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In this paper, we introduce a new algorithm called `bits-back coding' that makes stochastic source
codes ef"cient. For a given one-to-many source code, we show that this algorithm can actually
be more ef"cient than the algorithm that always picks the shortest codeword. Optimal ef"ciency
is achieved when codewords are chosen according to the Boltzmann distribution based on the
codeword lengths. It turns out that a commonly used technique for determining parameters�
maximum-likelihood estimation�actually minimizes the bits-back coding cost when codewords are
chosen according to the Boltzmann distribution. A tractable approximation to maximum-likelihood
estimation�the generalized expectation-maximization algorithm�minimizes the bits-back coding
cost. After presenting a binary Bayesian network model that assigns exponentially many codewords
to each symbol, we show how a tractable approximation to the Boltzmann distribution can be used
for bits-back coding. We illustrate the performance of bits-back coding using non-synthetic data
with a binary Bayesian network source model that produces 260 possible codewords for each input
symbol. The rate for bits-back coding is nearly one half of that obtained by picking the shortest

codeword for each symbol.
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1. INTRODUCTION

Ordinary source codes map each input symbol, or block of
symbols, to a unique codeword. This mapping is determined
by an underlying source model, the parameters of which
may be "xed by hand, estimated using a stored data set
or estimated on-line. In this paper we consider `one-to-
many' source models that map each symbol to a probability
distribution across multiple alternative codewords. At "rst
sight, it appears that such models must be less ef"cient
than one-to-one models. Whereas a one-to-one model can
always pick the shortest codeword, the one-to-many model
may sometimes pick longer codewords. The obvious way to
eliminate this inef"ciency is to de"ne a second-level code in
which each codeword represents a disjunction of all the "rst-
level codewords that stand for the same symbol. However,
this is not possible when the sets of codewords that stand for
the same symbol are exponentially large, as often happens
in the domains in which one-to-many source codes naturally
arise. We describe a different way of completely eliminating
the apparent inef"ciency of one-to-many source models
using stochastic coding. The advantage of this method is
that it can be approximated quite well even when there are
exponentially many codewords per symbol and can therefore
eliminate most of the inef"ciency caused by one-to-many
source codes.

Our reason for being interested in one-to-many source
models is that they arise naturally in many domains. We
"rst describe a simple mixture of Gaussians example. This
example is used to illustrate how our stochastic `bits-back'
coding method can make a one-to-many source code opti-
mally ef"cient, even though stochastic coding is not really
required in this case because other, conceptually simpler,
methods are quite tractable. We then show that there is
a tractable approximation to the optimal stochastic coding
method, and that this approximationmakes such sourcemod-
els ef"cient. Also, it leads to an objective function that can
be used for "tting the parameters of such source models
to observed data even though maximum-likelihood estima-
tion is computationally intractable. We present compression
results using software-implemented bits-back coding and a
simple toy problem. We then consider a much more com-
plicated source model called a `binary Bayesian network',
which naturally assigns exponentially many codewords to
each input symbol. Parametrized Bayesian networks are
capable of representing complex distributions and are there-
fore suitable for universal source coding. Using a simple
image compression problem, we compare the performances
of bits-back coding with a binary Bayesian network; shortest
codeword selection with a binary Bayesian network; and
UNIX gzip.
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FIGURE 1. The most natural source model may produce multiple codewords for a given symbol. (a) shows a source with a single binary
hidden variable which identi"es from which Gaussian, G1 or G2, the symbol value x is sampled. Values of x near x0 are likely to have come
from either Gaussian. (b) shows the resulting coding density effectively used if we were to always pick the shorter codeword. This density
wastes coding space because it is incorrectly shaped and has an area signi"cantly less than unity.
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FIGURE 2. A scheme in which auxiliary data is communicated along with the primary symbol data in order to achieve optimal compression
when the source code produces multiple codewords for a given symbol.

2. THE MIXTURE OF GAUSSIANS SOURCE
MODEL

Consider a source that outputs real numbers that are dis-
tributed according to a mixture of two Gaussians. These
numbers are truncated to some precision to form a set of
symbols. The component distributions and the output distri-
bution are shown in Figure 1a, where the truncation effect is
left out for the sake of graphical simplicity.
The most natural source model to use in this case is one

that requires one bit to specify from which Gaussian a given
symbol was produced plus however many bits are needed to
code the symbol using that Gaussian. However, the identity
of the Gaussian that produced a given symbol is often
ambiguous, in particular, a number near x0 is likely to have
come from either Gaussian. In these cases the source model
maps each symbol to two codewords: one for each Gaussian.
If we were to always pick the shorter of the two codewords,
we would effectively be assuming that the symbols were
distributed as in Figure 1b. However, this distribution is
obviously incorrect�it is not even normalized�and will
lead to suboptimal compression.
The obvious way around this problem is to use a one-

to-one code that is based on the mixture distribution; that
is, we assign a codeword to each symbol based on its total
probability mass, obtained by summing the contributions
from each Gaussian. We show that the same ef"ciency
can be achieved by picking codewords stochastically from
a one-to-many code. This may seem surprising, since for
a given symbol both codewords in the one-to-many source

code are longer than the codeword in the one-to-one source
code. However, we will show that extra information can be
communicated through the choice of codewords.

3. GETTING BITS BACK

The approach we take to solve this problem is motivated
by the `bits-back' argument of Hinton and Zemel [1],
which they used to develop a Lyapunov function for ma-
chine learning. Since this paper was written, it has come
to our attention that Wallace [2] also developed this line
of argument to construct minimum-length integer-length
messages for use in minimum-message-length inference.
By selecting codewords through the use of extra auxil-
iary information, the auxillary information can ride piggy-
back on the codewords for the primary data that we are
encoding. The bits communicated in the auxiliary data
will more than make up for the excess codeword lengths
that result from not always using the shortest codeword.
This method of encoding is shown in Figure 2. Notice
that if the sender does not wish to communicate an ex-
tra stream of auxiliary data to the receiver, some of the
primary symbol data can be set aside and used as aux-
iliary data. (It may need to be XORed with a pseudo-
random bit stream to make it appear more random to the
sender.)
Suppose in the Gaussian mixture example that a sender

wishes to encode a truncated value, x ′, that is twice as likely
under G1 as it is under G2, and that 2 bits are required to
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encode the truncated value underG1. Including the single bit
required to specify which Gaussian is being used, an optimal
source code (possibly arithmetic) will thus have codewords
with lengths l1 = 3 bits and l2 = 4 bits. If the sender always
picks the shorter codeword, the average codeword length is
3 bits.
Suppose instead that whenever the sender must commu-

nicate the particular symbol x ′, the sender chooses between
each of the two codewords equally often (in general, the
ratio of choices will depend on the truncated value). It
appears that the average codeword length in this case is
(l1 + l2)/2 = 3.5 bits, which is higher than that obtained
by always choosing the shorter codeword. However, this
cost is effectively lowered because the receiver can recover
information from the choice of codeword in the following
manner. Say the sender has well-compressed auxiliary data
available in the form of a queued bit stream with `0' and `1'
having equal frequency. When encoding x ′, the sender uses
the next bit in the auxiliary data queue to choose between
G1 and G2. The sender then produces a codeword that will
have an average length of 3.5 bits. (It is important to note that
this codeword speci"es which of G1 and G2 is being used.)
When decoding, the receiver reads off the bit that says which
Gaussian was used and then determines the truncated value
x ′ from the codeword. Given the decoded value, the receiver
can run the same encoding algorithm as the sender used,
and determine that a choice of equal probability was made
between G1 and G2. Since the receiver also knows which
Gaussian was selected, the receiver can recover the queued
auxiliary data bit that was used to make the choice. In this
way, on average 1 bit of the auxiliary data is communicated
at no extra cost. These recovered bits are called `bits-back'.
If the auxiliary data is useful, the average effective codeword
length is reduced by 1 bit due to the savings, giving an
effective average length of 2.5 bits�less than the 3 bits
required by the shortest codeword. We refer to this method of
stochastic source coding as bits-back coding. It is important
to note that the ratio of choices depends on the symbol being
encoded. For example, if the truncated value is far to the
right of x0 in Figure 1a, then picking the codewords equally
often would be very inef"cient, since the codeword underG1

would be extremely long, making the bene"t of the single
recovered bit negligible. In this case the sender should pick
G1 much less often and, as a result, the sender will read off
only `part of a bit' from the auxiliary data queue to determine
which codeword to use.
The ef"ciency of bits-back coding can be determined by

de"ning a distribution that is used to select codewords for a
given symbol, x :

Q(y|x), (1)

where y indexes the possible codewords for the given
symbol. Letting `(x, y) be the length of codeword y for a
speci"c x , the average codeword length for x is

E(x) ≡
∑
y

Q(y|x)`(x, y). (2)

The average bits-back for x is the information content

(entropy) of the distribution used to select codewords:

H(x) ≡ −
∑
y

Q(y|x) log2 Q(y|x). (3)

The difference between Equations (2) and (3) gives the ef-
fective average codeword length F(x) that bits-back coding
can achieve:

F(x) ≡ E(x)−H(x). (4)

Since this quantity is analogous to the variational Helmholtz
free energy from statistical physics (see [3]), we refer to the
effective average codeword length as the free energy.
Bits-back coding makes gains over shortest codeword

selection by taking into account the existence of multiple
codewords of similar length. It is easily proven from Equa-
tions (2)�(4) that the codeword selection distribution which
minimizes the free energy is the Boltzmann distribution
based on the codeword lengths:

Q∗(y|x) ≡ 2−`(x,y)∑
ŷ 2
−`(x,ŷ) . (5)

We denote by ∗ those quantities determined from the Boltz-
mann distribution. This distribution gives the optimal ef-
fective codeword length for the given one-to-many source
code. The free energy for the Boltzmann codeword selection
distribution is

F∗(x) = E∗(x)−H∗(x)
=

∑
y

2−`(x,y)∑
ŷ 2
−`(x,ŷ) `(x, y)

+
∑
y

2−`(x,y)∑
ŷ 2
−`(x,ŷ) log2

2−`(x,y)∑
ŷ 2
−`(x,ŷ)

= − log2
∑
y

2−`(x,y). (6)

So, the optimal bits-back coding rate is equivalent to the rate
obtained by mixing the probability masses associated with
the codewords for input x .
In the above example, where for symbol x ′ we had l1 =

3 bits and l2 = 4 bits,
Q∗(G1|x ′) = 2−3/(2−3 + 2−4) = 2/3,
Q∗(G2|x ′) = 2−4/(2−3 + 2−4) = 1/3,
E∗(x ′) = 2

3 (3 bits)+ 1
3 (4 bits) = 3.333 bits, (7)

H∗(x ′) = − 23 log2
(
2
3

)− 13 log2 ( 13) = 0.918 bits,
F∗(x ′) = 3.333 bits− 0.918 bits = 2.415 bits.

This is the minimum free energy for the given example.
(A slightly higher than optimal free energy of 2.5 bits was
obtained above using Q(G1|x ′) = Q(G2|x ′) = 0.5.) If we
mix the two codewords directly, we get a new codeword with
length

− log2
[
2−3 + 2−4] = 2.415 bits, (8)

which is identical to the minimum free energy given above.
Suppose that instead of picking codewords according to

the Boltzmann distribution, the sender always chooses the
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Part of the auxiliary
data de"nes a "nite
precision random
number

The probability for each
codeword is given by the
partition height

The auxiliary data selects
a codeword

FIGURE 3. Feeding a random number into an arithmetic decoder with appropriate probabilities (shown by the partition heights within a
column) selects codewords (shaded partitions), while at the same time conserving information.

shortest codeword. In this case, the number of extraneous
bits relative to using the Boltzmann distribution is

F short(x)− F∗(x) =
∑
y

Qshort(y|x) log2
Qshort(y|x)
Q∗(y|x)

= − log2 Q∗(yshort|x), (9)

where yshort indicates the shortest codeword for the given
x . If many codewords have roughly equal lengths, then
Q∗(yshort|x) is signi"cantly less than unity indicating that
picking the shortest codeword is far from optimal.
For complex source models, the computation of the de-

nominator in Equation (5) is sometimes intractable; in these
cases, it is impossible to obtain the exact Boltzmann distribu-
tion. However, various methods exist for approximating the
Boltzmann distribution. Aswe shall see, the advantage of the
bits-back approach is that it allowsmost of the inef"ciency to
be eliminated from one-to-many source codes even when the
Boltzmann distribution cannot be computed exactly.

4. THE BITS-BACK CODING ALGORITHM

To implement the communication scheme shown in Figure 2,
we need a general method of recovering the auxiliary data
bits from the codeword choices. In the example of a
mixture of two Gaussians, we considered an input symbol
for which selecting the two codewords equally often was
nearly optimal, so that a single bit could be used for bits-
back. If the codeword selection distribution is dyadic, i.e.
each probability is an integral power of 2, it turns out that
Huffman decoding [4] can be used to pick codewords. Here,
we consider the case of an arbitrary codeword-selection
distribution.
In the general case of non-dyadic codeword-selection dis-

tributions, it is not so easy to see how random codeword
choices can be made without losing auxiliary data informa-
tion. To address this problem, consider the operation of
an arithmetic decoder [5�7]. It receives a "nite-precision

number on [0, 1) and extracts from it a series of decisions ac-
cording to a table of probabilities. If a collection of uniformly
distributed "nite-precision numbers on [0, 1) is decoded, we
will obtain a collection of decisions the distribution of which
exactly matches the table of probabilities. Figure 3 shows
how an arithmetic decoder can be used to conserve the infor-
mation in the auxiliary data when making codeword choices.
The probabilities associated with the decisions form the table
of the arithmetic decoder, while the auxiliary data de"nes
a random number to be `decoded'. (It is important that the
auxiliary data have a roughly uniform distribution.) Each
column of the "gure corresponds to a single codeword choice
and is partitioned into several possible outcomes with the
height of each partition being proportional to the probability
of the corresponding outcome. It is easy to see that if the
random number de"ned by the auxiliary data is uniform,
codeword choices will be made according to the codeword
selection distribution (as shown for a particular case by the
shaded partitions).
By applying an arithmetic encoder to the sequence of de-

cisions using the appropriate probabilities, we can regenerate
the "nite-precision number.

5. RELATIONSHIP TO MAXIMUM-LIKELIHOOD
ESTIMATION AND THE EXPECTATION
MAXIMIZATION ALGORITHM

In general, a source model contains a set of parameters 2
that must be "xed by hand, estimated using a stored data
set or estimated on-line. Estimating these parameters is
a dif"cult task when there are hidden variables. A pop-
ular statistical technique that is used to "t such models is
maximum-likelihood estimation. An algorithm known as the
expectation maximization (EM) algorithm [8�10] is com-
monly used to obtain this estimate. Letting y represent the
con"guration of the hidden variables, maximum-likelihood
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estimation assigns the following cost to each input symbol x :

C(x) = − log2 P(x) = − log2
∑
y

P(x, y). (10)

If for each x and y, we can produce an optimal codeword
with length `(x, y) = − log2 P(x, y), then the maximum-
likelihood cost function can be expressed in terms of `(x, y)
as

C(x) = − log2
∑
y

2−`(x,y) = F∗(x), (11)

where the last step follows from Equation (6). So, the
maximum-likelihood cost function is equal to the optimal
bits-back coding cost, indicating that maximum-likelihood
estimation minimizes the optimal bits-back coding cost. In
contrast, maximum-likelihood estimation does not minimize
the communication cost associated with an encoder that
always picks the shortest codeword.
Using Jensen's inequality, it is easily shown that the

maximum-likelihood cost function can be reformulated as

C(x) =
∑
y

Q∗(y|x) log2
Q∗(y|x)
P(x, y)

, (12)

where

Q∗(y|x) ≡ P(x, y)∑
ŷ P(x, ŷ)

.

The EM algorithm operates in an iterative fashion, alter-
nately computing Q∗(y|x) and then minimizing C(x) with
respect to the parameters of P(x, y). Often, maximum-
likelihood estimation is not tractable because the computa-
tion of Q∗(y|x) is intractable. In these cases, it is possible
to use an approximation to the maximum-likelihood estima-
tion, which can be thought of as a generalization of the EM
algorithm [11]. This method approximates Q∗(y|x) with a
more tractable distribution Q(y|x), which is continuously
updated so as to be close (in the sense of relative entropy)
to Q∗(y|x). If this approximate distribution is used as the
codeword selection distribution, then it turns out that the
generalized EMalgorithm attempts tominimize the bits-back
coding cost. As with exact maximum-likelihood estimation,
this method does not attempt to minimize the communication
cost associated with an encoder that always picks the shortest
codeword.

6. EXPERIMENTAL RESULTS FOR A TOY
PROBLEM

In this section, we present a simple parametrized source
model. Thenwe describe how an arti"cial source is produced
by randomly selecting model parameters and then simulating
data. The model is simple enough that the hidden variables
can be summed over so that it is possible to compute the
entropy of the arti"cial source. Then, model parameters
are determined by applying maximum-likelihood estimation
to the simulated data set. After discussing the theoretical
free energy, we present results when this model is used in
software-implemented versions of bits-back coding and, for
comparison, coding by shortest codeword selection.

Because of its popularity, the hidden Markov model
(HMM) is a good choice as a simple example of bits-back
coding. In fact, HMMs are usually simple enough that the
hidden variables (state) can tractably be integrated out. As
a result, bits-back coding is not normally worthwhile for
HMMs; however, the HMM provides a good toy problem,
since the performance of bits-back coding can be compared
with the true entropy of the arti"cial source. In its most
basic form, the HMM is a probabilistic model of discrete-
time sequences. Details of HMM operation and parameter
estimation are not given here; see [12] for a tutorial expo-
sition. It is suf"cient to note that the model parameters can
be estimated from a data set using a maximum-likelihood
estimation technique called the Baum�Welch algorithm [8]
and also that for a given symbol sequence the model can be
used to produce a codeword that represents both the state
sequence y of the HMM and the symbol sequence x.
The HMM used in our experiments was inspired by the

idea of modelling the sequential structure within English
words. It has 20 hidden states and can output one of 26 letters
(`a' to `z') at a time. Each string is de"ned as a 10-letter
word, so there are 2610 possible strings in all. So that we can
compare our compression results with the entropy of the data
source, we do not estimate the model parameters using actual
English words. Instead, we randomize the parameters of the
HMMand then repeatedly simulate themodel to obtain a data
set consisting of 10 000 strings of 10 letters each. The initial
state probabilities are sampled from a gamma distribution
(α = 0.4, β = 1.0) and then normalized. The state transition
table is determined by randomly picking an entry in each
row, setting it to 0.962 and then setting the remaining entries
to 0.002. The letter output table is set in the same fashion,
except 0.975 and 0.001 are used instead of 0.962 and 0.002.
Using a method described in [12] we "nd that the entropy of
this arti"cial source is 9.32 bits/string.
To estimate the parameters of a HMM with the same

architecture as above, we "rst initialize the probabilities to
be uniform plus some noise to break the symmetry. After
estimating the HMM parameters using 200 iterations of the
Baum�Welch algorithm, we "nd that, based on the data set
of 10 000 strings, the average shortest codeword length is
20.6 bits/string1. Whereas in the model used to generate
the data, the average shortest codeword length is similar to
the source entropy, in the estimated model it is much higher
because there are many different ways of producing the same
string. The free energy is 11.8 bits/string, indicating that
the model is not an optimal "t�an optimal "t would give a
free energy equal to the entropy of the source. However, if
this codeword length can be achieved in practice, a gain of
nearly a factor of two will be made over shortest codeword
selection.
We compare a software implementation of a coding algo-

rithm that always chooses the shortest codeword with a soft-
ware implementation of a bits-back coding algorithm. The
former system uses a single arithmetic encoder in the sender

1To "nd the shortest codeword for a given string, we use the Viterbi
algorithm [13].
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TABLE 1. Rate comparisons for software-implemented source
codes on the HMM data

Rate
(bits/string)

Original ASCII "le 88.0
Shortest codeword selection using the estimated HMM 20.6
Bits-back coding using the estimated HMM 11.8
gzip -best 16.0
Bits-back coding using the arti"cial source 9.3
Source entropy 9.3

and a single arithmetic decoder in the receiver. The latter
uses an arithmetic decoder for bits-back and an arithmetic
encoder for the codeword in the sender and an arithmetic
decoder for the codeword and an arithmetic encoder for bits-
back in the receiver. A binary data "le with uniformly
random bits is used for auxiliary data. To orient the reader,
we also include the performance of the UNIX gzip utility
which was executed with the -best option. The "le sizes
and rates (communicated bits/string, less recovered auxiliary
data bits) are given in Table 1. The rate for the bits-back
coding algorithm comes close to the optimum value given by
the source entropy. The rate for shortest codeword selection
is nearly twice that of the bits-back coding rate. An imple-
mentational note: the bits-back coding software yields rates
that are indistinguishable from the theoretical free energies
for the corresponding models, to at least one decimal place.

7. AN APPLICATION TO BINARY BAYESIAN
NETWORKS

Although the above example illustrates how bits-back coding
works, equivalent performance can be obtained for the HMM
by directly mixing together the codewords for a given input
sequence. In the remainder of this paper, we focus on
a model for which the multiple codewords corresponding
to an input cannot be directly mixed. The sigmoidal
Bayesian network described in this section is a highly
#exible adaptive source model that is capable of representing
complex distributions over binary data vectors. For this
reason, it is well-suited to universal source coding. This type
of model was shown by Frey [14] to produce competitive
density estimators for several synthetic and non-synthetic
data sources, when "tted using the algorithm described in the
following section.
In order to model binary data vectors, we will assume

that each vector is produced by a set of unobserved, or
`hidden', binary-valued causes. For each binary data vector
x and for each binary con"guration y of the causes, the
model can produce a codeword. We require that the code
be instantaneous; i.e. that the codewords satisfy the Kraft
inequality: ∑

x,y

2−`(x,y) ≤ 1, (13)

where `(x, y) is the length of the codeword for data vector

x and con"guration y. In fact, we do not restrict these
codewords to be of integer length. The model is used to
produce these codewords of non-integer length by providing
a probability P(x, y) for each x�y pair. These probabilities
are used in conjunction with arithmetic coding to produce
`codewords' of length

`(x, y) = − log2 P(x, y). (14)

In order to be suitable for arithmetic coding, the model
must be able to provide not only the probability mass
P(x, y), but a placement of this mass with respect to the
probability masses of all the other possible data vectors and
con"gurations. So, if the binary data vector x contains
nx bits and the con"guration vector y contains ny bits,
then there are 2nx+ny possible probability masses that must
be properly arranged before codewords can be assigned.
A Bayesian network simultaneously provides a structured
probability model as well as the means to break apart this set
of probability masses into smaller pieces.
For notational simplicity, let s be the concatenation of the

con"guration vector and the data vector:

s = (y, x), i.e.

(s1, s2, . . . , snx+ny) = (y1, y2, . . . , yny , x1, x2, . . . , xnx),

(15)

where xi are the binary elements of x, yi are the binary
elements of y and si are the binary elements of s. A Bayesian
network is a model that decomposes the joint distribution
P(s) = P(x, y) in a way that is congruous with Bayes' rule:

P(s) = P(s1)P(s2|s1)P(s3|s1, s2)
. . . P(snx+ny |s1, . . . , snx+ny−1),

P(s) =
nx+ny∏
i=1

P(si |sj , ∀ j < i). (16)

Any distribution can be written in this form, but the im-
portant quality of a Bayesian network is that each component
P(si |s j , ∀ j < i) is computed with relative ease. In our
application, we compute them using a set of parameters 2
in the following way:

P(si |s j , ∀ j < i) =
1
/(
1+ exp

[
−θi −

∑
j<i

θi j s j

])
if si = 1,

1− 1/(1+ exp [−θi −∑
j<i

θi j s j

])
if si = 0.

(17)

This form essentially relates the probability that si has the
value 1 linearly to the values of s j , ∀ j < i . The logistic
function, 1/(1 + exp[ ]), is simply used to produce a
probability between 0 and 1. We usually constrain some
of the θi j to be zero. These constraints can be represented
graphically if we assign one node to each element of s and
draw a directed edge from node s j to si only if j < i and
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(a)

Con"guration y

Data vector x

s1 s2 s3

s4 s5 s6

s7 s8 s9 s10

Parameters: 2

(b)
s1 s2 s3

s4 s5 s6

s7 s8 s9 s10

Parameters: 8

FIGURE 4. (a) A Bayesian network can be used to model a binary data vector x using a vector of hidden binary causes y. However, for a
given x the Boltzmann distribution over y cannot be tractably computed. (b) shows a bottom-up Bayesian network that produces a distribution
Q(y|x) which can approximate the Boltzmann distribution.

θi j 6= 0. An example of a top-down layered network is
shown in Figure 4a. This network uses two layers of binary
causes and one layer of binary values at the bottom for the
data vector. The middle layer is directly connected to the
bottom layer, so it is easy to see how those binary causes
can in#uence the data vector. On the other hand, the top
layer is not directly connected to the bottom layer, so it may
seem that the top layer is redundant. However, the top layer
of causes may be needed to capture any covariance between
the middle-layer causes, since without the top layer we have
P(s4, s5, s6) = P(s4)P(s5)P(s6).
Arithmetic coding can now quite easily be used to encode

an x�y pair to produce a codeword with length `(x, y).
The sender simply traverses the elements s1, s2, . . . , snx+ny ,
encoding each binary value using its probability computed
from Equation (17).
Given a data vector x, the sender would ideally pick a con-

"guration y using some auxiliary data bits and the Boltzmann
distribution given in Equation (5). From Equation (14), the
Boltzmann distribution for the binary Bayesian network is
given by

Q∗(y|x) ≡ P(x, y)∑
ŷ P(x, ŷ)

, (18)

and the free energy is given by

F∗(x) =
∑
y

Q∗(y|x) log2
Q∗(y|x)
P(x, y)

. (19)

For the models that we are interested in, ny is large�at
least 20�so the sum in the denominator of Equation (18)
will have at least 220 terms. This sum is intractable so the
sender cannot use the exact Boltzmann distribution to pick
codewords. Shortest codeword selection is also not an easy
task in this case. An exhaustive search would again require
the consideration of 220 possible codewords, and there is
no guarantee of how well a more greedy algorithm would
perform.

8. AN APPROXIMATION TO THE BOLTZMANN
DISTRIBUTION FOR THE BINARY BAYESIAN
NETWORK

Instead of computing the Boltzmann distribution exactly,
we use a probability density model Q(y|x) to approximate
Q∗(y|x). In fact, this model is of the same form as the
binary Bayesian network that de"nes P(x, y), except that the
connectivity is reversed:

Q(si |sj , ∀ j > i) =
1
/(
1+ exp

[
−φi −

∑
j>i

φi j s j

])
if si = 1,

1− 1/(1+ exp [−φi −∑
j>i

φi j s j

])
if si = 0,

(20)

where8 is the set of parameters for this bottom-up network.
Note that in this bottom-up network the probability for si
depends on variables with indices greater than i , whereas in
the top-down network it depends on variables with indices
less than i . Again, some of these parameters may be
constrained to be zero, as shown graphically in Figure 4b.
This sort of bottom-up model forms the basis of a new type
of `neural network', as described by Hinton et al. [15] and
Dayan et al. [16]. We will show in the next section how
this model can be used to pick codewords using auxiliary
data. The free energy given by this approximation can
be compared to the minimum free energy given by the
Boltzmann distribution:

F(x)− F∗(x) =
∑
y

Q(y|x) log2
Q(y|x)
Q∗(y|x) . (21)

This is the Kullback�Leibler pseudo-distance (relative en-
tropy) between the codeword selection distribution and the
Boltzmann distribution. It is always non-negative and yields
the number of extraneous bits in the compression as a result
of not using the Boltzmann distribution.
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FIGURE 5. Examples of 8× 8 binary images of handwritten digits.

9. BITS-BACK CODING USING A BINARY
BAYESIAN NETWORK

In this section, we describe how bits-back coding can
be applied to a binary Bayesian network source model.
Then, we present compression results when the model is
"tted to a set of images using an approximation to the
generalized EM algorithm described above. We compare the
compression ef"ciency of the one-to-many bits-back source
coding algorithm with the one-to-one source code obtained
using approximate shortest codeword selection, and also
with the UNIX gzip utility. The set of results described in
this section is more realistic than the set of results described
for the HMM for two reasons. First, the number of bits in
the con"guration vector y for this experiment is ny = 60,
and there is no way to mix all 260 con"gurations ef"ciently.
Second, we use a non-synthetic data set that consists of
100 000 normalized and quantized 8 × 8 binary images of
handwritten digits made available by the US Postal Service
Of"ce of Advanced Technology (see Figure 5).
We now show how bits-back coding can be used to

encode the data vector (s7, s8, s9, s10) using the top-down
and bottom-up networks shown in Figure 4. The sender
"rst computes Q(s6|s7, s8, s9, s10) using Equation (20). An
arithmetic decoder uses the auxiliary data bits as input in
conjunction with this probability to determine the value of
s6. Once this value is determined, the sender computes
Q(s5|s6, s7, s8, s9, s10) (which in this case does not depend
on s6) and uses the arithmetic decoder to determine s5. Note
that in general the con"guration must be determined bit by
bit. For example, in the current case it is impossible for
the sender to compute Q(s3|s4, s5, s6, s7, s8, s9, s10) without
having determined a value for s4. This bit by bit procedure
continues until the con"guration (s1, s2, s3, s4, s5, s6) has
been completely determined. Then, the sender uses an
arithmetic encoder to produce a `codeword' that represents
both the con"guration and the data vector. This is done in a
similar bit by bit fashion but in the top-down direction, using
Equation (17) to compute the bit probabilities.
Given the codeword, the receiver uses an arithmetic

decoder to determine, in a bit by bit fashion, "rst the

con"guration bits (s1, s2, s3, s4, s5, s6) and then the data
vector bits (s7, s8, s9, s10). Next, the receiver recovers the
auxiliary data bits that the sender used to choose a codeword.
The receiver uses the bottom-up network and Equation (20)
to compute Q(s6|s7, s8, s9, s10)�note that since the data
vector has been communicated losslessly, this probability
will be the same one that the sender used to encode s6. An
arithmetic encoder uses the already-decoded value of s6 as
input in conjunction with this probability in order to recover
the auxiliary data that was used to choose the value of s6.
The receiver continues to recover auxiliary data bits, using
the probabilities given by Equation (20) in conjunction with
the already-decoded con"guration bits, until the bits-back for
s1, s2, s3, s4, s5 and s6 have been obtained.
This procedure is repeated for each new data vector

that is to be communicated. With useful auxiliary data,
this scheme empowers the sender to communicate bits-
back, obtaining bits-back coding. With a good codeword
selection distribution, we can achieve near-optimal effective
compression for the given source code.
The binary Bayesian network that we use as a source

model has three hidden layers of binary causes and one
bottom-layer data vector that consists of nx = 64 binary
elements. From top to bottom, the three layers of causes
have 16 elements, 20 elements and 24 elements, giving
a total of ny = 60 binary causes. Both the top-down
and the bottom-up networks are fully connected from layer
to layer, but have no connections within each layer (cf.
Figure 4a and b). The model is "tted to a training set that
consists of 100 000 images, using an approximation to the
generalized EM algorithm that is introduced in [15] and
reviewed more extensively in [14]. This estimation method
makes use of the bottom-up network to approximate the
Boltzmann distribution that would ideally be used to perform
maximum-likelihood estimation based on the cost function
in Equation (5).
For the purpose of comparing bits-back coding with

a one-to-one source code, we approximated the shortest
codeword selection, since an exact implementation would
require a full search of all 260 codewords for each data vector.
Instead, for each data vector we picked the shortest in a
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TABLE 2. Rate comparisons for software-implemented source
codes on the binary digit data

Rate
(bits/image)

Original binary "le 64
Shortest codeword selection using the estimated model 60
Bits-back coding using the estimated model 33
gzip -best 39

list of 10 stochastically chosen codewords. By producing
these codewords using the bottom-up network with pseudo-
random numbers instead of auxiliary data, we biased the list
to contain short codewords. (If the codewords had been
chosen completely at random, they would most often be
ridiculously long.)
A comparison of the rates obtained using an approximate

shortest codeword selection and bits-back coding with the
estimated binary Bayesian network, as well as the rate
obtained by the UNIX gzip utility with the -best option,
is given in Table 2. (Although the UNIX gzip utility
is not really meant for image compression, we include it
as a reference point for the reader.) The rate for shortest
codeword selection is again signi"cantly higher than the
rate for bits-back coding, indicating that signi"cant practical
savings can be made by using the proposed approach.

10. CONCLUSIONS

We have introduced the concept of ef"cient stochastic source
codes that use bits-back. Furthermore, it is apparent that the
standard statistical technique of maximum-likelihood esti-
mation as well as a large body of popular methods for "tting
models with hidden variables�the expectation maximiza-
tion variants�produce source models for which shortest
codeword selection is suboptimal in compression ef"ciency,
whereas bits-back coding is optimal or nearly optimal. We
have shown that a practical bits-back coding algorithm can
be implemented and that it does indeed outperform a shortest
codeword selection algorithm in compression performance.
It may seem that one drawback of bits-back coding is the

need for a stream of auxiliary data. Often, for example when
compressing a computer "le, there is no separate set of data
that can be conveniently used as auxiliary data. However,
this problem can be avoided simply by setting aside some
of the primary source data and using it as auxiliary data. (It
may need to be XORed with a pseudo-random bit stream
to make it appear more random to the sender.) While this
does eliminate the need for extra auxiliary data, it is not
optimal because the source data is uncoded. We are currently
exploring more optimal ways of eliminating the need for
extra auxiliary data (see Frey [14]).
Simple bits-back coding software is available at

http://www.cs.toronto.edu/�frey, or by ftp
at ftp://ftp.cs.utoronto.ca/pub/frey/bbc.
tar.Z.
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