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Abstract

“wake-sleep” algorithm that allows a muliilayer, un-

We describe the
supervised, stochastic neural network to bwild a hierarchical, top-down
generative model of an ensernble of data vectors. Because the generative
madel uses distributed representations that are a non-linear function of
the mmput, it is intractable to compute the posterior probabiiity distri-
bution over hidden representations given the generative model and the
aurrent data vector. It Is therefore intractable Lo fit the generative model
to data using standard techniques such as gradient, descent or EM. Instead
of computing the posterior distribution exactly, a “Helirholtz Machine”
uses a separaie set of bottom-up “recognition” comnections to produce
a compact approximation to the posterior distribution. The wake-sleep
algorithm uses the top-down generative connections to provide training
dala lor the bollom-up recognition connections and wvice versa. In Lhis
paper, we show thal the wake-sleep algorithim can be generalized Lo model
the temparal structure in sequences of data vectors. This gives a very
simple orline algorithm that fits generative models which have distributed
hidden representations which can be exponentially more powerful than
conventional Hidden Markov Models.

1 Introduction

Neural networks are often nsed as boltom-up recognition devices that transform
input vectors inlo representations of those vectors in one or more hidden layers.
But multilayer networks of stochastic neurons can also be used as top-down
generative models that transform random uncorrelated noise in the top hidden
layer into highly structured patterns in the bottom, visible layer. Tn this paper
we consider generative models composed of layers of stochastic binary unils wikh
top-down generabive connections. Given a generative model parameterized by
the top-down weighis there 1s an obvious way to perform unsupervised learning.
The generative weights are adjusted to maximize the probability that the visible
vectors generated by the model would match the observed data. Unfortunately,
to compute the derivatives of the log probability of a visible vector, d, with



respect to the generative weights, 4, it is necessary lo consider all possible ways
in which d could be generated. For cach possible binary representation « in the
hidden units the derivative needs to be weighted by the posterior probability
of a given d and 6:
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It is intractable to compute every P{a|d, #), so instead of minimizing — log P(d|6),
we minimize an easily computed upper bound on this quantity that depends
on some additional parameters, ¢:

F(A9,8) = — > Qald, ¢} log P(a, dI6) + 3 Q(ald, ) logQ(ald. ) (2)

If we view — log P, d|ff) as an energy, F(d|0,¢) is a Helmholtz free energy
and 1s equal to —log P(d|@) when the distribution ¢(.|d, ¢} is the same as the
posterior distribution P{.[d,#). Otherwise, I'(d|4, @) exceeds — log P(d|0) by

the asymmetric divergence:
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We restrict ¢}.|d,¢) to be a preduct distribution within each layer that is
conditional an the binary states in the layer below, We can then compute the
distribution efficiently using a bottom-up recognition network (Dayan, Hinton,
Neal and Zemel, 1995). The recognition weights, ¢, take the binary activitiesin
one layer and stochastically produce binary activities in the layer above using
probabilities given by a logistic function. So for a given visible vector, the
recognition weights may produce many different representations in the hidden
layers, but we can get an unbiased sample from the distribution @(./d, ¢) in a
single bottom-up pass through the recognition net.

The highly restricted form of QQ(.|d, ¢) means that even if we use the optimal
recognilion weights, the gap between F(d|¢,¢) and —log P(d|#) is large for .
some generative models. However, when £{d|f, ¢) is minimized with respect
to the gencrative weights, these models can be avoided.

F(d|8,¢) can be viewed as the expected number of bits required to commu-
nicale a visible vector to a receiver. First we use the recognition model to
get a sample from the distribution &(.|d, ¢). Then, starting at the top layer,
we communicale the activitics in cach layer using the top-down expectations
generated from the already communicated activities in the layer above. Using
an argument described in Hinton and Zemel (1994), 1t can be shown that the
effective number of bils required for communicating the state of each binary
unlt is:
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where py is the top-down probability that s, 15 on and ¢ is the bottom-up
probability that sg is on.

There iz a very simple online algorithm that minimizes F(d|#, ¢) with respect
to the generative weights. We simply use the recognition network to generate
a sample from the distribution @(.jd,¢) and then we adjust each top-down
weight using the delta rule:

Abkj = esk(s; — pj) (5)

where ; connects unit % to unit § and ¢ is a learning rate.

1t is much more difficult to cxactly follow the gradient of F(d|é, ¢) with respect
to the rceognition weights, but there is a simple approximate method called the
“wake-sleep” algorithm (Hinton, Dayan, Frey and Neal, 1995). We generate a
stochastic sample from the generative model and then we apply the delta rule
to increase the log probability that the recognition weights would produce the
correct activitices in the layer above:

A(ﬁ,‘j = (Si(SJ‘ — Qj) (b)

2 The Helmholtz Machine Through Time

The major disadvantage of conventional Hidden Markov Models (HMM’s) is
the impoverished nature of their representation of stales. A Markov model can
only be in one stale at a time, and it is only by being in different states that it
can prescrve information over time (by the Markav property}. So if the states
usc local representations in which a single hidden unit is active, the number
ol untts required is exponential in the number of bits of informaticn that need
o be held (Williams & Ilinton, 1991). If the states correspond to distributed
representations in the hidden units, the number of hidden units required can
scale linearly with the amount of information held in a state, but unfortunately
learning and inference still seem to involve the exponential sums of equation 1.

The HM'PT is shown in figure 1. As in backprop through time (Rumelhart,
Williams and Hinton, 1986), weights are shared across timesteps, so that the
amount of hardware required is fixed. There are two directions ol generative
influence; top-down generation within a timestep, just as in the static HM, and
sideways gencration between timesteps, in which the units in one layer at one
timestep affect units in the same layer at the subsequent timestep.! In the
most straightforward implementation of the HMTT, these two influences are

Tt would be equally casy to have generative connections across time such that units in
one layer at one tlme iofluence units in lower or higher layers at subscqucnt times.
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Figure 1: The Helmholiz machine Through Time. This shows the first 2
timesteps for a three-layer HMTT. Only one unit per layer is shown for conve-
nience. Note that recognition (solid) and generative {dotted) conncctions hoth
point in the direction of increasing time. More complicated architectures are
also possible with direct generative connections from the input units at one
time to the inputs at the next, or links that cross layers over time. The recog-
nition and generative biases for the first timestep can be different from those
for subsequent timesteps.

just added together hefore imposing the non-lincarity. A complete gencrative
sample from the network therefore consists of:

1

1. Tar the first time-step, generate activities 2!, y* for units starting at the

fop using only top-down generative weights;

2. Tor the second and subscquent time-steps, combine top-down activilies in
the current timestep with sideways activities from the previous timestep
to determine the new generative probability [or a unit, and sample from
this generative probability to detlermine the new activities,

Since the first time-step lacks sideways influences, it is reasonable for it to use
different generative biases (Frey, personal communication) from those used for
subsequent timesteps.

II'these are the only generative connections, then the averall generative model is
clearly an IIMM, where the output model is captured by the connections to the
visible layer. Recognition in this context requires taking a sequence dt,d?, ...



of obscrved outpuls and determining the posterior prohabilitics:
Pyt gt 2t |dhdl L e)

over the states of the units in the hidden layers. Note thal the posterior proba-
hilities are not cansal, ée it is not necessarily true that p(yt, =!|d!, d%, ..., 8} can
be expressed as p(yl,z'|d!,4). Given their localist representations of states,
standard HMMs can use the computationally efficient forward-backward algo-
rithm (Baum and Eagon, 1967) to incorporate information from the future into
state occupancy probabilitics.

The TMTT uses a sel of adjustable parameters ¢ which specify a simpler
recognition model Q(¥',¥?, ..., 2", &%, id},d%, ..., @), In the simplest case
this is a causal model, thongh it need not be se. As for generation, there
are influences on recognition states from both the currenl and the previous
timesteps, and these are additive. Recognition therefore proceeds as:

1. For the first time-step, sample activities for units bottorm-up as in a stan-
dard wake phase recognition pass using the first chserved data d!.

2. For the second and subsequent time-steps, combine bottom-up influences
based on the ohserved data d* with sideways influences from the previous
hidden statcs y* ' and z'7' to determine the new recognition probabili-
ties for the units. Sample from these to produce the states of the hidden
units,

Although generative and recognition connections within a time-step are in
opposed directions, recognition and generative connections from the previous
timesteps are in the same direction — they both point forward. They will not
in general have the same weights.

Not only is this making the standard assumplions of the static TIM that the
recognition model is conditionally lactorial, but also, by being causal, il is
ignoring errors in setling stales thal could be fixed by information from fulure
observables. Consider the case in which there are two hidden states o and 3
thal at time ¢ are equally probable under the true posterior, given only the
information d*,...d%. Al lime £, the HMTT chooses just one of o and 3
with probability 0.5, and, unlike forward-backward based schemes, does not
go back and revise its choice in the light of subsequent observations df+!, .. ..
Causal or on-line recognition is computationally and neurally very altractive,
however, since 1t Is inconvenient to have repeatedly to backtrack and revise ones
estimates. Limited temporal dependencies in the recognition and generative
models can be incorporated through connections from further back in time than
just the last timestep. Recognition connections from the observed dala [rom
further into the future can also be used to attempt to provide the recognition
tnodel with the non-casual information really required for correct inlerence. In
the latter case, the state of the system at time { cannot be picked until time
t--r, where r is the farthest future time that is allowed to influence the posterior
distribution at the present.

The wake-sleep algorithm can be used to train the HMTT. As before, the wake
phasc consists of presenting complete sequences of observed inputls, picking



hidden states according to the recognition model, and training all the generative
weights using the delta rule. The sleep phases consists of generating sequences
of hidden and cbservable states from the generative model, and training the
recognition model using the delta rule to be its inverse. The fact that there
are both recognition and gencrative connections in the same direction between
hidden units at adjacent timesteps causes no problems. All that is cssential is
that neither the recognition model nor the generative model contain directed
cycles.

3 Experiment and results

3.1 The Learning Task

We madelled a time series of the activities of 9 binary visible units. These
activities are generated by the interaction of 3 independent 3-state first-order
Markov chains: a random walk process; a deterministic cyclic process; and an
absorbing process. Lhe transition structures are shown in figure 2a and were
adapted from the factorial HMM used by Ghahramani & Jordan (1995). The
cntropies of the Markov chains over the length of the sequence of 100 patterns
are approximately 87 nats, 0 nats, and 5 nats respectively (a nat is log, e bits).
Within each group of three visible units, only one is on at a time depending
on which state cach Markov process is in. The initial observable pattern is
100100100.

3.2 Network Architecture

Given Lhe factorial nature of the generative model for the time series we want
to model, we adopt an HMTT that has a hidden layer of § soft-max groups of
3 units each? and a visible layer of 9 logistic units. Each unit within a softmax
group has a probahility of being on that is determined by:

£

ply; = 1) = o (7)

where & sums over units in the same softmax group as j and ; is the total
input {(in either the generative or the recognition phase) for unit j. Only one
unit within a soft-max group can be on at any one time.

Within a time-step, the network has 81 top-down generative weights and 81
hottom-up recognition weights. It also has 81 generative and 81 recognition
weights from all 9 units in the hidden layer at time ¢ to the same 9 units at
time ¢+ 1. In addition, there are 18 generative hiases and 9 recognition biases.
On the very first lime step, the 9 gencrative and 9 recognition biases of the

?3igmoid hidden units do nol perform as well,



hidden units have different values to compensate for the fact that there are no
inputs across time from the previous states of the hidden units.

The point of the experiment is to see if the HMTT can learn to to use the 3
softmax groups to model the 3 Markov chains that produced the data.
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Figure 2: a) The generative model for the time series we modeled. 'The entropies
of the Markov chains over a lenglh of 100 are 87, 0 and B nats respectively.
b) A plot of the total Helmholtz Free Energy (HFE) as a function of training
iterations. At the end of the training, the HFE approaches the theorctical lower
bound. The hidden-visible weights in ¢) show that the HM'L'T has learned to
allocate one softmax group to each of the three different chains. d) shows the
generative weights between the hidden units at consecutive times.

3.3 Results

Training sequences consisting of 100 patlerns were generated according to the
maodel described in section 3.1, The HM'TT was trained using the wake-slecp
algorithm with the learning rate for both recognition and generative connec-
tions sct to 0.001. The performance was judged by the estimate of the tolal
Helmholtz Free Energy (HFE) in Eq 2. Figure 2(b) shows how the estimated
HFE changed as the netwark learned. Tt decreased rapidly at first, and after




800 training iterations it was close to the theoretical lower bound which is the
entropy of the generating Markov process.

Figures 2(c) and 2{d) show all the generative weights learned by the HMTT.
'I'he hidden-visible weights in 2(c) show that the soft-max groups successfully
discovered the factorial structure of the generative model. Figure2({d) shows the
generative weights between hidden units that model the transition structure of
the chains. Although the generative biascs are not shown, it is clear that the
lirst. two chains — the random walk and the deterministic cycle — are learned
almost perfectly. The absorbing process is learned less well — hidden unit 78
incorrectly generates Is in both »7 and 8.
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