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ABSTRACT

For decades, Hidden Markov Models (HMMs) have been
the state-of-the-art technique for acoustic modeling despite
their unrealistic independence assumptions and the very lim-
ited representational capacity of their hidden states. Con-
ditional Restricted Boltzmann Machines (CRBMs) have re-
cently proved to be very effective for modeling motion cap-
ture sequences and this paper investigates the applicationof
this more powerful type of generative model to acoustic mod-
eling. On the standard TIMIT corpus, one type of CRBM
outperforms HMMs and is comparable with the best other
methods, achieving a phone error rate (PER) of 26.7% on the
TIMIT core test set.

Index Terms— phone recognition, restricted Boltzmann
machines, distributed representations.

1. INTRODUCTION

A state-of-the-art Automatic Speech Recognition (ASR) sys-
tem typically uses Hidden Markov Models (HMMs) to model
the sequential structure of speech signals, with local spectral
variability modeled using mixtures of Gaussian densities.
Many methods have been proposed for relaxing the very
strong conditional Independence assumptions of standard
HMMs (e.g. [1],[2]).

In this work, we propose using variants of Restricted
Boltzmann Machines (RBMs)[3] to model the spectral vari-
ability in each phone. Unlike HMMs, RBMs use a distributed
hidden state that allows many different features to coopera-
tively determine each output frame, and the observations in-
teract with the hidden features using an undirected model. An
RBM is a bipartite graph in which visible units that represent
observations are connected to hidden units using undirected
weighted connections. The hidden units learn non-linear fea-
tures that allow the RBM to model the statistical structure in
the vectors of visible states.

RBMs have been used successfully for hand-written char-
acter recognition [3, 4], object recognition [5], collaborative
filtering [6] and document retrieval. By conditioning on
previous observations, RBMs can be used to model high-
dimensional, sequential data and they have proved to be very
successful for modeling motion capture data [7].

Several different RBM architectures are described in sec-
tion 2 and ways of training them are described in section 4.
Section 3 describes how to perform phone recognition using
a trained RBM. Sections 5 and 6 compare the performance of
different RBM architectures and training methods. The per-
formance of the best type of RBM is also compared to other
state-of-the-art acoustic modeling techniques.

2. RESTRICTED BOLTZMANN MACHINES

An RBM is a particular type of Markov Random Field (MRF)
that has one layer of stochastic visible units and one layer
of stochastic hidden units. There are no visible-visible or
hidden-hidden connections but all visible units typicallyhave
connections to all hidden units [figure 1-(a)]. The weights on
the connections and the biases of the individual units define
a probability distribution over the state vectors,v of the vis-
ible units via an energy function. We consider RBM’s with
Bernoulli hidden units and Gaussian visible units that have
a fixed variance of1. The energy of the joint configuration
(v,h) is given by [8]:
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whereθ = (w,b,a) andwij represents the symmetric in-

teraction term between visible uniti and hidden unitj while
bi andaj are their bias terms.V andH are the numbers of vis-
ible and hidden units. The probability that the model assigns
to a visible vectorv is:
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Since there are no hidden-hidden or visible-visible con-
nections, the conditional distributionsp(v|h) andp(h|v) are
factorial and are given by
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whereσ(x) = (1 + e−x)
−1 andN (µ, V ) is a Gaussian.

2.1. The conditional RBM

The Conditional RBM (CRBM)[7] is a variant of the stan-
dard RBM that models vectors of sequential data by consider-
ing the visible variables in previous time steps as additional,
conditioning inputs. Two types of directed connections are
added; autoregressive connections from the pastn frames of
the visible vector to the current visible vector, and connec-
tions from the pastn frames of the visible vector to the hid-
den units as in figure 1-(b). Given the data vectors at times
t, t − 1, ..., t − n the hidden units at timet are conditionally
independent. One drawback of the CRBM is that it ignores
future frames when inferring the hidden states, so it does not
do backward smoothing. Performing backward smoothing
correctly in a CRBM would be intractable because, unlike
an HMM, there are exponentially many possible hidden state
vectors, so it is not possible to work with the full distribution
over hidden vectors when the hidden units are not indepen-
dent.

If we are willing to give up on the ability to generate data
sequentially from the model, the CRBM can be modified to
have both autoregressive and visible-hidden connections from
a limited set of future frames as well as from a limited past.
So we get the interpolating CRBM (ICRBM) [figure 1-(c)].
The directed, autoregressive connections from temporallyad-
jacent frames ensure that the ICRBM does not waste the rep-
resentational capacity of the non-linear hidden units by mod-
eling aspects of the central frame that can be predicted lin-
early from the adjacent frames.

3. USING RBM’S FOR PHONE RECOGNITION

A context window of successive frames of feature vectors is
used to set the states of the visible units of the RBM. To train
the RBM to model the joint distribution of a set of frames and
theL possible phone labels of the last or central frame, we
add an extra “softmax” visible unit that hasL states, one of
which has value1. The energy function becomes:
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p(lk = 1|h; θ) = softmax(
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And p(l|v) can be computed exactly using
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Fig. 1. Different RBM architectures. (a) shows an RBM that
models the joint density of the label and all the frames in the
window. (b) and (c) show two types of conditional RBM that
model the joint density of the label and a single frame condi-
tional on the other frames in the window.

The value ofp(l|v) can be computed efficiently by utiliz-
ing the fact that the hidden units are conditionally indepen-
dent. This allows the hidden units to be marginalized out in a
time that is linear in the number of hidden units. To generate
phone sequences, the values oflog p(l|v) per frame are fed
to a Viterbi decoder.

4. RBM TRAINING

Following the gradient of the joint likelihood function of data
and labels, the update rule for the visible-hidden weights is

∆wij = 〈vihj〉data − 〈vihj〉model (7)

The expectation〈vihj〉data defines the frequency with which
the visible unitvi and the hidden unithj are on together and
〈vihj〉model is the expectation with respect to the distribution
defined by the model. the term〈.〉model takes exponential
time to compute exactly so the Contrastive Divergence (CD)
approximation to the gradient is used instead [3]. The new
update rule becomes:

∆wij = 〈vihj〉data − 〈vihj〉1 (8)

where〈.〉1 represents the expectation with respect to the
distribution of samples from running a Gibbs sampler ini-



tialized at the data for one full step. The update rule for
the CRBM visible-hidden undirected weights is the same as
above but for the weights of the directed connections it is dif-
ferent. For the autoregressive visible-visible links it is
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unit j. For the visible-hidden directed links it is
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4.1. Discriminative and hybrid training of an RBM

Since the log conditional probability,log p(l|v), can be com-
puted exactly, the gradient can also be computed exactly. If
the correct label is m, the update rule for the visible-hidden
weights is
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To avoid model overfitting, we follow the gradient of a
hybrid functionf(v, l) which contains both generative and
discriminative components.

f(v, l) = α log p(l|v) + log p(v|l) (12)

wherelog p(v|l) works as a regularizer and is learned by
using the original labels with the reconstructed data to infer
the states of the hidden units at the end of the sampling step.
Theα parameter is used to control the emphasis given to the
discriminative component in the objective function. Sincethe
original labels are used during hidden layer reconstruction for
evaluating the gradient oflog p(v|l), the label biases are up-
dated using the gradient oflog p(l|v) only.

5. EVALUATION SETUP

All phone recognition experiments were performed on the
core test set of the TIMIT corpus1. All SA records were
removed as they could bias the results. A development set of
50 speakers was used for model tuning. The speech was an-
alyzed using a 25-ms Hamming window with a 10-ms fixed
frame advance. In all the experiments, we represented the
speech using 12th-order Mel frequency cepstral coefficients
(MFCCs) and energy, along with their first and second tempo-
ral derivatives. The data were normalized to have zero mean
and unit variance. We used 183 target class labels (i.e., 3
states for each one of the 61 phones). Forced alignment was

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1

used to produce frame labels using a baseline HMM system.
After decoding, starting and ending silences were removed
and the 61 phone classes were mapped to a set of 39 classes
as in [9] for scoring. All of our experiments used a bigram
language model over phones, estimated from the training set.

6. EVALUATIONS

6.1. CD training of three types of RBM

The three types of RBM shown in figure 1 were trained using
a window of 11 frames as the visible states. 2000 hidden units
were used for all architectures. Table 1 shows the phone error
rate (PER) when the RBMs were trained generatively.

Table 1. The PER of different RBM architectures.

RBM CRBM ICRBM

36.9% 42.7% 39.3%

The ICRBM produces a lower PER than the CRBM, pre-
sumably because the near future is more relevant than the
more distant past. The unconditional RBM performs the best,
probably because modeling the joint density of the entire win-
dow reduces overfitting more effectively than only modeling
one frame conditional on the other frames. In the conditional
RBMs, the relation between frames captured by the autore-
gressive connections influences what the hidden units learn,
but it does not directly help in decoding asp(l|v) does not
depend on the autoregressive connections.

6.2. Hybrid training of the three types of RBM

Generatively trained network parameters were used to ini-
tialize hybrid training. The mean square error (MSE) be-
tween the original and predicted targets, was measured ev-
ery epoch on the development set. If the MSE reduction
between two epochs was less than 0.5%, the learning rate
was halved. Training stopped when no improvement was ob-
served. The parameterα in equation (12) was tuned to maxi-
mize the PER on the development set. The best RBM model
achieved 27.5% PER while the best ICRBM model achieved
26.7%. The discriminative component of the hybrid gradient
forces the ICRBM to extract non-linear features from the con-
text that are more useful for predicting the label. It has more
capacity for these features than the unconditional RBM be-
cause it does not have to model the contextual frames or the
linear dependencies of the modeled frame on the context.

6.3. Comparison with other models

Since a feedforward neural network is quite similar, it was
compared to the ICRBM model. A feedforward neural
network with 2000 hidden units and an input window of



11 frames was trained twice using backpropagation; once
from random weights and once from the generatively trained
weights of the unconditional RBM. The learning rate was
reduced in the same way as in RBM. Table 2 shows that
the ICRBM outperformed both feedforward models, proba-
bly because the generative component of the hybrid training
greatly reduces overfitting.

Table 2. PER of the ICRBM compared to the NN model.

NN (random weights) NN (RBM weights) ICRBM

28.7% 28.3% 26.7%

A two-tailed Matched Pairs Sentence-Segment Word Er-
ror (MAPSSWE) significance test [10] was conducted with
the null hypothesis that there is no performance difference
between the ICRBM and the feedforward neural net models
using the NIST scstats tool. The test finds a significant dif-
ference at the level of p=0.05. Table 3 compares the results
achieved by the ICRBM model to other proposed models.

Table 3. Reported results on TIMIT core test set

Method PER

Conditional Random Field [11] 34.8%
Large-Margin GMM [12] 28.2%

CD-HMM [2] 27.3%
ICRBM (this paper) 26.7%

Augmented conditional Random Fields [2]26.6%
Recurrent Neural Nets [13] 26.1%

Monophone HTMs [1] 24.8%
Heterogeneous Classifiers [14] 24.4%

7. CONCLUSIONS

In this work, several variants of Restricted Boltzmann Ma-
chines were investigated for acoustic modeling. They all used
Gaussian visible units to represent MFCC coefficients, a soft-
max visible unit to represent labels, and Bernoulli hidden
units. The hidden features learned by each RBM define a joint
probability distribution over MFCC coefficients and discrete
labels. Three architectures were evaluated: the unconditional
RBM, the conditional CRBM, and the interpolating condi-
tional ICRBM. Generative and discriminative update rules
were investigated and a hybrid that blends the two gradients
worked best. Using this hybrid, the ICRBM achieved signifi-
cantly better results than a feedforward neural network model
with the same architecture.
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