
Gated Softmax Classification

Roland Memisevic
Department of Computer Science

ETH Zurich
Switzerland

roland.memisevic@gmail.com

Christopher Zach
Department of Computer Science

ETH Zurich
Switzerland

chzach@inf.ethz.ch

Geoffrey Hinton
Department of Computer Science

University of Toronto
Canada

hinton@cs.toronto.edu

Marc Pollefeys
Department of Computer Science

ETH Zurich
Switzerland

marc.pollefeys@inf.ethz.ch

Abstract

We describe a ”log-bilinear” model that computes class probabilities by combin-
ing an input vector multiplicatively with a vector of binary latent variables. Even
though the latent variables can take on exponentially many possible combina-
tions of values, we can efficiently compute the exact probability of each class
by marginalizing over the latent variables. This makes it possible to get the ex-
act gradient of the log likelihood. The bilinear score-functions are defined using
a three-dimensional weight tensor, and we show that factorizing this tensor al-
lows the model to encode invariances inherent in a task by learning a dictionary
of invariant basis functions. Experiments on a set of benchmark problems show
that this fully probabilistic model can achieve classification performance that is
competitive with (kernel) SVMs, backpropagation, and deep belief nets.

1 Introduction

Consider the problem of recognizing an image that contains a single hand-written digit that has been
approximately normalized but may have been written in one of a number of different styles. Features
extracted from the image often provide much better evidence for a combination of a class and a style
than they do for the class alone. For example, a diagonal stroke might be highly compatible with an
italic 1 or a non-italic 7. A short piece of horizontal stroke at the top right may be compatible with a
very italic 3 or a 5 with a disconnected top. A fat piece of vertical stroke at the bottom of the image
near the center may be compatible with a 1 written with a very thick pen or a narrow 8 written with
a moderately thick pen so that the bottom loop has merged. If each training image was labeled with
both the class and the values of a set of binary style features, it would make sense to use the image
features to create a bipartite conditional random field (CRF) which gave low energy to combinations
of a class label and a style feature that were compatible with the image feature. This would force
the way in which local features were interpreted to be globally consistent about style features such
as stroke thickness or ”italicness”. But what if the values of the style features are missing from the
training data?

We describe a way of learning a large set of binary style features from training data that are only
labeled with the class. Our ”gated softmax” model allows the 2K possible combinations of the K
learned style features to be integrated out. This makes it easy to compute the posterior probability
of a class label on test data and easy to get the exact gradient of the log probability of the correct
label on training data.

1



1.1 Related work

The model is related to several models known in the literature, that we discuss in the following. [1]
describes a bilinear sparse coding model that, similar to our model, can be trained discriminatively
to predict classes. Unlike in our case, there is no interpretation as a probabilistic model, and – conse-
quently – not a simple learning rule. Furthermore, the model parameters, unlike in our case, are not
factorized, and as a result the model cannot extract features which are shared among classes. Feature
sharing, as we shall show, greatly improves classification performance as it allows for learning of
invariant representations of the input.

Our model is similar to the top layer of the deep network discussed in [2], again, without factoriza-
tion and feature sharing. We also derive and utilize discriminative gradients that allow for efficient
training. Our model can be viewed also as a “degenerate” special case of the image transformation
model described in [3], which replaces the output-image in that model with a “one-hot” encoded
class label. The intractable objective function of that model, as a result, collapses into a tractable
form, making it possible to perform exact inference.

We describe the basic model, how it relates to logistic regression, and how to perform learning and
inference in the following section. We show results on benchmark classification tasks in Section 3
and discuss possible extensions in Section 4.

2 The Gated Softmax Model

2.1 Log-linear models

We consider the standard classification task of mapping an input vector x ∈ IRn to a class-label y.
One of the most common, and certainly oldest, approaches to solving this task is logistic regression,
which is based on a log-linear relationship between inputs and labels (see, for example, [4]). In
particular, using a set of linear, class-specific score functions

sy(x) = wt
yx (1)

we can obtain probabilities over classes by exponentiating and normalizing:

p(y|x) =
exp(wt

yx)∑
y′ exp(wt

y′x)
(2)

Classification decisons for test-cases xtest are given by arg max p(y|xtest). Training amounts to
adapting the vectors wy by maximizing the average conditional log-probability 1

N

∑
α log p(yα|xα)

for a set {(xα, yα)}Nα=1 of training cases. Since there is no closed form solution, training is typically
performed using some form of gradient based optimization. In the case of two or more labels, logistic
regression is also referred to as the “multinomial logit model” or the “maximum entropy model” [5].
It is possible to include additive “bias” terms by in the definition of the score function (Eq. 1) so
that class-scores are affine, rather than linear, functions of the input. Alternatively, we can think of
the inputs as being in a “homogeneous” representation with an extra constant 1-dimension, in which
biases are implemented implicitly.

Important properties of logistic regression are that (a) the training objective is convex, so there are
no local optima, and (b) the model is probabilistic, hence it comes with well-calibrated estimates of
uncertainty in the classification decision (ref. Eq. 2) [4]. Property (a) is shared with, and property
(b) a possible advantage over, margin-maximizing approaches, like support vector machines [4].

2.2 A log-bilinear model

Logistic regression makes the assumption that classes can be separated in the input space with hyper-
planes (up to noise). A common way to relax this assumption is to replace the linear separation
manifold, and thus, the score function (Eq. 1), with a non-linear one, such as a neural network
[4]. Here, we take an entirely different, probabilistic approach. We take the stance that we do not
know what form the separation manifold takes on, and instead introduce a set of probabilistic hidden
variables which cooperate to model the decision surface jointly. To obtain classification decisions at
test-time and for training the model, we then need to marginalize over these hidden variables.

2



hk

xi

h

x

y

xi

x

hk

h

y

f

f

f

(a) (b)

Figure 1: (a) A log-bilinear model: Binary hidden variables hk can blend in log-linear dependencies
that connect input features xi with labels y. (b) Factorization allows for blending in a learned feature
space.

More specifically, we consider the following variation of logistic regression: We introduce a vector
h of binary latent variables (h1, . . . , hK) and replace the linear score (Eq. 1) with a bilinear score
of x and h:

sy(x,h) = htWyx. (3)

The bilinear score combines, quadratically, all pairs of input components xi with hidden variables
hk. The score for each class is thus a quadratic product, parameterized by a class-specific matrix
Wy . This is in contrast to the inner product, parameterized by class-specific vectors wy , for logistic
regression. To turn scores into probabilities we can again exponentiate and normalize

p(y,h|x) =
exp(htWyx)∑

y′h′ exp(h′tWy′x)
. (4)

In contrast to logistic regression, we obtain a distribution over both the hidden variables h and labels
y. We get back the (input-dependent) distributions over labels with an additional marginalization
over h:

p(y|x) =
∑

h∈{0,1}K

p(y,h|x). (5)

As with logistic regression, we thus get a distribution over labels y, conditioned on inputs x. The
parameters are the set of class-specific matrices Wy . As before, we can add bias terms to the score,
or add a constant 1-dimension to x and h. Note that for any single and fixed instantiation of h
in Eq. 3, we obtain the logistic regression score (up to normalization), since the argument in the
“exp()” collapses to the class-specific row-vector htWy . Each of the 2K summands in Eq. 5 is
therefore exactly one logistic classifier, showing that the model is equivalent to a mixture of 2K
logistic regressors with shared weights. Because of the weight-sharing the number of parameters
grows linearly not exponentially in the number of hidden variables. In the following, we let W
denote the three-way tensor of parameters (by “stacking” the matrices Wy).

The sum over 2K terms in Eq. 5 seems to preclude any reasonably large value for K. However,
similar to the models in [6], [7], [2], the marginalization can be performed in closed form and can
be computed tractably by a simple re-arrangement of terms:

p(y|x) =
∑

h

p(y, h|x) ∝
∑

h

exp(htWyx) =
∑

h

exp(
∑
ik

Wyikxihk) =
∏

k

(
1 + exp(

∑
i

Wyikxi)
)
(6)

3



This shows that the class probabilities decouple into a product of K terms1, each of which is a mix-
ture of a uniform and an input-conditional “softmax”. The model is thus a product of experts [8]
(which is conditioned on input vectors x). It can be viewed also as a “strange” kind of Gated Boltz-
mann Machine [9] that models a single discrete output variable y using K binary latent variables.
As we shall show, it is the conditioning on the inputs x that renders this model useful.

Typically, training products of experts is performed using approximate, sampling based schemes,
because of the lack of a closed form for the data probability [8]. The same is true for most conditional
products of experts [9].

Note that in our case, the distribution that the model outputs is a distribution over a countable
(and, in particular, fairly small2) number of possible values, so we can compute the constant
Ω =

∑
y′
∏
k(1 + exp(

∑
iWyikxi)), that normalizes the left-hand side in Eqs. 6, efficiently. The

same observation was utilized before in [6], [7], [10].

2.3 Sharing features among classes

The score (or “activation”) that class label y receives from each of the 2K terms in Eq. 5 is a linear
function of the inputs. A different class y′ receives activations from a different, non-overlapping set
of functions. The number of parameters is thus: (number of inputs)× (number of labels)× (number
of hidden variables). As we shall show in Section 3 the model can achieve fairly good classification
performance.

A much more natural way to define class-dependencies in this model, however, is by allowing for
some parameters to be shared between classes. In most natural problems, inputs from different
classes share the same domain, and therefore show similar characteristics. Consider, for example,
handwritten digits, which are composed of strokes, or human faces, which are composed of facial
features. The features behave like “atoms” that, by themselves, are only weakly indicative of a
class; it is the composition of these atoms that is highly class-specific3. Note that parameter sharing
would not be possible in models like logistic regression or SVMs, which are based on linear score
functions.

In order to obtain class-invariant features, we factorize the parameter tensor W as follows:

Wyik =
F∑
f=1

Wx
ifW

y
yfW

h
kf (7)

The model parameters are now given by three matrices Wx, Wy , Wh, and each component Wyik

of W is defined as a three-way inner product of column vectors taken from these matrices. This
factorization of a three-way parameter tensor was previously used by [3] to reduce the number of
parameters in an unsupervised model of images. Plugging the factorized form for the weight tensor
into the definition of the probability (Eq. 4) and re-arranging terms yields

p(y,h|x) ∝ exp
(∑

f

(∑
i

xiW
x
if

)(∑
k

hkW
h
kf

)
Wy
yf

)
(8)

This shows that, after factorizing, we obtain a classification decision by first projecting the input
vector x (and the vector of hidden variables h) onto F basis functions, or filters. The resulting filter
responses are multiplied and combined linearly using class-specific weights Wy

yf . An illustration of
the model is shown in Figure 1 (b).

As before, we need to marginalize over h to obtain class-probabilities. In analogy to Eqs. 6, we
obtain the final form (here written in the log-domain):

log p(y|x) = ay − log
∑
y′

exp(ay′) (9)

1The log-probability thus decouples into a sum over K terms and is the preferred object to compute in a
numerically stable implementation.

2We are considering “usual” classification problems, so the number of classes is in the tens, hundreds or
possibly even millions, but it is not exponential like in a CRF.

3If this was not the case, then many practical classification problems would be much easier to solve.

4



where

ay =
∑
k

log
(

1 + exp
(∑

f

(
∑
i

xiW
x
if )Wh

kfW
y
yf

))
. (10)

Note that in this model, learning of features (the F basis functions Wx
·f ) is tied in with learning of

the classifier itself. In contrast to neural networks and deep learners ([11], [12]), the model does
not try to learn a feature hierarchy. Instead, learned features are combined multiplicatively with
hidden variables and the results added up to provide the inputs to the class-units. In terms of neural
networks nomenclature, the factored model can best be thought of as a single-hidden-layer network.
In general, however, the concept of “layers” is not immediately applicable in this architecture.

2.4 Interpretation

An illustration of the graphical model is shown in Figure 1 (non-factored model on the left, factored
model on the right). Each hidden variable hk that is “on” contributes a slice W·k· of the parameter
tensor to a blend

∑
k hkW·k· of at most K matrices. The classification decision is the sum over all

possible instantiations of h and thus over all possible such blends. A single blend is simply a linear
logistic classifier.

An alternative view is that each output unit y accumulates evidence for or against its class by project-
ing the input onto K basis functions (the rows of Wy in Eq. 4). Each instantiation of h constitutes
one way of combining a subset of basis function responses that are considered to be consistent into
a single piece of evidence. Marginalizing over h allows us to express the fact that there can be
multiple alternative sets of consistent basis function responses. This is like using an “OR” gate to
combine the responses of a set of “AND” gates, or like computing a probabilistic version of a dis-
junctive normal form (DNF). As an example, consider the task of classifying a handwritten 0 that
is roughly centered in the image but rotated by a random angle (see also Section 3): Each of the
following combinations: (i) a vertical stroke on the left and a vertical stroke on the right; (ii) a hori-
zontal stroke on the top and a horizontal stroke on the bottom; (iii) a diagonal stroke on the bottom
left and a diagonal stroke on the top right, would constitute positive evidence for class 0. The model
can accomodate each if necessary by making appropriate use of the hidden variables.

The factored model, where basis function responses are computed jointly for all classes and then
weighted differently for each class, can be thought of as accumulating evidence accordingly in the
“spatial frequency domain”.

2.5 Discriminative gradients

Like the class-probabilities (Eq. 5) and thus the model’s objective function, the derivative of the
log-probability w.r.t. model parameters, is tractable, and scales linearly not exponentially with K.
The derivative w.r.t. to a single parameter Wȳik of the unfactored form (Section 2.2) takes the form:

∂ log p(y|x)
∂Wȳik

=
(
δȳy − p(ȳ|x)

)
σ
(∑

i

xiWyikhk
)
xi with σ(a) =

(
1 + exp(−a)

)−1
. (11)

To compute gradients of the factored model (Section 2.3) we use Eq. 11 and the chain rule, in
conjunction with Eq. 7:

∂ log p(y|x)
∂Wx

if

=
∑
ȳ,k

∂ log p(y|x)
∂Wȳik

∂Wȳik

∂Wx
if

. (12)

Similarly for Wy
yf and Wh

kf (with the sums running over the remaining indices).

As with logistic regression, we can thus perform gradient based optimization of the model likeli-
hood for training. Moreover, since we have closed form expressions, it is possible to use conjugate
gradients for fast training. However, in contrast to logistic regression, the model’s objective function
is non-linear, so it can contain local optima. We discuss this issue in more detail in the following
section. Like logistic regression, and in contrast to SVMs, the model computes probabilities and
thus provides well-calibrated estimates of uncertainty in its decisions.

5



2.6 Optimization

The log-probability is non-linear and can contain local optima w.r.t. W , so some care has to be taken
to obtain good local optima during training. In general we found that simply deploying a general-
purpose conjugate gradient solver on random parameter initializations does not reliably yield good
local optima (even though it can provide good solutions in some cases). Similar problems occur
when training neural networks.

While simple gradient descent tends to yield better results, we adopt the approach discussed in [2]
in most of our experiments, which consists in initializing with class-specific optimization: The set
of parameters in our proposed model is the same as the ones for an ensemble of class-specific distri-
butions p(x|y) (by simply adjusting the normalization in Eq. 4). More specifically, the distribution
p(x|y) of inputs given labels is a factored Restricted Boltzmann machine, that can be optimized
using contrastive divergence [3]. We found that performing a few iterations of class-conditional
optimization as an initialization reliably yields good local optima of the model‘s objective func-
tion. We also experimented with alternative approaches to avoiding bad local optima, such as letting
parameters grow slowly during the optimization (“annealing”), and found that class-specific pre-
training yields the best results. This pre-training is reminiscent of training deep networks, which
also rely on a pre-training phase. In contrast, however, here we pre-train class-conditionally, and
initialize the whole model at once, rather than layer-by-layer. It is possible to perform a different
kind of annealing by adding the class-specific and the model’s actual objective function, and slowly
reducing the class-specific influence using some weighting scheme. We used both the simple and
the annealed optimization in some of our experiments, but did not find clear evidence that anneal-
ing leads to better local optima. We found that, given an initialization near a local optimum of the
objective function, conjugate gradients can significantly outperform stochastic gradient descent in
terms of the speed at which one can optimize both the model’s own objective function and the cost
on validation data.

In practice, one can add a regularization (or “weight-decay”) penalty −λ‖W‖2 to the objective
function, as is common for logistic regression and other classifiers, where λ is chosen by cross-
validation.

3 Experiments

We applied the Gated Softmax (GSM) classifier4 on the benchmark classification tasks described
in [11]. The benchmark consists of a set of classification problems, that are difficult, because they
contain many subtle, and highly complicated, dependencies of classes on inputs. It was initially
introduced to evaluate the performance of deep neural networks. Some examples tasks are illustrated
in Figure 3. The benchmark consists of 8 datasets, each of which contains several thousand gray-
level images of size 28 × 28 pixels. Training set sizes vary between 1200 and 10000. The test-
sets contain 50000 examples each. There are three two-class problems (“rectangles”, “rectangles-
images” and “convex”) and five ten-class problems (which are variations of the MNIST data-set5).

To train the model we make use of the approach described in Section 2.6. We do not make use of any
random re-starts or other additional ways to find good local optima of the objective function. For the
class-specific initializations, we use a class-specific RBM with binary observables on the datasets
“rectangles”, “mnist-rot”, “convex” and “mnist”, because they contain essentially binary inputs (or
a heavily-skewed histogram), and Gaussian observables on the others. For the Gaussian case, we
normalize the data to mean zero and standard-deviation one (independently in each dimension). We
also tried “hybrid” approaches on some data-sets where we optimize a sum of the RBM and the
model objective function, and decrease the influence of the RBM as training progresses.

3.1 Learning task-dependent invariances

The “rectangles” task requires the classification of rectangle images into the classes horizontal vs.
vertical (some examples are shown in Figure 3 (a)). Figure 2 (left) shows random sets of 50 rows
of the matrix Wy learned by the unfactored model (class horizontal on the top, class vertical on

4An implementation of the model is available at http://learning.cs.toronto.edu/∼rfm/gatedsoftmax/
5http://yann.lecun.com/exdb/mnist/

6



Figure 2: Left: Class-specific filters learned from the rectangle task – top: filters in support of the
label horizontal, bottom: filters in support of the class label vertical. Right: Shared filters learned
from rotation-invariant digit classification.

the bottom). Each row Wy corresponds to a class-specific image filter. We display the filters using
gray-levels, where brighter means larger. The plot shows that the hidden units, like “Hough-cells”,
make it possible to accumulate evidence for the different classes, by essentially counting horizontal
and vertical strokes in the images. Interestingly, classification error is 0.56% false, which is about a
quarter the number of mis-classifications of the next best performer (SVMs with 2.15% error) and
significantly more accurate than all other models on this data-set.

An example of filters learned by the factored model is shown in Figure 2 (right). The task is clas-
sification of rotated digits in this example. Figure 3 (b) shows some example inputs. In this task,
learning invariances with respect to rotation is crucial for achieving good classification performance.
Interestingly, the model achieves rotation-invariance by projecting onto a set of circular or radial
Fourier-like components. It is important to note that the model infers these filters to be the opti-
mal input representation entirely from the task at hand. The filters resemble basis functions learned
by an image transformation model trained to rotate image patches described in [3]. Classification
performance is 11.75% error, which is comparable with the best results on this dataset.

(a) (b)

(c) (d)

Figure 3: Example images from four of the “deep learning” benchmark tasks: (a) Rectangles (2-
class): Distinguish horizontal from vertical rectangles; (b) Rotated digits (10-class): Determine the
class of the digit; (c) Convex vs. non-convex (2-class): Determine if the image shows a convex or
non-convex shape; (d) Rectangles with images (2-class): Like (a), but rectangles are rendered using
natural images.

3.2 Performance

Classification performance on all 8 datasets is shown in Figure 4. To evaluate the model we chose
the number of hiddens units K, the number of factors F and the regularizer λ based on a validation

7



set (typically by taking a fifth of the training set). We varied both K and F between 50 and 1000 on
a fairly coarse grid, such as 50, 500, 1000, for most datasets, and for most cases we tried two values
for the regularizer (λ = 0.001 and λ = 0.0). A finer grid may improve performance further.

Table 4 shows that the model performs well on all data-sets (comparing numbers are from [11]).
It is among the best (within 0.01 tolerance), or the best performer, in three out of 8 cases. For
comparison, we also show the error rates achieved with the unfactored model (Section 2.2), which
also performs fairly well as compared to deep networks and SVMs, but is significantly weaker in
most cases than the factored model.

SVM NNet RBM DEEP GSM
dataset/model: SVMRBF SVMPOL NNet RBM DBN3 SAA3 GSM (unfact)
rectangles 2.15 2.15 7.16 4.71 2.60 2.41 0.83 (0.56)
rect.-images 24.04 24.05 33.20 23.69 22.50 24.05 22.51 (23.17)
mnistplain 3.03 3.69 4.69 3.94 3.11 3.46 3.70 (3.98)
convexshapes 19.13 19.82 32.25 19.92 18.63 18.41 17.08 (21.03)
mnistbackrand 14.58 16.62 20.04 9.80 6.73 11.28 10.48 (11.89)
mnistbackimg 22.61 24.01 27.41 16.15 16.31 23.00 23.65 (22.07)
mnistrotbackimg 55.18 56.41 62.16 52.21 47.39 51.93 55.82 (55.16)
mnistrot 11.11 15.42 18.11 14.69 10.30 10.30 11.75 (16.15)

Figure 4: Classification error rates on test data (error rates are in %). Models: SVMRBF: SVM with
RBF kernels. SVMPOL: SVM with polynomial kernels. NNet: (MLP) Feed-forward neural net.
RBM: Restricted Boltzmann Machine. DBN3: Three-layer Deep Belief Net. SAA3: Three-layer
stacked auto-associator. GSM: Gated softmax model (in brackets: unfactored model).

4 Discussion/Future work

Several extensions of deep learning methods, including deep kernel methods, have been suggested
recently (see, for example, [13], [14]), giving similar performance to the networks that we compare
to here. Our method differs from these approaches in that it is not a multi-layer architecture. Instead,
our model gets its power from the fact that inputs, hidden variables and labels interact in three-way
cliques. Factored three-way interactions make it possible to learn task-specific features and to learn
transformational invariances inherent in the task at hand.

It is interesting to note that the model outperforms kernel methods on many of these tasks. In contrast
to kernel methods, the GSM provides fully probabilistic outputs and can be easily trained online,
which makes it directly applicable to very large datasets.

Interestingly, the filters that the model learns (see previous Section; Figure 2) resemble those learned
be recent models of image transformations (see, for example, [3]). In fact, learning of invariances
in general is typically addressed in the context of learning transformations. Interestingly, most
transformation models themselves are also defined via three-way interactions of some kind ([15],
[16], [17], [18] , [19]). In contrast to a model of transformations, it is the classification task that
defines the invariances here, and the model learns the invariant representations from that task only.
Combining the explicit examples of transformations provided by video sequences with the implicit
information about transformational invariances provided by labels is a promising future direction.

Given the probabilistic definition of the model, it would be interesting to investigate a fully Bayesian
formulation that integrates over model parameters. Note that we trained the model without sparsity
constraints and in a fully supervised way. Encouraging the hidden unit activities to be sparse (e.g.
using the approach in [20]) and/or training the model semi-supervised are further directions for
further research. Another direction is the extension to structured prediction problems, for example,
by deploying the model as clique potential in a CRF.

Acknowledgments

We thank Peter Yianilos and the anonymous reviewers for valuable discussions and comments.

8



References
[1] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman. Supervised dictionary

learning. In Advances in Neural Information Processing Systems 21. 2009.

[2] Vinod Nair and Geoffrey Hinton. 3D object recognition with deep belief nets. In Advances in Neural
Information Processing Systems 22. 2009.

[3] Roland Memisevic and Geoffrey Hinton. Learning to represent spatial transformations with factored
higher-order Boltzmann machines. Neural Computation, 22(6):1473–92, 2010.

[4] Christopher Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[5] Adam Berger, Vincent Della Pietra, and Stephen Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):39–71, 1996.

[6] Geoffrey Hinton. To recognize shapes, first learn to generate images. Technical report, Toronto, 2006.

[7] Hugo Larochelle and Yoshua Bengio. Classification using discriminative restricted Boltzmann machines.
In ICML ’08: Proceedings of the 25th international conference on Machine learning, New York, NY,
USA, 2008. ACM.

[8] Geoffrey Hinton. Training products of experts by minimizing contrastive divergence. Neural Computa-
tion, 14(8):1771–1800, 2002.

[9] Roland Memisevic and Geoffrey Hinton. Unsupervised learning of image transformations. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, 2007.

[10] Vinod Nair and Geoffrey Hinton. Implicit mixtures of restricted Boltzmann machines. In Advances in
Neural Information Processing Systems 21. 2009.

[11] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation. In ICML ’07: Proceedings
of the 24th international conference on Machine learning, New York, NY, USA, 2007. ACM.

[12] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards ai. In L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines. MIT Press, 2007.

[13] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In Advances in Neural Information
Processing Systems 22. 2009.

[14] Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised embedding. In
ICML ’08: Proceedings of the 25th international conference on Machine learning, New York, NY, USA,
2008. ACM.

[15] Bruno Olshausen, Charles Cadieu, Jack Culpepper, and David Warland. Bilinear models of natural im-
ages. In SPIE Proceedings: Human Vision Electronic Imaging XII, San Jose, 2007.

[16] Rajesh Rao and Dana Ballard. Efficient encoding of natural time varying images produces oriented space-
time receptive fields. Technical report, Rochester, NY, USA, 1997.

[17] Rajesh Rao and Daniel Ruderman. Learning lie groups for invariant visual perception. In In Advances in
Neural Information Processing Systems 11. MIT Press, 1999.

[18] David Grimes and Rajesh Rao. Bilinear sparse coding for invariant vision. Neural Computation, 17(1):47–
73, 2005.

[19] Joshua Tenenbaum and William Freeman. Separating style and content with bilinear models. Neural
Computation, 12(6):1247–1283, 2000.

[20] Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for visual area V2.
In Advances in Neural Information Processing Systems 20. MIT Press, 2008.

9


