensible default in the absence of any other
ideas about representation. However, it entirely
gliminates one of the most interesting aspects of

Christopher = Penelope
1
| |
Margaret = Arthur

Victoria = Jaines

distributed representations: The ability to cap-
ture the similarity between concepts by the
similarity of their representations, and the con-
sequent ability to generalize new information in
sensible ways. We Hlustrate this peint in the
simple domain of family relationships.

Figure 2 shows two family trees. All the infor-
mation in these trees can be represented in
simple propositions of the form (persont
relationship person2). These propositions can
be stored as the stable states of activity of a
neural network which contains a group of units
for the role personl, a group for the role
relationship and a group for the role person2.

The net may also require further groups of units

in order to achieve the correct interactions be-
tween the three role-specific groups. Figure 3

. shows a network in which one further group has

been introduced for this purpese. Units in this
extra group detect combinations of features in
the role-specific groups and can be used for

" causing appropriate comipletions of partial pat-

terns. Suppose, for example, that one of the ex-
tra units becomes active whenever personi is
old and relationship requires that both people
be the same age {e.g. the relationship has-
husband in the very conventional domain we
use). The extra unit can then activate the unit

Andrew = Christine
;
[ I

Jennifer = Charles

[

Colin

Roberto = Maria

l l

Gina = Emilio

Lucia = Marco

J
Charlotte

Pierro = Francesca
[
! ]

Angela = Tomaso

I

Alfonso

l -
Sophia

Figure 2: Two isomorphic family trees. The symbol "=" means "married to".
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that represents the feature old within the
person2 group. An extra unit that works in this
way will be said to encode a micro-inference. It
uses some of the features of some of the role-
fillers to infer some of the features of other role-
filers and it is typically useful in encoding many
:different propositions rather than just a single
one. By dedicating a unit to a micro-inference
that is applicable in many different propositions,
the network makes better use of the information
carrying capacity of its units than if it dedicated a
single extra unit to each proposition. This is an
example of the technique of coarse coding
described in Hinton, McClelland & Rumelhart
(1986). In describing how a micro-inference
could be impiemented, we assumed that there
was a single unit within the person1 group that
was active whenever the pattern of activity in
that group encoded an old person. This would
not be true using random patterns, but it would
be true using a componential representation.

Micro-inferences store propositions by encoding
the underying regularities of a domain. This
form of storage has the advantage that it allows
sensible generalization. If the network has
leamed the micro-inference given above it will
have a natural tendency to make sensible
guesses. lf, for example, it is told enough about
a new persen, Jane, to know that Jane is old
and it is then asked to complete the proposition
{Jane has-husband 7} it will expect the fiiler of
the person2 role to be old. To achieve this kind

of generalization of domain-specific regularities,
it is necessary to pick a representation for Jane
in the person1 role that has just the right active
units so that the existing micro-inferences can
cause the right effects in the other role-specific
groups. A randomly chosen pattern will not do.

The real criterion for a good set of role-specific
representations is that it makes it easy to ex-
press the regularities of the domain. I} is sen-
sible to dedicate a unit to a feature like old be-
cause useful micro-inferences can be expressed
in terms of this feature. There is another way of
stating this point which enables us to avoid
awkward questions about whether the network
really understands what old means. Instead of
saying that activity in a unit means that the per-
son is old, we can simply specify the set of
people for which the unit is active. Each unit
then corresponds to a way of paritioning ail the
people into two subsets, and good represen-
tations are ones for which these partitions are
helpful in expressing the regularities. The
search for good representations is then a search
in the space of possible sets of partitions?.

2if the units can have intermediate activity levels or can
behave stochastically, they do not corespond to clean cut
partitons because there will be borderline cases. They are
more like fuzzy sets, but the formal apparatus of fuzzy set
theory {which is what defings the meaning of "fuzzy”) is of no
help here so we refrain from using the term "fuzzy®. In much
of what follows we talk as if units define clearcut sets with no

- marginal cases. This is just a useful idealisation.
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Figure 3: An extra group of units can be used to implement higher-order constraints between the role-

specific patterns.
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2.2: Giving the network the freedom to

choose representations

The network shown in figure 3-has the disadvan-
tage that it is impossible to present a propasition
to the network without afready having decided
.on the patterns of activity that represent the
- people and relationships. We wouid like the net-
work {0 use its experience of a set of proposi-
tions to construct its own internal represen-
tations of concepts, and so we must have a way
of presenting the propositions that is neutral with
respect to the various possible intemnal
representations. Figure 4 shows how this can
be done. The network translates a neutral input
representation in which each person or relation-
ship is represented by a single active unit into its
own internal representation before making any
associations. In the input representation, ali
pairs of concepts are equally similar>.

3The words of a natural language seem to work in a very
similar way. They stand for concepts whilst indicating very
lithe about how those concepts should be represented inter-
nally. Monomorphemic words with similar meanings do not
generally have similar forms. So a pattem of activity based
on the form of the word is not a good way of capturing the
similariies between meanings. There must be a process
that maps word forms into word meanings. This process
must be far more complex than the simulations we praesent
here becauss many word forms, like “bank”, are ambiguous
and so the procass of going from the input representation o
a representation of the word meaning cannot be performed
separately for sach word. The meaning of whole phrases or
sentences must be used for disambiguation (Waltz & Pei-
lack, 1885).
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3: A network that learns
distributed representations

In our attempts to show that neural networks can
leamn sensible distributed representations we
have tried several different leamning procedures.
The most successful of these, so far, is the
"back-propagation” procedure described in
Rumelhart, Hinton & Williams (1986}, and the
simulation we present uses back-propagation.
This learning procedure, which is briefly outlined
in section 4, assumes that the units have real-
valued outputs between 0 and 1 which are
deterministic functions. of their total inputs,
where the total input, )ij-, to unit j is given by

X = Z YW n

A unit has a real-valued output, y;, which is a
nen-linear functicn of its total input. :

1

1+e7%

Yj

The units are arranged in layers with a layer of
input units at the bottom, any number of inter-
mediate layers, and a layer of output units at the
top. Connections within a layer or from higher to
lower layers are forbidden: All cennections go
from lower layers to higher ones.

agent relation

patient

Figure 4: The state of each role-specific group can be fixed via a special input group. By varying the
weights between the special input groups and the role-specific groups the network can develop its own
role-specific representations instead of being forced to use representations that are pre-determined.
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An input vector is presented-to the network by
setting the states of the input units. Then the
states of the units in each layer are determined
by applying Eq. 1 and 2 to the connections com-
ing from lower layers. All units within a layer
have their states set in parallel, but different
“layers have their states set sequentially, starting
at ‘the bottom and working upwards until the
states of the output units are determined.

To use the back-propagation leaming procedure
we need to express the task of learning about
family relationships in a form suitable for a
layered network®. There are many possible
layered networks for this task and so our chaoice
is somewhat arbitrary: We are merely trying to
show that there is at least one way of doing i,
and we are not claiming that this is the best or
only way. The network we used is shown in
figure 5. It has a group of input units for the filler
of the person1 role, and another group for the
filler of the relationship role. The output units
represent the filler of the person2 role, so the
network can only be used to complete proposi-
tions when given the first two terms®. The states
of the units in the input groups are clamped from
outside and the network then determines the
states of the output units and thus completes the
proposition.

For some relationships, like uncle, there may be
several possible fillers for the person2 role that
are compatible with a given filler of the persont
role. In a stochastic network it would be reason-
able to allow the network to choose one of the
paossibilities at random. |n the deterministic net-

‘Rumelhart et. al. describe another varsion of the procs-
dure which does not require a layared net. It works for
arbitrary recurrent neitworks, but requires more complex
units that remember their history of activity levels. We have
not applied this version to the family relationships task.

SWe would have preferred it to perform completion when
given any two terms. This could have been done by using a
bigger network in which there were three input groups and
three output groups, but leaming would have been slower in
the larger network and so we opted for the simpler case.
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work we decided to insist on an output which ex-
plicitly represented the whole set of possible
fillers. This is easy to do because the neutral
representation that we used for the output has a
single active unit for each person and so there is
an obvious representation for a set of people.

Using the relationships {father, mother, hus-
band, wife, son, daughter, uncle, aunt, brother,
sister, nephew, neice } there are 104 instances
of relationships in the two family trees shown in
figure 2. We trained the network on 100 of
these instances. The training involved 1500
sweeps through the 100 examples with the
weights being updated after each sweep. The
details of the training procedure are given in
section 4. After this substantial experience of
the domain, the weights were very stable and
the network performed correctly on all the train-
ing examples: When given a persont and a
relationship as input it always produced activity
levels greater than 0.8 for the output units cor-

- responding to correct answers and activity levels

of less than 0.2 for all the other output units. A
typical example of the activity levels in all layers
of the network is shown in figure 5.

The fact that the network can learn the ex-
amples it is shown is not particularly surprising.
The interesting questions are: Does it create
sensible internal representations for the various
people and relationships that make it easy to ex-
press regularities of the domain that are only im-
piicit in the examples it is given? Does it
generalize correctly to the remaining examples?
Does it make use of the isomorphism between
the two family trees to allow it to encode them
more efficiently and to generalize relationships
in one family tree by analogy to relationships in
the other?

3.1: The representations

Figure 6 shows the weights on the connections
from the 24 units that are used to give a neutral
input representation of persont to the 6 units
that are used for the network’s internal, dis-
tributed representation of persont. These
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Figure 5: The activity levels in a five layer network after it has learned. The bottom layer has 24 input
units on the left for representing person 1 and 12 units on the right for representing the relationship. The
white squares inside these two groups show the activity levels of the units. There is one active unit in the
first group (representing Colin) and one-in the second group (representing has-aunt). Each of the two
groups of input units is totally connected to its own group of & units in the second layer. These two
groups of 6 must learn to encode the input terms as distributed paiterns of activity. The second layer is

totally connected to the central layer of 12 units, and this layer is connected to the penultlmate layerof 6 .

units. The activity in the penultimate layer must activate the correct output units, each of which stands for

a particular person2. In this case, there are two correct answers (marked by black dots) because Colin -
has two aunts. Both the input and output units are laid out spatially with the English peopie in one row

and the isomorphic Italians immediately below.
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Figure 6: The weights from the 24 input units that represent people to the & units in the second layer that
leamn distributed representations of people. White rectangles stand for excitatory weights, black for in-
_hibitory weights, and the area of the rectangle encodes the magnitude of the weight. The weights from
the 12 English pecple are in the top row of each unit. Beneath each of these weights is the weight from

the isomorphic Htalian.
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weights define the "receptive field" of each of the
& units in the space of pecple. it is clear that at
least one unit {unit number 1) is primarily con-
cerned with the distinction between English and
italian and that most of the other units ignore
this distinction. This means that the represen-
tation of an English person is very similar to the
representation of their ltalian equivalent. The
network is making use of the isormnomhism-be-
tween the two family trees lo allow it to share
structure and it will therefore tend to generalize
sensibly from one tree to the other.

Unit 2 encodes which generation a person
belongs to. Notice that the middle generation is
encoded by an intermediate activity level. The
network is never explictly told that generation is
a useful three-valued feature. [t discovers this
for itself by searching for features that make it
easy to express the regularities of the domain.
Unit 6 encodes which branch of the family a per-
son belongs to. Again, this is useful for express-
ing the regularities but is not at all explicit in the
examplesS. :

It is initially surprising that none of the 6 units
encodes sex. This is probably because of the
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particular set of relationship terms that were
used. Each of the 12 relationship terms com-
pletely determines the sex of person2 so the
sex of personi is redundant. Figure 7 shows
that one of the 6 unils which encodes the twelve
possible relationships is entirely devoted to
predicting the sex of person2. [f we had in-
cluded relationships like spouse there wouid
have been more pressure to encode the sex of
persont because this would have been useful
in constraining the possible fillers of the
person2 role.

3.2: Micro-inferences and scientific laws
There is an interesting analogy between the way

in which the network represents propositions

and the way in which scientists represent the
structure of the natural world. In arder to ex-

Sin many tasks, features that are useful for expressing
regularities batween concepts ars also observable properties
of the individual concepts. For exampie, the feature male is
useful for oxpressing regularities in the relationships be-
tween people and it is also related to seis of observable
properties like hairyness and size. We carsfully chose the
input representation to make the problem difficult by remov-
ing all local cues that might have suggested the appropriate
features.

husband
daughter

wife
son

hiece
uncle

=
3
®

Figure 7: The weights from the 12 input units that represent relationships to the 6 units in the second
layer that learn distributed representations of the relationships.
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press the regularities in the data, a scientist
must describe them using appropriate terms.
For example, substances with widely different
appearances must be grouped together into
categories like "acid”, "salt", or "base”. if the ap-
propriate terms are given in advance, the task is
‘much easier than # the terms themseives must
be discovered by searching for sets of terms that
allow laws to be expressed. The gradient de-
scent procedure used by the network also has
its analog in scientific research. Initial definitions
of the descriptive terms can be used to for-
mulate laws and the apparent exceptions can of-
ten be used to refine the definitions.

Naturally, there are also many important dif-
ferences beiween the way scientists proceed
and the way learning occurs in the network.
Scientists would not normally be satisfied if their
theory consisted of a very large number of
statistical "laws” and they needed a computa-
tionally intensive procedure to decide what the
laws predicted.

3.3: Generalization

The network was trained on 100 of the 104 in-
stances of relationships in the two family trees.
it was then tested on the remaining four in-
stances. The whole training and testing proce-
dure was repeated twice, starting from different
random weights. In one case the network got all
four test cases correct and in the other case it

got 3 out of 4, where "correct” means that the
output unit corresponding to the right answer
had an activity level above 0.5, and all the other
output units were below 0.5. In the test cases,
the separation between the activity levels of the
correct units and the activity levels of the
remainder were not as sharp as in the training
cases. Figure 8 shows the activilty levels of all
24 output units for each of the 4 test cases after
training.

Any learning procedure which relied on finding

direct correlations between the input and output
vectors would generalize very badly on the
family tree task. Consider the correlations be-
tween the filler of the person1 role and the fillar
of the person2 role. The filler of persont that is
used in each of the generalization tests is nega-
tively correlated with the correct output vector
because it never occured with this output vector
during training, and it did occur with other output
vectors. The structure that must be discovered
in order to generalize correctly is not present in
the pairwise correiations between input units
and output units.

The good generalisation exhibited by the net-
work shows that the structure which it has ex-
tracted from the training examples agrees with
the structure which we attribute to the domain.
We would like to be able to say that the training
set implicitly contains the information about how

Figure 8: The activity levels of the output group in the four test cases that were not shown during training.
The dots are on the correct answers. Notice that in every case the network has a slight tendency to

activate the isomorphic person in the other famiiy tree.
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to generalize and that the network has correctly

extracted this implicit information. But this re-.

quires a prescriptive domain-independent theory
of how a set of examples should be used for
making generalisations. Such a theory would
constitute the "computational level” of under-
- standing for learning research (Marr, 1982), and
would be a major advance which could guide
research at the algorithmic and implementation
levels, Unfortunately, we know of no such
theory and so we are restricted to showing that
the learning procedure produces sensible
generalizations in particular domains.

4: The back-propagation
learning procedure

The aim of the learning procedure is to find a set
of weights which ensure that for each input vec-
tor the -output vector produced by the network is
the same as (or sufficiently close to) the desired
output vector.  If there is a fixed, finite set of
input-output cases, the total error in the perfor-
mance of the network with a particular set of
weights can be computed by comparing the ac-
tual and desired output vectors for every case.
The error, E, is defined as

. |
E=52 2 =) | o
I

where ¢ is an index over cases (input-output
pairs}, j is an index over output units, y is the
actual state of an output unit, and d is its desired
state. To minimize E by gradient descent it is
necessary to compute the partial derivative of E
with respect to each weight in the network., This
is simply the sum of the partial derivatives for

each of the input-output cases. For a given

case, the panial derivatives of the error with
respect to each weight are computed in two
passes. We have already described the forward
pass in which the units in each layer have their
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backward pass which propagates derivatives

from the top layer back to the bottom one is

- mare complicated.

- The backward pass starts by computing do&/dy

states determined by the input they receive from )

units in lower layers using £q. 1 and 2. The

for each of the output units. Differentiating Eq.
3 for a particular case, ¢, and suppressing the
index ¢ gives :

— =4 , 4

Differentiating Eq. 2 to get the value of dy; ldx;
gives -

—- 5 - ®

This means that we know how a change in the
total input, %, to an output unit will affect the er-
ror. But this total input is just a linear function of
the states of the lower level unils and the
weights on the connections, so it is easy to com-

pute how the error will be affected by changing

these states and weights. For a weight, W, from
i to j the derivative is

o ¥
Bwﬁ axj awﬂ
oE
=== y. 6
Ew ¥ {0)

and for the output of the ith unit the contribution

to o0E/dy; resulting from the effect of i on jis -

simply.

£ % _oE

ax; dy; oy




so taking into ‘account all the connections
emanating from unit i we have

aE
8y E

: j

0

We have now seen how to compute dEigy for
any unit in the penultimate layer when given
aE/ay for all units in the fast layer. We can there-
-fore repeat this procedure to compute dE/dy for
successively earlier layers, computing JE/dw for
the weights as we go. The amount of computa-
tion required for the backward pass is of the
same order as the forward pass (it is linear in
the number of connactions).

One way of using 0E/gw is 1o change the weights
after every input-output case. This has the ad-
vantage that no separate memory is required for
the derivatives. An ailternative scheme, which
we usad in the research reported here, is 10 ac-
cumulate d&/dw over all the input-output cases
before changing the weights. The simplest ver-
sion of gradient descent is then to change each
weight by an amount proportional to the ac-
cumulated dE/dw.

(8)

Aw = £
ow

This method does not converge as rapidly as
methads which make use of the second deriva-
tives, but it is much simpler and can easily be
inplemented by local computations in parallel
hardware. It can be significantly improved, with-
out sacrificing the simplicity and locality, by
- using an acceleration method in which the cur-
rent gradient is used to modify the velocity of the
point in weight space instead of its position.

, Aw. ()=-¢ aiE(r) +odAw (+=1) (9)

where t is incremented by 1 for each sweep
through the whole set of input-output cases, and
o is an exponential decay factor between 0 and
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1 that determines the relative contribution of the
current gradient and earlier gradients on the
weight change. Eq. 9 can be viewed as describ-
ing the behavior of ball-bearing rolling down the
error-surface when the whole system is im-
mersed in a liquid with viscosity determined by
a.

The learning procedure is entirely deterministic,
so if two units within a layer start oif with the
same connectivity and the same weights there is
nothing to make them ever differ from each
other. We therefore break symmetry by starting
with small random weights. -

The learning procedure often works better if it is

. not required to produce outputs as extreme as 1

or 0. To give an output of 1, a unit must receive
an infinite total input and so the weights grow
without bound. All the examples of back-
propagation described in this paper use a more
liberal error measure which treats all values
above 0.8 as perfectly satisfactory if the output
unit should be on and all values below 0.2 as
perfectly satisfactory if the output unit should be
off. Otherwise, the error is the squared dif-
ference from 0.8 or 0.2.

There are many aspects of the learning proce-
dure which make it highly implausible as a
madel of leaming in real neural netwarks. There
are ways of removing the prohibition on recur-
rent connections {Rumethart, Hinton & Williams,
1986) and it may be possibie to overcome the
need for an extemally supplied desired output
vector. But the back-propagation phase is
central to the learning procedure and it is quite
unlike anything knawn to occur in the brain. The
connections are afl used backwards, and the
units use a diffarent input-output function. We
therefore view this learning procedure as an in-
teresting way of demonstrating what can be ach-
ieved by gradient descent, without claiming that
this is how gradient descent is actually imple-
mented in the brain. Newvertheless, the success
of the learning procedure suggests that it is




worth locking for other more plausible ways of
doing gradient descent.

4,1: The learning parameters used for ihe
family tree simulation

We firied several different values for the
“parameters € and «in Eq. 9. We finally chose
to use € = .005 and a = .5 for the first 20 sweeps
through the 100 training examples and & = .01
and o = .9 for the remaining sweeps. The
reasons for varying the parameters during learn-

ing and the methods used to choose reasonable -
parameters are discussed in more detail in

Plaut, Nowfan & Hinton (1988). All the weights
were initially chosen at random from a uniform
distribution between -3 and +.3.

To make it easier to interpret the weights, we
intfroduced "weighi-decay". Immediatsly after
each weight change the magnitude of every
weight was reduced by 0.2%. After prolonged
learning the decay was balanced by JdE/9w, so
the final magnitude of each weight indicated its
usefulness in reducing the emor. Weight decay
is equivalent 1o modifying the error function so
that, in addition to requiring the error to be small,
it requires the sum of the squares of the weights
to be small. A side-effect of this modification is
that it sometimes causes two units to develop
very similar sets of weights with each weight be-
ing half as big as it would be if the job was done
by a single unit. This is because
(Sw)2+(5w)t < wi

To achieve negligible error without weight decay
required 573 sweeps through the 100 training
examples. T he weights shown in figure 6 were
obtained by allowing the learning to run for 1500
sweeps with weight-decay.
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